No.08_June 2018|Sé 08 — Thang 6 nam 2018|p.43-54

TAP CHI KHOA HOC PAI HOC TAN TRAO
ISSN: 2354 - 1431
http://tckh.daihoctantrao.edu.vn/

Anharmonic Correlated Einstein Model and Some Applications to Studies of

Thermodynamic Properties and Structural Determination of substances

Nguyen Van Hung""

“ Hanoi University of Science
*
Email: hungnv@vnu.edu.vn

Article info

Abstract

Recieved:
19/4/2018
Accepted:
12/6/2018

Keywords:

Debye-Waller factor,
cumulant expansion, XAFS,
thermodynamic properties.

This paper presents the anharmonic correlated Einstein model (ACEM) for
studying Debye-Waller factors presented in terms of cumulant expansion and
some of its applications. The model is derived based on the quantum statistical
theory. In addition, the complicated many-particle problem is simplified by the
derived anharmonic interatomic effective potential. This includes the many-
body effects by the first shell near neighbor contributions to the vibrations
between absorber and backscatterer atoms and by projecting these
contributions along bond direction to recover the one-dimensional model.
Morse potential is assumed to describe the single-pair atomic interaction.
Numerical results for several applications are found to be in good agreement
with experiment which show the evident temperature dependence of the

thermodynamic properties, anharmonic effects and structural parameters of the

considered material.

1. Introduction

X-ray Absorption Fine Structure (XAFS) has
developed into a powerful technique for providing
information on the local atomic structure and thermal
effects of substances. The formalism for including
anharmonic effects in XAFS is often based on
cumulant expansion approach (CEA) [1] from which
the anharmonic XAFS function has resulted as [2]
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where F(k) is the real atomic backscattering
amplitude, £ and A are the wave number and mean free

path of photoelectron, respectively, ® is the net
phase shift, R = <r> with 7 being the instantaneous

bond length between absorber and backscatterer
atoms, and o™ (n=1, 2, 3, ...) are the cumulants
describing Debye-Waller factors (DWFs).

Hence, the cumulants or DWFs are very important

for the anharmonic XAFS where the even cumulants
contribute to the amplitude, the odd ones to the phase
of XAFS spectra, and for small anharmonicities, it is
sufficient to keep the third and fourth cumulant terms
[3]. They are crucial to quantitative treatment of
XAFS spectra. Consequently, the lack of the precise
DWFs or cumulants has been one of the biggest
limitations to accurate structural determinations (e.g.,
the coordination numbers and the atomic distances)
and to specify the other properties of substances from
XAFS experiments. Therefore, investigation of DWFs
or cumulants and XAFS is of great interest.

Many efforts have been made to overcome such

limitations by the theoretical and experimental
investigations. The single-bond (SB) correlated Einstein
model [4] and single-pair (SP) correlated Debye model
[5] have been derived using the CEA to describe the
anharmonic effects in XAFS. Unfortunately, they can not

provide good agreement of numerical results with

43



N.V.Hung /No.08 June 2018|p.43-54

experiment due to neglecting the many-body effects in
XAFS of the considered materials.

The purpose of this work is to present the
anharmonic correlated Einstein model (ACEM) [6]
which can overcome the limitations of SB and SP
models and provide good agreement of the numerical
results of DWFs presented in terms of cumulant
expansion up to the third order and thermal expansion
coefficient with experiment, as well as some of its
studies using XAFS

applications to materials

procedures.
2. Anharmonic correlated Einstein model [6]
2.1. Anharmonic interatomic effective potential

In order to include anharmonic effects, the
Hamiltonian of system in the present theory for hcp
crystals (Zn) involves the anharmonic interatomic

effective potential expanded up to the third order as

€

1
fo(x)zgkefx2 thyyX’, x=r=1y, @.1)

where keﬁ» is the effective local force constant and

k

e 18 the cubic anharmonic parameter giving an

asymmetry of the anharmonic effective potential, r
and r, are the instantaneous and equilibrium distances
absorber and  backscatterer

between atoms,

respectively.
Determination of parameters Ky and k3eﬁ. has

been performed based on an Einstein potential [6] or
an anharmonic interatomic effective potential derived
from the oscillation of a single pair of atoms with
masses M; and M, (e.g., absorber and backscatterer)
in a given system. Their oscillation is influenced by
their near neighbors. In the center-of-mass frame of

this bond it is given by

v H R R
Vy(x)=) (x)+ZZV(Mi R, RU} , 22

i=1,2 j#i
— MIMZ
M +M,

where p is reduced mass of absorber and

backscatterer atoms, and ﬁ is unit vector; the sum ;i is
over absorber (i = 1) and backscatterer (i = 2), and the
sum j is over all their near neighbors, excluding the
themselves, whose

absorber and backscatterer

contributions are described by the term V(x).
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Hence, the anharmonic interatomic effective
potential given by Eq. (2.2) is quite different from the
SP [4] and SB [5] model potentials because it includes
not only the term V(x) describing the SP and SB
interaction but also the second one describing an
affect of lattice on the oscillation between absorber
and backscatterer atoms, i.e., the many-body effects
have been taken into account. Moreover, by projecting
the contributions of the near neighbors of absorber and
backscatter along the bond direction as in Eq. (2.2) the
one-dimensional model has been recovered that

simplifies the many-body problem in XAFS theory.
In the ACEM the Morse potential expanded to the

third order around its minimum
V(x) = D(e‘z”“ —2e‘“")z D(— l+a’x* =o'y’ +-- ) 2.3)

is assumed to describe the single-pair atomic

interaction included in the anharmonic effective
potential where 1/a describes the width of the
potential and D is the dissociation energy. It is usually
sufficient to consider weak anharmonicity (i.e., first-
order perturbation theory) so that only the cubic term

in this equation must be kept.

For deriving XAFS cumulants we describe the
anharmonic interatomic effective potential given by

Eq. (2) in the summation of the harmonic contribution

and a perturbation OV due to the weak
anharmonicity as
1
Vor (0) =S ke v* + 5V ().
O =5Da’ay+kyyy’, y=x-a, a=(x). (24

2.2. XAFS cumulants and thermal expansion
coefficient

The derivation of XAFS cumulants in ACEM is
based on quantum statistical theory [7] and the
parameters of the anharmonic interatomic effective
potentials given by Egs. (2.2) and (2.4), as well as an
averaging procedure using the canonical partition

function Z and statistical density matrix p,e.g.,

<ym>:%Tr(Pyml m=1,2,3,: (2.5)

Atomic vibrations are quantized in terms of phonons,
and anharmonicity is the result of phonon-phonon

interaction, that is why we express » in terms of the
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annihilation and creation operators, & and &+,
respectively
i+a* ho (2.6)
y=a (a a ), a, =, |——, .
‘ * \10Da?

which have the following properties
[&,d+]=l, &+|n>=\/n+1|n+1>,
1 n>=x/n—1|n—1>, aa n>=n|n>

as well as use the harmonic oscillator state |n> as

the eigenstate with the eigenvalue E, = nhw, forn

being the phonon number, ignoring the zero-point

energy for convenience.

Due to weak anharmonicity in XAFS, the
canonical partition function in Eq. (2.5) can be
expressed as

7=27,=3 "M% :iz” =15
- z

n=0 - .

2.8)
z=exp(-6,/T)

where the correlated Einstein frequency wg and

temperature &g of hcp crystals are given by

10D n
a)E = O—a, QE = a)E N
M ky

M is the atomic mass and kg is Boltzmann

2.9)

constant.

Using the above results for the correlated atomic
vibration and the procedure depicted by Egs. (2.5) -
(2.9),
perturbation theory [7],

as well as the first-order thermodynamic
the temperature-dependent
XAFS cumulants have been derived.

Based on the procedure depicted by Eq. (2.5) we
derived the even moment expressing the second
cumulant or MSRD

o (1)= (") = Ze "% (n] 7).

B=1/k,T

(2.10)

and the odd moments expressing the first (m = 1)

and third (m = 3) cumulants

S

onn

e 2.11
E_E, (nlsv ()|’ (| y" |n), > (2.11)

m=1,3

where the operations expressed by Egs. (2.5) and (2.6)
have been applied to calculate the matrix elements
given in Egs. (2.10) and (2.11).

Consequently, the XAFS expressions have resulted
for the second cumulant or MSRD

1+2z(T)
2 T)= 2 2
o’( ) <y > 1y o,

for the first cumulant or net thermal expansion

hoy
T 10Da?

(2.12)

(1)1+Z() 0(51)
"1-2(T) o

o™ (T)=a= —o’(T),

(2.13)

3a
o)) ==~0;
4

and for the third cumulant or mean cubic relative
displacement (MCRD)

0'(3)(T)=<y3>=0'

3 _ 2\?
% 2 (O-O )
Moreover, using the first cumulant given by Eq.

(2.13),
coefficient has been derived and given by

2
1da7 o[ 5Da’ 5, 2\2
e
. 3k,
20Dar

(2.14)

the expression for the thermal expansion

From the above results a simple relation between
cumulants in term of 6 has resulted as
ocVo? 1 216
o 2-(4/3) ol /)’ '

which approaches the classical expression [8] of
1/2 at high temperatures.

In the above expressions the temperature variable
has been described in terms of 6> as

2 2
o -0,

Z=—F"> (2.17)
o —o,

0'(()1) cro , 633) are zero-point energy

contributions to three first XAFS cumulants o"(T),
6*(T), o®(T), respectively, and ag is the constant

value which the thermal expansion -coefficient
approaches at high-temperatures.
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The above formulas at low and high temperatures
are presented in Table 2.1.

Table 2.1. Formulas of 6", o°, ¢, and o7 in low

temperature (T —> 0) and high temperature (T —> )

limits.
T-0 Tsw
o) o (1+22) (3kg/20Da)T
a? ol(l+2z) (ke/5D?)T
63 o (1+122) (3 k;/50D%3)T2
or afz(lnz)’(1+2z) ay

Hence, the first and second cumulants are linearly
proportional to the temperature T, the third cumulant
to T? and the thermal expansion coefficient oy
approaches the constant value a? at high
temperatures, while the cumulants contain zero-point
energy contributions, a quantum effect, and or

vanishes exponentially at low temperatures.
2.3. Numerical results and discussions

Now the expressions derived in the previous
section are applied to numerical calculations for XAFS
cumulants and thermal expansion coefficient of Cu using
its Morse potential parameters [9] D = 0.343 eV and o =
1359 A", Anharmonic effective potential of Cu is
presented in Fig. 2.1 which is asymmetric compared to

the harmonic term due to anharmonic contribution.

Present
= HEMONIC 10T

C

Anharmanic effective potential \, (eV)

interatomic

Anharmonic

Fig. 2.1. effective
potential of Cu calculated using the present theory

and its Morse parameters [9].

Fig. 2.2 illustrates good agreement of temperature
dependence of (a) first cumulant '"(T) and (b) second
cumulant o*(T) of Cu calculated using the present
theory with the experimental values of Beccara et al
[10] for the first cumulant and of Greegor et al [11]
and Yokoyama et al [12] for the second cumulant.
Here, the value of 6*(295 K) of SP potential [5] is also
presented for comparison. Here, ¢'"(T) and o*(T) are

linearly proportional to the temperature at high

46

temperatures and contain  zero-point  energy

contribution at low temperatures, a quantum effect.
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Fig. 2.2. Temperature dependence of (a) first
cumulant 6”(T) and (b) second cumulant ¢°(T) of Cu
calculated using the present theory compared to the
experimental values of Beccra et al [10] for the first
cumulant, of Greegor et al [11] and Yokoyama et al
[12] for the second cumulant. Here, the value of
0°(295 K) of SP potential [5] is also presented for

comparison.
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Fig. 2.3. Temperature dependence of (a) third
cumulant 6™ (T) and (b) thermal expansion coefficient
ar (T) of Cu calculated using the present theory
compared to the experimental values of Yokoyama et
al [12] for the third cumulant and of Toukian et al
[13] for the thermal expansion coefficient.

Table 2.2. Comparison of second, third cumulants
and thermal expansion coefficient of Cu calculated
using the present theory compared to experiment and

to those of other theory.

o (X1072 A% o (1077 AY er (X107 K7h
T (K) Present Expt. Other” Present Expt®  Present Exptd
10 0.298 0.292
71 0333 0325 0.010 0.584 059
100 0.365 0.014 0.745 0.80
295 0.803 0.774 0.520 0.131 0.13 1.070
300 0.817 0.136 1.072
683 1.858 1.823 1.090

“Ref. 11, °Ref. 5, “Ref. 12, ‘Ref. 13.

The good agreement of temperature dependence of
third cumulant ¢®(T) of Cu calculated using the
present theory with the experimental values of
Yokoyama et al [12] is presented in Fig. 2.3a. Such
good agreement of the calculated thermal expansion
coefficient ot (T) of Cu with the experimental values
of Toukian et al [13] is shown in Fig. 2.3b. Here, the
third cumulant is proportional to square of temperature
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and ar approaches the constant value at high

temperatures.

Comparison of second, third cumulants and
thermal expansion coefficient of Cu calculated using
the present theory with the experimental values [11-
13] and with those of other theory [5] is presented in

Tab. 2.2.
3. Classical ACEM [14]

3.1. High-order expanded Debye-Waller factor in
classical ACEM

Classical theory has the advantage of applications

up to high-temperatures, even up to melting
temperatures [8]. Within the classical limit and the
assumption that the anharmonicity can be treated as a
perturbation,  the

the anharmonic effective

small temperature-dependent

moments with using

potentials given by Eq. (2.2), about the mean <x>, as

determined by evaluating the thermal average

7o
meca
31 kaezr" k,wx 1.7
-z(x x) exp{ ZkB :WZ-O;[ T J]dt
B 2k, T 14 3ET)(S Skigr i
kg e | M ®
to the lowest orders in T are given by
kT [133 +45H
25Da\ 6

3k, T
el 138 42 , (33)
5Da’ |\ 48 1

et
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3.1)

(e-(5))-

—g

= 3.2)

3T ||
20Da

(b)) = g1+

3(ksT) (2637 kT
x—(x) )= 14— 3.4
<(T <t>)3> 50D20{3( 50 D } S
oy 3T 139 kT
<(x <x>)>725D2054 (1+300 D) G5
where the effective parameters keﬂ.,kwf and

k

o of the high-order anharmonic effective potential

for hep crystals contained in Egs. (3.2-9) have been
substituted by their values in terms of Morse potential
parameters.

The truncation of the series in Eq. (3.1) serves as a

convergence cutoff while including enough terms to
accurately obtain the second lowest-order expressions

for the moments. The respective expressions obtained
from Egs. (3.2- 5) to lowest order in the temperature T
are given by for the first cumulant or net thermal

expansion
3
ol =(r—r,)=(x) :Zaaz, (3.6)
for the second cumulant or MSRD
k,T 2k, T
2 = — 2 =~ 2 :—B = 5 ) 37
o <(r ) >_<x > e = mar (3.7
for the third cumulant
3 3 2
oV :<(r—r0) >§<x3>—30(”02 :20:(02) . (38
and for the fourth cumulant
4 2
o =((r-n)')-3(0") =
2 137 37
(x*)-3(0*) ==’ (07)
40
3.9)
as well as for the cumulant ratio
cVo? 1 (3.10)
o® 27 '

where @ is the correlated Einstein frequency.

Hence, thanks to using the derived anharmonic
effective potential, all the obtained cumulants given
by Egs. (3.6-9) have been presented in very simple
forms in terms of second cumulant or MSRD. It is
useful not only for reducing the numerical
calculations, but also for obtaining or predicting the
other theoretical or experimental XAFS cumulants
based on the calculated or measured second cumulant.
Since the second cumulant ¢” given by Eq. (3.2) is
proportional to the temperature T, the first cumulant

o

is also linear with T, and the third and fourth
cumulants vary as T and T°, respectively. Moreover,
Eq. (3.2) shows inverse proportionality of this second

to the square of correlated Einstein
(3.6-9),

) are inversely proportional

cumulant ¢°

frequency a)é, so that from Egs.

cumulants 0(1), o® and o

to a)é, a)g and a)E, respectively. The cumulant

)

ratio 6V6%/c® is often considered as a standard for

cumulant study. Its value of 1/2 given by Eq. (3.10) is
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valid for all temperatures, while such ratio resulted
from quantum theory, approaches 1/2 only at high
temperatures [6,15].

3.2. Numerical results for hcp crystals and
discussions

For discussing the successes and efficiencies of the
developments in this work, the expressions derived in
the previous section have been applied to numerical
calculations of the anharmonic interatomic effective
potentials and four first temperature-dependent XAFS
cumulants of Zn and Cd using Morse potential
parameters [15] D = 0.1698 eV, o = 1.7054 A™ for Zn
and D = 0.1675 eV, a. = 1.9069 A for Cd, as well as
their experimental values [16] D = 0.1685 eV, a =
1.700 A" for Zn and D = 0.1653 eV, o = 1.9053 A"
for Cd.

25

""" , Harmanic
Present

Effective potential VesLeV)

02 04 08 08

b8 D06 04 02

)
Fig. 3.1. High-order anharmonic interatomic effective
potentials of Zn and Cd calculated using the present
theory compared to experiment obtained from the
measured Morse potential parameters [16] and to

their calculated harmonic terms.

Fig. 3.1 of the
anharmonic effective potentials of Zn and Cd expanded

illustrates good agreement
up to the fourth order calculated using the present
theory with experiment obtained from the measured
Morse potential parameters [16]. They are significantly
asymmetric compared to their harmonic terms due to

including the anharmonic contributions given by &, o

and k These calculated anharmonic effective

4ef
potentials are used for the calculation and analysis of
four first XAFS cumulants of Zn and Cd.

Temperature dependence of first cumulant or net
thermal expansion o'(T) (Fig. 3.2a) and second
cumulant or MSRD o*(T) (Fig. 3.2b) of Zn and Cd
calculated using the present theory agrees well with
the experimental value at 300 K. The limitation here is
unsatisfactory of the agreement of the calculated
values of ¢"(T), 6°(T) of Zn and Cd with experiment
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at 77 K. It is an evident limitation of any classical
theory including the present one due to the absent of
zero-point vibrations. The lowest temperature at which
the classical limit can be applied to the first and
second cumulants is about the correlated Einstein
temperature 6, = 205.61 K for Zn, and 6, = 174.14

K for Cd calculated using the present theory.
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Fig. 3.2. Temperature dependence of (a) first cumulant
d(T) and (b) second cumulant o(T) calculated using the
present theory for Zn and Cd compared to the
experimental values at 77 K and 300 K [16].
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Fig. 3.3. Temperature dependence of a) third cumulant
o (T) and b) fourth cumulant o (T), calculated using the
present theory for Zn and Cd compared to the
experimental values at 77 K and 300 K [16].

Unfortunately, this limitation is significantly
the
Temperature dependence of the third cumulant
o (T ) (Fig. 3.3a) and the fourth cumulant c*(T)

(Fig. 3.3b) for Zn and Cd calculated using the
present theory agrees well with experiment not only
at 300 K but also at 77 K. Hence, the present
classical theory can be applied to the third and fourth

reduced for third and fourth cumulants.

cumulants of hcp crystals from the temperatures
which than their

temperatures. The reason of the above conclusions is

are much lower Einstein
attributed to the absent of zero-point vibrations,
which are non-negligible for the first and second
cumulants, and negligibly small for the third and
fourth cumulants. Despite such limitation to the first
and second cumulants, the present theory is suited

for describing anharmonic effects in XAFS using
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cumulant expansion, because anharmonicity appears

apparently from about room temperature [6].

The cumulant ratio ’6%/6® is often considered as
a standard for cumulant study [16]. Fig. 3.4 illustrates
the equality to 1/2 of o6’ for Zn and Cd
calculated using the present theory for all
temperatures, while this ratio obtained from quantum
theory approaches 1/2 only at high temperatures [6].

15

B
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N Cd, Present
iy — — 7n, Quanturm
‘1\ — -~ Cd, Quantum
& 1\
PR 1y
ol W
o WA
st
N
Dy
05 e
0 100 200 300 400 500

T(K)
Fig. 3.4. Temperature dependence of cumulant
ratio 6"6’/6” of Zn and Cd calculated usingthe
present theory compared to those obtained from

quantum statistical theory [16].

Note that the experimental values of the first,
second, third and fourth cumulants of Zn and Cd at 77
K and 300 K compared to our calculated results
presented in the above figures have been extracted
from XAFS spectra measured at HASYLAB (DESY,
Germany) by a fitting procedure [16]. Moreover, the
above numerical results for Zn and Cd have confirmed
the proportionality of the first and second cumulants to
the temperature T, the third and fourth cumulants to T*
and T°, respectively.

4. Application to theoretical and experimental
XAFS studies of hep crystals [17]

4.1. Advanced method for theoretical and
experimental XAFS studies of hcp crystals

In this application the ACEM [6] has further
developed into an advanced method using that not only
theoretical but also experimental XAFS quantities
including not only cumulants but also XAFS spectra
and their Fourier transform magnitudes can be provided
based on only the calculated and measured second
cumulants or MSRDs which has the form

:O_gltz(T)’ oF = ha)EZ’
1-2z(T) 10D
z2(T)=exp(6,/T)

o (T) (4.1)

Hence, we have the expressions for the first

cumulant or net thermal expansion

1+2(T) O
e (T)=o!" +2( ):0'02 (T),
1-2(T) o . (4
3a
51)=TO'§

for the third cumulant or mean cubic relative
displacement (MCRD)

o (T)= 0o {ﬂ}z 2],

2
%o . (43)
a 2
o =% (%)
and for the thermal expansion coefficient
2 2
ar(T)=o; (0-2 (T)) _(05)
! ! T? T (4.4)
o 15Da’
ay =
4k yr

Moreover, the second cumulant given by Eq. (4.1)
is harmonic while the experimental data always
include the temperature-dependent anharmonic
effects. That is why we introduce the total second

cumulant or MSRD as

oo (T) =0 (T)+05(T), 4.5)
which involves an anharmonic contribution
(=4, -0]. @6

containing the anharmonic factor

B.(T)= % (T){l +43TZGZ(T)[1 + MGZ(T)ﬂ, (4.7)

8 4R

Further, we develop the XAFS function given by
Eq. (1) into an analytical form explicitly including the
above obtained cumulants for the temperature-

dependent K-edge anharmonic XAFS spectra as

7[2/{252 (T)+2Rj//1(k)}

SN,
2kT)=3 e OF,(kTe (4.8)

J J

sin(2kR ; +® (k) + ©/, (k. T))

which contains the anharmonic contribution to
amplitude described by an factor

F,(k.T)=exp|-2k>02(1)] . 4.9)
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causing the anharmonic attenuation and the

anharmonic contribution to phase

.15 = (4.10)

o262l Lo L 22 Jo e
2/{0 (T) ZO'A(T)(R ﬂ(k)j e (T)k}

causing the anharmonic phase shift of XAFS
spectra.

In the anharmonic XAFS function Eq. (4.8) S(f is the

square of the many body overlap term, N, is the atomic

number of each shell, the mean free path A is defined by

the imaginary part of the complex photoelectron
momentum p =k +i/ A, and the sum is over all

considered atomic shells. Moreover, all parameters of
this function can be obtained from the second cumulant
or MSRD, and this function will return to the harmonic
case calculated by the well-known FEFF code [18] if the
anharmonic contributions to amplitude F,(k,T) and to
phase D4(k,T) are excluded. Inversely, the FEFF code
can also be modified by including these anharmonic
contributions to XAFS amplitude and phase to calculate
the anharmonic XAFS spectra and their Fourier
transform magnitudes. It is the evident advantage of the
present method which will be applied to the numerical
calculations and to the extractions of experimental XAFS
parameters for Zn presented in Section 4.2.

4.2. Experimental and numerical results and

discussions
4.2.1. Experimental

The measurements of the second cumulant, XAFS
spectra and their Fourier transform magnitudes of Zn
at 300 K, 400 K, 500 K and 600 K have been
performed at the Beamline BLS, SLRI (Thailand). It is
the routinely operated for X-ray absorption
spectroscopy (XAS) in an immediate photon energy
range (1.25 - 10 keV). The experimental set-up
conveniently facilitates XAS measurements in
transmission and fluorescence-yield modes at several
K-edges of elements ranging from Magnesium to Zinc
[19]. The experimental values of the first, third
cumulants, thermal expansion coefficients and some
other XAFS parameters of Zn at 300 K, 400 K, 500 K
and 600 K have been extracted from the measured
values of the second cumulant using the present
method based on the description of these quantities in

terms of second cumulant presented in Section 4.1.

50

The obtained experimental results will be presented in
Section 4.2 compared to the theoretical results.

4.2.2. Numerical calculation results compared to

experiment and discussions

Now the expressions derived in the previous
Section 2 are applied to numerical calculations for Zn
using its Morse potential parameters [15] D = 0.1700
1.7054 A" which were obtained using
experimental values for the energy of sublimation, the

eV, a =

compressibility, and the lattice constant.

4.2.2.1. XAFS cumulants and thermal expansion
coefficient

Fig. 4.1 illustrates good agreement of (a) first cumulant
o"(T) and (b) total and harmonic second cumulants

O',it(T ), 6(T), respectively, of Zn calculated using the

present theory with the experimental values at 300 K, 400
K, 500 K, and 600 K. Here, o, (7T) is a little different

from o°(T) at temperatures greater than the room
temperature due to the temperature-dependent anharmonic
contributions. Note that using this first cumulant we can
obtain temperature dependence of the first shell near
neighbor distance based on the expression R(T) = R(0) +
o"(T).

<Ay

N R
Fig. 4.1. Temperature dependence of (a) first

cumulant ¢”(T) and (b) total and harmonic second
cumulants Gi) ,(T") and (1), respectively, of Zn

calculated using the present theory compared to the
experimental values at 300 K, 400 K, 500 K and 600 K.

e A
LR

"ll"? ) b : ; T
Fig. 4.2. Temperature dependence of (a) third
cumulant 6™ (T) and (b) thermal expansion coefficient

or(T) of Zn calculated using the present theory
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compared to the experimental values at 300 K, 400 K,
500 K and 600 K.

Temperature dependence of third cumulant ¢(T)
(Fig. 4.2a) and thermal expansion coefficient o(T) (Fig.
4.2b) of Zn calculated using the present theory agrees
well with the experimental values at 300 K, 400 K, 500
K and 600 K. Here, the theoretical and experimental
thermal expansion coefficients of Zn approach the
constant values at high-temperatures as it was obtained
for the other crystal structures [11, 22-26].

Figs. 4.3 illustrate good agreement of temperature

dependence of (a) anharmonic contributions O'f1 (T) to

the second cumulant or MSRD and (b) anharmonic
factor Ba(T) of Zn calculated using the present theory
with their experimental values at 300 K, 400 K, 500 K
and 600 K where BA(T) characterizes percentage of the
anharmonic contributions at each temperature. These
values are normally difficult to be directly measured, but
using the present method they have been calculated and

extracted from the calculated and measured second

cumulants.
14 0.08.
a) L s b)
12 Zn Tg;tw 007 zn T'Eﬂ;:?.\
1 0.06
‘:; 1 o 0
b e
B =0
0 0.03
02| 0.02
R R O @n am 0 w0 60
® T
Fig. 4.3. Temperature dependence of (a)

anharmonic contribution O'j (T) to second cumulant

or MSRD and (b) anharmonic factor Bu(T) of Zn
calculated using the present theory compared to the
experimental values at 300 K, 400 K, 500 K and 600 K.

(1) (3)

The cumulant ratios 6'”6%/6* and 0To?/c™ are

often considered as the standards for cumulant
studies [6,16] and to identify the temperature above
which the classical limit is applicable [6]. Figs. 4.4
show good agreement of temperature dependence of
(a) 6W?*/c® and (b) arTo’/c® of Zn calculated
using the present theory with the experimental
values at 300 K, 400 K, 500 K and 600 K. The
theoretical and experimental results of these ratios
show that above the Einstein temperature (6 = 206

K calculated using the present theory for Zn) they

approach the classical value [8,14] of 1/2 so that the

classical limit is applicable.

a a) oasl D)

—Theayy
® Eqt —Theary
038 N ey

=
W0 200 20 40 500 600 W 200 A0 400 500 B0D
T T

Fig. 4.4. Temperature dependence of cumulant
ratios (a) Vo’ /6™ and (b) arTo’ /o™ of Zn calculated
using the present theory compared to the experimental
values at 300 K, 400 K, 500 K and 600 K.

Table 4.1 illustrates good agreement of the values
of three first XAFS cumulants and thermal expansion
coefficients of Zn calculated using the present theory
at 300 K, 400 K, 500 K and 600 K with their

experimental values.

Table 4.1. Comparison of the values of three
first XAFS cumulants
coefficients of Zn calculated using the present theory
with their experimental values at 300 K, 400 K, 500 K
and 600 K.

and thermal expansion

TE)

ol(A)
Theory

ol (&)
Expt.

o2(A2)
Total

o¥(A2)

Harm.

(A7)
Expt.

SCAY)
Theory

oCA%)
Expt.

ar (105/K)

Theory

ar(103/K)
Expt.

300

0.0139

0.0143

0.0110

0.0109

0.0113

0.0003

0.0003

1.555

1.582

400

0.0182

0.0189

0.0146

0.0143

0.0149

0.0005

0.0006

1.582

1618

500

0.0226

0.0232

0.0182

0.0177

0.0185

0.0008

0.0009

1.595

1.599

600

0.0270

0.0279

0.0219

0.0211

0.0223

0.0011

0.0012

1.602

1.630

The second cumulant describing MSRD is
primary a harmonic effect plus small anharmonic
which high-

temperatures. But the first cumulant describing the

contributions appear only at
net thermal expansion or lattice disorder, the third
cumulant or MCRD describing the asymmetry of
pair atomic distribution function and the thermal
expansion coefficient are entirely anharmonic
effects because they appear due to including the

cubic anharmonic effective potential parameter.

4.2.2.2. XAFS

transform magnitudes

spectra and their Fourier

Based on the present advanced method, the FEFF
code [18] has been modified by including the
amharmonic contributions to XAFS amplitude and
phase described by the above obtained cumulants to
calculate XAFS spectra at 300 K, 400 K, 500 K, 600
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K of Zn and their Fourier transform magnitudes.
Figs. 4.5 illustrate the anharmonic (a) attenuation
factor Fo(k,T) and (b) phase shift ®(k,T) of XAFS
of Zn at 300 K, 400 K, 500 K, and 600 K calculated
using the present theory including the above obtained
cumulants. These values increase showing the
increase of anharmonicity as k-value and temperature
T increase. Using these values of F,(k,T) and
@D, (k,T), the anharmonic XAFS spectra of Zn at 300
K, 400 K, 500 K and 600 K have been calculated and
presented in Fig. 4.6a compared to the measured
results presented in Fig. 4.6b. The anharmonic
amplitude attenuation and phase shift are evidently
shown in both theoretical and experimental XAFS
spectra.  These
anharmonic XAFS

transformed and their Fourier transform magnitudes

theoretical and experimental

spectra have been Fourier

are presented in Fig. 4.7. They show good agreement
between the theoretical and experimental results, as
well as the decrease of the peak heights and their

shifts to the left as the temperature T increases.

@, (rad)

wenen T2600K

2 4 [ &8 10 12 14 1B 18 2 4 & 3 0 12 W 16 18
k@ ki

Fig. 4.5. The wave number k and temperature T
dependence of the anharmonic (a) attenuation factor
Fy(k,T) and (b) phase shift @ (k,T) of XAF'S of Zn at
300 K, 400 K, 500 K, and 600 K calculated using the
present theory.

aj Zn

XAFS, Expt,

Zn- nf l:b’

I xAES. Theary

Kk I TS

Fig. 4.6. (a) Theoretical and (b) experimental
XAFS spectra of Zn at 300 K, 400 K, 500 K, 600 K.

52

Fourier Transform magnitude

Fig. 4.7. Comparison of Fourier transform
magnitudes of XAFS spectra of Zn at 300 K, 400 K,
500 K, and 600 K calculated using the present theory

with their experimental results.

Note that the anharmonic XAFS spectra of Zn at 300
K, 400 K, 500 K and 600 K and their Fourier transform
magnitudes have been calculated based on including the
anharmonic contributions to XAFS amplitude and phase
using the cumulants obtained from the second cumulants
or MSRDs. The results are found to be in good
agreement with the measured data. Moreover, using the
present theory and the measured second cumulants of Zn
at 300 K, 400 K, 500 K, 600 K we have reproduced all
the considered experimental values including XAFS
spectra and their Fourier transform magnitudes. The
obtained results agree well with the experimental values
at these temperatures.

Moreover, some international scientists have
successfully used the ACEM [20-24] and called it
Hung and Rehr theory or Hung and Rehr method.
According to ResearchGate we got 150 international

citations which mostly focuses on the ACEM.
5. Conclusions

In this paper, the ACEM and some of its
applications have been presented from that the
following of its advantages can be mentioned:

1. The conclusion in this model that anharmonicity
is the result of phonon-phonon interaction leads to
using the powerful quantum statistical method with
annihilation and creation operators in derivation of the

considered XAFS quantities.

2. The derived anharmonic interatomic effective
potential can be considered as a new potential model
which provides meaningful simplifications of the
complicated many-body problem in materials studies: -
Taking the many-body effects of the considered material
into account by including the first shell near neighbor
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contributions to the vibrations between absorber and
backscatter atoms, - By projecting the first shell near
neighbor contributions along the bond direction the one-

dimensional model has been recovered.

3. By using the only Einstein frequency the
calculations and analysis of the considered XAFS
quantities in a quantum statistical problem have been
reduced and simplified, yet provide the good
results with the

agreement of the obtained

experimental data.

4. The description of XAFS quantities in terms of
second cumulant leads to the advanced method based
on which all the considered theoretical and
XAFS quantities including XAFS

spectra and theier Fourier transform magnitudes, as

experimental

well as those which are difficult to be directly
measured have been obtained and extracted from the
calculated and measured second cumulant or MSRD.

5. Based on the obtained temperature-dependent
theoretical and experimental XAFS cumulants and
thermal expansion coefficient the thermodynamic
properties of the considered material have been in
detail analyzed and valuated. They include the evident
anharmonic effects and satisfy all their fundamental
properties in temperature dependence, as well as
approach the classical values at high-temperatures and
contain zero-point energy contributions at low-

temperatures, a quantum effect.

6. The XAFS spectra containing the obtained
cumulants and their Fourier transform magnitudes
provide the accurate structural determination of the
considered material.

All the above results illustrate the simplicity and
efficiency of the ACEM in XAFS data analysis and in
materials studies.
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z
A A 7

M4 hinh Einstein twong quan phi diéu hoa va mét so ing dung trong nghién ciru

7 >

cac thugc tinh nhiét dong lwe hoc va xac dinh cau tric cia vat liéu

Nguyén Vin Hing™

Théng tin bai viét Tém tat

Ngady nhdn bai: Bai bdo nay trinh biay mo hinh Einstein twong quan phi diéu hoa trong

19/4/2018 nghién ctru cac hé s6 Debye-Waller duéi dang khai trién cumulant va mot
Ngay duyét dang: vai ing dung ciia nd. M6 hinh dugc dan giai dua trén 1y thuyét thong ké
12/6/2018

lwong tir. O déy, vin dé phirc tap cta hé nhiéu hat da dugc don gian hoa

bang viéc dién giai thé twong tac nguyén tr hiéu dung phi diéu hoa ma

Tur khoa: . .

H¢é s6 Debye-Waller, khai trién bao gom céac anh huéng ctia hé nhiéu hat véi dong gbp cua cac dao dong
cumulant, XAFS, cdc thugc tinh gilta cac nguyén tir hap thy va tan xa lan can 16p thir nhat va bang cach
nhiét dong luc hoc. chiéu nhitng dong gép nay doc theo huéng lién két trong mé hinh mot

chidu. Thé Morse dugc gia dinh ¢é mo ta thé twong tac nguyén tir don
cap. Céc két qua tinh toan s6 cho mot sb vat lidu phu hop tot voi thue
nghiém chi ra sy phu thudc tat yéu vao nhiét do cua cac thudc tinh nhiét
dong luc hoc, cac hiéu ung phi diéu hoa va cac tham sd cAu truc cua vat

liéu dugc xem xét.
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