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This paper presents the anharmonic correlated Einstein model (ACEM) for 

studying Debye-Waller factors presented in terms of cumulant expansion and 

some of its applications. The model is derived based on the quantum statistical 

theory. In addition, the complicated many-particle problem is simplified by the 

derived anharmonic interatomic effective potential. This includes the many-

body effects by the first shell near neighbor contributions to the vibrations 

between absorber and backscatterer atoms and by projecting these 

contributions along bond direction to recover the one-dimensional model. 

Morse potential is assumed to describe the single-pair atomic interaction. 

Numerical results for several applications are found to be in good agreement 

with experiment which show the evident temperature dependence of the 

thermodynamic properties, anharmonic effects and structural parameters of the 

considered material.
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1. Introduction

X-ray Absorption Fine Structure (XAFS) has 

developed into a powerful technique for providing 

information on the local atomic structure and thermal 

effects of substances. The formalism for including 

anharmonic effects in XAFS is often based on 

cumulant expansion approach (CEA) [1] from which 

the anharmonic XAFS function has resulted as [2]
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where F(k) is the real atomic backscattering 

amplitude, k and λ are the wave number and mean free 

path of photoelectron, respectively, is the net 

phase shift, with r being the instantaneous 

bond length between absorber and backscatterer 

atoms, and σ(n) (n = 1, 2, 3, …) are the cumulants 

describing Debye-Waller factors (DWFs).  

Hence, the cumulants or DWFs are very important 

for the anharmonic XAFS where the even cumulants 

contribute to the amplitude, the odd ones to the phase 

of XAFS spectra, and for small anharmonicities, it is 

sufficient to keep the third and fourth cumulant terms 

[3]. They are crucial to quantitative treatment of 

XAFS spectra. Consequently, the lack of the precise 

DWFs or cumulants has been one of the biggest 

limitations to accurate structural determinations (e.g., 

the coordination numbers and the atomic distances) 

and to specify the other properties of substances from 

XAFS experiments. Therefore, investigation of DWFs 

or cumulants and XAFS is of great interest.

Many efforts have been made to overcome such 

limitations by the theoretical and experimental 

investigations. The single-bond (SB) correlated Einstein 

model [4] and single-pair (SP) correlated Debye model 

[5] have been derived using the CEA to describe the 

anharmonic effects in XAFS. Unfortunately, they can not 

provide good agreement of numerical results with 
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experiment due to neglecting the many-body effects in 

XAFS of the considered materials.

The purpose of this work is to present the 

anharmonic correlated Einstein model (ACEM) [6] 

which can overcome the limitations of SB and SP 

models and provide good agreement of the numerical 

results of DWFs presented in terms of cumulant 

expansion up to the third order and thermal expansion 

coefficient with experiment, as well as some of its 

applications to materials studies using XAFS 

procedures.

2. Anharmonic correlated Einstein model [6]

2.1. Anharmonic interatomic effective potential

In order to include anharmonic effects, the 

Hamiltonian of system in the present theory for hcp 

crystals (Zn) involves the anharmonic interatomic 

effective potential expanded up to the third order as   

,    (2.1)

where is the effective local force constant and 

is the cubic anharmonic parameter giving an 

asymmetry of the anharmonic effective potential, r

and r0 are the instantaneous and equilibrium distances 

between absorber and backscatterer atoms, 

respectively.   

Determination of parameters and has 

been performed based on an Einstein potential [6] or 

an anharmonic interatomic effective potential derived 

from the oscillation of a single pair of atoms with 

masses M1 and M2 (e.g., absorber and backscatterer) 

in a given system. Their oscillation is influenced by 

their near neighbors. In the center-of-mass frame of 

this bond it is given by

,       (2.2)                        

where μ is reduced mass of absorber and 

backscatterer atoms, and is unit vector; the sum i is 

over absorber (i = 1) and backscatterer (i = 2), and the 

sum j is over all their near neighbors, excluding the 

absorber and backscatterer themselves, whose 

contributions are described by the term V(x).

Hence, the anharmonic interatomic effective 

potential given by Eq. (2.2) is quite different from the 

SP [4] and SB [5] model potentials because it includes 

not only the term V(x) describing the SP and SB 

interaction but also the second one describing an 

affect of lattice on the oscillation between absorber 

and backscatterer atoms, i.e., the many-body effects 

have been taken into account. Moreover, by projecting 

the contributions of the near neighbors of absorber and 

backscatter along the bond direction as in Eq. (2.2) the 

one-dimensional model has been recovered that 

simplifies the many-body problem in XAFS theory.

In the ACEM  the Morse potential expanded to the 

third order around its minimum

, (2.3)

is assumed to describe the single-pair atomic 

interaction included in the anharmonic effective 

potential where 1/α describes the width of the 

potential and D is the dissociation energy. It is usually 

sufficient to consider weak anharmonicity (i.e., first-

order perturbation theory) so that only the cubic term 

in this equation must be kept.

For deriving XAFS cumulants we describe the 

anharmonic interatomic effective potential given by 

Eq. (2) in the summation of the harmonic contribution 

and a perturbation due to the weak 

anharmonicity as  

, 

.  (2.4)      

2.2. XAFS cumulants and thermal expansion 

coefficient

The derivation of XAFS cumulants in ACEM is 

based on quantum statistical theory [7] and the 

parameters of the anharmonic interatomic effective 

potentials given by Eqs. (2.2) and (2.4), as well as an 

averaging procedure using the canonical partition 

function Z and statistical density matrix , e.g.,

(2.5)

Atomic vibrations are quantized in terms of phonons, 

and anharmonicity is the result of phonon-phonon 

interaction, that is why we express y in terms of the 
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annihilation and creation operators, and 
+â , 

respectively
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,     (2.6)                                                                 

which have the following properties

,       (2.7)        

as well as use the harmonic oscillator state as 

the eigenstate with the eigenvalue for n

being the phonon number, ignoring the zero-point 

energy for convenience.

Due to weak anharmonicity in XAFS, the 

canonical partition function in Eq. (2.5) can be 

expressed as 
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where the correlated Einstein frequency ωE and 

temperature θE of hcp crystals are given by 
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M  is the atomic mass and kB is Boltzmann 

constant.

Using the above results for the correlated atomic 

vibration and the procedure depicted by Eqs. (2.5) -

(2.9), as well as the first-order thermodynamic 

perturbation theory [7], the temperature-dependent 

XAFS cumulants have been derived.

Based on the procedure depicted by Eq. (2.5) we 

derived the even moment expressing the second 

cumulant or MSRD 

, (2.10)                                 

and the odd moments expressing the first (m = 1) 

and third (m = 3) cumulants 
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where the operations expressed by Eqs. (2.5) and (2.6) 

have been applied to calculate the matrix elements 

given in Eqs. (2.10) and (2.11).

Consequently, the XAFS expressions have resulted 

for the second cumulant or MSRD
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for the first cumulant or net thermal expansion
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and for the third cumulant or mean cubic relative 

displacement (MCRD)
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Moreover, using the first cumulant given by Eq. 

(2.13), the expression for the thermal expansion 

coefficient has been derived and given by

22
20 2 2

0

0

1 5
1 / ,

3

20

T T

B

B
T

da D
T

r dT k T

k

D r

� � � �= = -� � � �� �� �

=

(2.15)                

From the above results a simple relation between 

cumulants in term of σ2 has resulted as

222
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which approaches the classical expression [8] of 

1/2 at high temperatures. 

In the above expressions the temperature variable 

has been described in terms of σ2 as       

2
0

2

2
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2
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=z ,                    (2.17)                                                   

are zero-point energy 

contributions to three first XAFS cumulants σ(1)(T), 

σ2(T), σ(3)(T), respectively, and is the constant 

value which the thermal expansion coefficient 

approaches at high-temperatures.
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The above formulas at low and high temperatures 

are presented in Table 2.1.

Table 2.1. Formulas of σ(1), σ2, σ(3), and αT in low 

temperature (T 0) and high temperature (T ) 

limits.

Hence, the first and second cumulants are linearly 

proportional to the temperature T, the third cumulant 

to T2, and the thermal expansion coefficient αT

approaches the constant value at high 

temperatures, while the cumulants contain zero-point 

energy contributions, a quantum effect, and αT 

vanishes exponentially at low temperatures. 

2.3. Numerical results and discussions

Now the expressions derived in the previous 

section are applied to numerical calculations for XAFS 

cumulants and thermal expansion coefficient of Cu using 

its Morse potential parameters [9] D = 0.343 eV and α = 

1.359 Ǻ-1. Anharmonic effective potential of Cu is 

presented in Fig. 2.1 which is asymmetric compared to 

the harmonic term due to anharmonic contribution.

Fig. 2.1. Anharmonic interatomic effective 

potential of Cu calculated using the present theory   

and its Morse parameters [9].

Fig. 2.2 illustrates good agreement of temperature 

dependence of (a) first cumulant σ(1)(T) and (b) second 

cumulant σ2(T) of Cu calculated using the present 

theory with the experimental values of Beccara et al 

[10] for the first cumulant and of Greegor et al [11] 

and Yokoyama et al [12] for the second cumulant. 

Here, the value of σ2(295 K) of SP potential [5] is also 

presented for comparison. Here, σ(1)(T) and σ2(T) are 

linearly proportional to the temperature at high 

temperatures and contain zero-point energy 

contribution at low temperatures, a quantum effect. 

Fig. 2.2. Temperature dependence of (a) first 

cumulant σ(1)(T) and (b) second cumulant σ2(T) of Cu 

calculated using the present theory compared to the 

experimental values of Beccra et al [10] for the first 

cumulant, of Greegor et al [11] and Yokoyama et al 

[12] for the second cumulant. Here, the value of 

σ2(295 K) of SP potential [5] is also presented for 

comparison.

Fig. 2.3. Temperature dependence of (a) third 

cumulant σ(3)(T) and (b) thermal expansion coefficient 

αT (T) of Cu calculated using the present theory 

compared to the experimental values of Yokoyama et 

al [12] for the third cumulant and of Toukian et al 

[13] for the thermal expansion coefficient.

Table 2.2. Comparison of second, third cumulants 

and thermal expansion coefficient of Cu calculated 

using the present theory compared to experiment and 

to those of other theory.

aRef. 11, bRef. 5, cRef. 12, dRef. 13.

The good agreement of temperature dependence of 

third cumulant σ(3)(T) of Cu calculated using the 

present theory with the experimental values of 

Yokoyama et al [12] is presented in Fig. 2.3a. Such 

good agreement of the calculated thermal expansion 

coefficient αT (T) of Cu with the experimental values 

of Toukian et al [13] is shown in Fig. 2.3b. Here, the 

third cumulant is proportional to square of temperature 
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and αT approaches the constant value at high 

temperatures.

Comparison of second, third cumulants and 

thermal expansion coefficient of Cu calculated using 

the present theory with the experimental values [11-

13] and with those of other theory [5] is presented in 

Tab. 2.2.

3. Classical ACEM [14]

3.1. High-order expanded Debye-Waller factor in 

classical  ACEM 

Classical theory has the advantage of applications 

up to high-temperatures, even up to melting 

temperatures [8]. Within the classical limit and the 

assumption that the anharmonicity can be treated as a 

small perturbation, the temperature-dependent 

moments with using the anharmonic effective 

potentials given by Eq. (2.2), about the mean <x>, as 

determined by evaluating the thermal average

to the lowest orders in T are given by    

where the effective parameters
effk , and 

of the high-order anharmonic effective potential 

for hcp crystals contained in Eqs. (3.2-9) have been 

substituted by their values in terms of Morse potential 

parameters.

The truncation of the series in Eq. (3.1) serves as a 

convergence cutoff while including enough terms to 

accurately obtain the second lowest-order expressions 

for the moments. The respective expressions obtained 

from Eqs. (3.2- 5) to lowest order in the temperature T 

are given by for the first cumulant or net thermal 

expansion                                                        
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and for the fourth cumulant                                                                               
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as well as for the cumulant ratio                                                                       

,               (3.10)             

where E is the correlated Einstein frequency.

Hence, thanks to using the derived anharmonic 

effective potential, all the obtained cumulants given 

by Eqs. (3.6-9) have been presented in very simple 

forms in terms of second cumulant or MSRD. It is 

useful not only for reducing the numerical 

calculations, but also for obtaining or predicting the 

other theoretical or experimental XAFS cumulants 

based on the calculated or measured second cumulant. 

Since the second cumulant σ2 given by Eq. (3.2) is 

proportional to the temperature T, the first cumulant 

σ(1) is also linear with T, and the third and fourth 

cumulants vary as T2 and T3, respectively. Moreover, 

Eq. (3.2) shows inverse proportionality of this second 

cumulant σ2 to the square of correlated Einstein 

frequency , so that from Eqs. (3.6-9), the 

cumulants σ(1), σ(3) and σ(4) are inversely proportional 

to , and , respectively. The cumulant 

ratio σ(1)σ2/σ(3) is often considered as a standard for 

cumulant study. Its value of 1/2 given by Eq. (3.10) is 

(3.1) 
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valid for all temperatures, while such ratio resulted 

from quantum theory, approaches 1/2 only at high 

temperatures [6,15]. 

3.2. Numerical results for hcp crystals and 

discussions

For discussing the successes and efficiencies of the 

developments in this work, the expressions derived in 

the previous section have been applied to numerical 

calculations of the anharmonic interatomic effective 

potentials and four first temperature-dependent XAFS 

cumulants of Zn and Cd using Morse potential 

parameters [15] D = 0.1698 eV, α = 1.7054 Å-1 for Zn 

and D = 0.1675 eV, α = 1.9069 Å-1 for Cd, as well as 

their experimental values [16] D = 0.1685 eV, α = 

1.700 Å-1 for Zn and D = 0.1653 eV, α = 1.9053 Å-1 

for Cd. 

Fig. 3.1. High-order anharmonic interatomic effective 

potentials of Zn and Cd calculated using the present 

theory compared to experiment obtained from the 

measured Morse potential parameters [16] and to 

their calculated harmonic terms.

Fig. 3.1 illustrates good agreement of the 

anharmonic effective potentials of Zn and Cd expanded 

up to the fourth order calculated using the present 

theory with experiment obtained from the measured 

Morse potential parameters [16]. They are significantly 

asymmetric compared to their harmonic terms due to 

including the anharmonic contributions given by 

and . These calculated anharmonic effective 

potentials are used for the calculation and analysis of 

four first XAFS cumulants of Zn and Cd. 

Temperature dependence of first cumulant or net 

thermal expansion σ(1)(T) (Fig. 3.2a) and second 

cumulant or MSRD σ2(T) (Fig. 3.2b) of Zn and Cd 

calculated using the present theory agrees well with 

the experimental value at 300 K. The limitation here is 

unsatisfactory of the agreement of the calculated 

values of σ(1)(T), σ2(T) of Zn and Cd with experiment 

at 77 K. It is an evident limitation of any classical 

theory including the present one due to the absent of 

zero-point vibrations. The lowest temperature at which 

the classical limit can be applied to the first and 

second cumulants is about the correlated Einstein 

temperature E = 205.61 K for Zn, and E = 174.14 

K for Cd calculated using the present theory.

Fig. 3.2. Temperature dependence of (a) first cumulant 

σ(1)(T) and (b) second cumulant σ2(T) calculated using the 

present theory for Zn and Cd compared to the 

experimental values at 77 K and 300 K [16].

Fig. 3.3. Temperature dependence of a) third cumulant 

σ(3) (T) and b) fourth cumulant σ(4) (T), calculated using the 

present theory for Zn and Cd compared to the 

experimental values at 77 K and 300 K [16].

Unfortunately, this limitation is significantly 

reduced for the third and fourth cumulants. 

Temperature dependence of the third cumulant 

(Fig. 3.3a) and the fourth cumulant σ(4)(T)

(Fig. 3.3b) for Zn and Cd calculated using the 

present theory agrees well with experiment not only 

at 300 K but also at 77 K. Hence, the present 

classical theory can be applied to the third and fourth 

cumulants of hcp crystals from the temperatures

which are much lower than their Einstein 

temperatures. The reason of the above conclusions is 

attributed to the absent of zero-point vibrations, 

which are non-negligible for the first and second 

cumulants, and negligibly small for the third and 

fourth cumulants. Despite such limitation to the first 

and second cumulants, the present theory is suited 

for describing anharmonic effects in XAFS using 
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cumulant expansion, because anharmonicity appears 

apparently from about room temperature [6]. 

The cumulant ratio σ(1)σ2/σ(3) is often considered as 

a standard for cumulant study [16]. Fig. 3.4 illustrates 

the equality to 1/2 of σ(1)σ2/σ(3) for Zn and Cd 

calculated using the present theory for all 

temperatures, while this ratio obtained from quantum 

theory approaches 1/2 only at high temperatures [6].

Fig. 3.4. Temperature dependence of cumulant 

ratio σ(1)σ2/σ(3) of Zn and Cd calculated usingthe 

present theory compared to those obtained from 

quantum statistical theory [16].

Note that the experimental values of the first, 

second, third and fourth cumulants of Zn and Cd at 77 

K and 300 K compared to our calculated results 

presented in the above figures have been extracted 

from XAFS spectra measured at HASYLAB (DESY, 

Germany) by a fitting procedure [16]. Moreover, the 

above numerical results for Zn and Cd have confirmed 

the proportionality of the first and second cumulants to 

the temperature T, the third and fourth cumulants to T2

and T3, respectively. 

4. Application to theoretical and experimental 

XAFS studies of hcp crystals [17]

4.1. Advanced method for theoretical and 

experimental XAFS studies of hcp crystals

In this application the ACEM [6] has further 

developed into an advanced method using that not only 

theoretical but also experimental XAFS quantities 

including not only cumulants but also XAFS spectra 

and their Fourier transform magnitudes can be provided 

based on only the calculated and measured second 

cumulants or MSRDs which has the form
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Hence, we have the expressions for the first 

cumulant or net thermal expansion
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for the third cumulant or mean cubic relative 

displacement (MCRD)
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and for the thermal expansion coefficient 

00

3
0

,

4

T T

T

B

T
T

T

D

k r

-
=

=

2 22 2

2

15

.       (4.4)                              

Moreover, the second cumulant given by Eq. (4.1) 

is harmonic while the experimental data always 

include the temperature-dependent anharmonic 

effects. That is why we introduce the total second 

cumulant or MSRD as

,                    (4.5)                                    

which involves an anharmonic contribution 
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Further, we develop the XAFS function given by 

Eq. (1) into an analytical form explicitly including the 

above obtained cumulants for the temperature-

dependent K-edge anharmonic XAFS spectra as
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which contains the anharmonic contribution to 

amplitude described by an factor

,                (4.9)                               
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causing the anharmonic attenuation and the 

anharmonic contribution to phase
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(4.10)                   

causing the anharmonic phase shift of XAFS 

spectra.

In the anharmonic XAFS function Eq. (4.8) is the 

square of the many body overlap term, 
jN is the atomic 

number of each shell, the mean free path is defined by 

the imaginary part of the complex photoelectron 

momentum /ikp += , and the sum is over all 

considered atomic shells. Moreover, all parameters of 

this function can be obtained from the second cumulant 

or MSRD, and this function will return to the harmonic 

case calculated by the well-known FEFF code [18] if the 

anharmonic contributions to amplitude FA(k,T) and to 

phase ФA(k,T) are excluded. Inversely, the FEFF code 

can also be modified by including these anharmonic 

contributions to XAFS amplitude and phase to calculate 

the anharmonic XAFS spectra and their Fourier 

transform magnitudes. It is the evident advantage of the 

present method which will be applied to the numerical 

calculations and to the extractions of experimental XAFS 

parameters for Zn presented in Section 4.2.

4.2. Experimental and numerical results and 

discussions

4.2.1. Experimental

The measurements of the second cumulant, XAFS 

spectra and their Fourier transform magnitudes of Zn 

at 300 K, 400 K, 500 K and 600 K have been 

performed at the Beamline BL8, SLRI (Thailand). It is 

the routinely operated for X-ray absorption 

spectroscopy (XAS) in an immediate photon energy 

range (1.25 - 10 keV). The experimental set-up 

conveniently facilitates XAS measurements in 

transmission and fluorescence-yield modes at several 

K-edges of elements ranging from Magnesium to Zinc 

[19]. The experimental values of the first, third 

cumulants, thermal expansion coefficients and some 

other XAFS parameters of Zn at 300 K, 400 K, 500 K 

and 600 K have been extracted from the measured 

values of the second cumulant using the present 

method based on the description of these quantities in 

terms of second cumulant presented in Section 4.1. 

The obtained experimental results will be presented in 

Section 4.2 compared to the theoretical results.

4.2.2. Numerical calculation results compared to 

experiment and discussions

Now the expressions derived in the previous 

Section 2 are applied to numerical calculations for Zn 

using its Morse potential parameters [15]  D = 0.1700 

eV, α = 1.7054 Å-1 which were obtained using 

experimental values for the energy of sublimation, the 

compressibility, and the lattice constant.

4.2.2.1. XAFS cumulants and thermal expansion 

coefficient

Fig. 4.1 illustrates good agreement of (a) first cumulant 

σ(1)(T) and (b) total and harmonic second cumulants 

, σ2(T), respectively, of Zn calculated using the 

present theory with the experimental values at 300 K, 400 

K, 500 K, and 600 K. Here, is a little different 

from σ2(T) at temperatures greater than the room 

temperature due to the temperature-dependent anharmonic 

contributions. Note that using this first cumulant we can 

obtain temperature dependence of the first shell near 

neighbor distance based on the expression R(T) = R(0) +

σ(1)(T).  

Fig. 4.1. Temperature dependence of (a) first 

cumulant σ(1)(T) and (b) total and harmonic second 

cumulants and σ2(T), respectively, of Zn 

calculated using the present theory compared to the 

experimental values at 300 K, 400 K, 500 K and 600 K.

Fig. 4.2. Temperature dependence of (a) third 

cumulant σ(3)(T) and (b) thermal expansion coefficient 

αT(T) of Zn calculated using the present theory 
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compared to the experimental values at 300 K, 400 K, 

500 K and 600 K.

Temperature dependence of third cumulant σ(3)(T) 

(Fig. 4.2a) and thermal expansion coefficient αT(T) (Fig. 

4.2b) of Zn calculated using the present theory agrees 

well with the experimental values at 300 K, 400 K, 500 

K and 600 K. Here, the theoretical and experimental 

thermal expansion coefficients of Zn approach the 

constant values at high-temperatures as it was obtained 

for the other crystal structures [11, 22-26].

Figs. 4.3 illustrate good agreement of temperature 

dependence of (a) anharmonic contributions )(2 TA to 

the second cumulant or MSRD and (b) anharmonic 

factor βA(T) of Zn calculated using the present theory 

with their experimental values at 300 K, 400 K, 500 K 

and 600 K where βA(T) characterizes percentage of the 

anharmonic contributions at each temperature. These 

values are normally difficult to be directly measured, but 

using the present method they have been calculated and 

extracted from the calculated and measured second 

cumulants. 

Fig. 4.3. Temperature dependence of (a) 

anharmonic contribution to second cumulant 

or MSRD and (b) anharmonic factor βA(T) of Zn 

calculated using the present theory compared to the 

experimental values at 300 K, 400 K, 500 K and 600 K.

The cumulant ratios σ (1)σ2/σ(3) and αTTσ2/σ(3) are 

often considered as the standards for cumulant 

studies [6,16] and to identify the temperature above 

which the classical limit is applicable [6]. Figs. 4.4 

show good agreement of temperature dependence of 

(a) σ(1)σ2/σ(3) and (b) αTTσ2/σ(3) of Zn calculated 

using the present theory with the experimental 

values at 300 K, 400 K, 500 K and 600 K. The 

theoretical and experimental results of these ratios 

show that above the Einstein temperature (θE = 206 

K calculated using the present theory for Zn) they 

approach the classical value [8,14] of 1/2 so that the 

classical limit is applicable.

Fig. 4.4. Temperature dependence of cumulant 

ratios (a) σ(1)σ2 /σ(3) and (b) αTTσ2/σ(3) of Zn calculated 

using the present theory compared to the experimental 

values at 300 K, 400 K, 500 K and 600 K.

Table 4.1 illustrates good agreement of the values 

of three first XAFS cumulants and thermal expansion 

coefficients of Zn calculated using the present theory 

at 300 K, 400 K, 500 K and 600 K with their 

experimental values.

Table 4.1. Comparison of the values of three 

first XAFS cumulants and thermal expansion 

coefficients of Zn calculated using the present theory 

with their experimental values at 300 K, 400 K, 500 K 

and 600 K.

The second cumulant describing MSRD is 

primary a harmonic effect plus small anharmonic 

contributions which appear only at high-

temperatures. But the first cumulant describing the 

net thermal expansion or lattice disorder, the third 

cumulant or MCRD describing the asymmetry of 

pair atomic distribution function and the thermal 

expansion coefficient are entirely anharmonic 

effects because they appear due to including the 

cubic anharmonic effective potential parameter.  

4.2.2.2. XAFS spectra and their Fourier 

transform magnitudes

Based on the present advanced method, the FEFF 

code [18] has been modified by including the 

amharmonic contributions to XAFS amplitude and 

phase described by the above obtained cumulants to 

calculate XAFS spectra at 300 K, 400 K, 500 K, 600 
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K of Zn and their Fourier transform magnitudes. 

Figs. 4.5 illustrate the anharmonic (a) attenuation 

factor FA(k,T) and (b) phase shift ФA(k,T) of XAFS 

of Zn at 300 K, 400 K, 500 K, and 600 K calculated 

using the present theory including the above obtained 

cumulants. These values increase showing the 

increase of anharmonicity as k-value and temperature 

T increase. Using these values of FA(k,T) and 

ФA(k,T), the anharmonic XAFS spectra of Zn at 300 

K, 400 K, 500 K and 600 K have been calculated and 

presented in Fig. 4.6a compared to the measured 

results presented in Fig. 4.6b. The anharmonic 

amplitude attenuation and phase shift are evidently 

shown in both theoretical and experimental XAFS 

spectra. These theoretical and experimental 

anharmonic XAFS spectra have been Fourier 

transformed and their Fourier transform magnitudes 

are presented in Fig. 4.7. They show good agreement 

between the theoretical and experimental results, as 

well as the decrease of the peak heights and their 

shifts to the left as the temperature T increases.

Fig. 4.5. The wave number k and temperature T  

dependence of the anharmonic (a) attenuation factor 

FA(k,T) and (b) phase shift ФA(k,T) of XAFS of Zn at 

300 K, 400 K, 500 K, and 600 K calculated using the 

present theory.

Fig. 4.6. (a) Theoretical and (b) experimental 

XAFS spectra of Zn at 300 K, 400 K, 500 K, 600 K.

Fig. 4.7. Comparison of Fourier transform 

magnitudes of XAFS spectra of Zn at 300 K, 400 K, 

500 K, and 600 K calculated using the present theory 

with their experimental results.

Note that the anharmonic XAFS spectra of Zn at 300 

K, 400 K, 500 K and 600 K and their Fourier transform 

magnitudes have been calculated based on including the 

anharmonic contributions to XAFS amplitude and phase 

using the cumulants obtained from the second cumulants 

or MSRDs. The results are found to be in good 

agreement with the measured data. Moreover, using the 

present theory and the measured second cumulants of Zn 

at 300 K, 400 K, 500 K, 600 K we have reproduced all 

the considered experimental values including XAFS 

spectra and their Fourier transform magnitudes. The 

obtained results agree well with the experimental values 

at these temperatures.

Moreover, some international scientists have 

successfully used the ACEM [20-24] and called it 

Hung and Rehr theory or Hung and Rehr method. 

According to ResearchGate we got 150 international 

citations which mostly focuses on the ACEM.

5. Conclusions

In this paper, the ACEM and some of its 

applications have been presented from that the 

following of its advantages can be mentioned:

1. The conclusion in this model that anharmonicity 

is the result of phonon-phonon interaction leads to 

using the powerful quantum statistical method with 

annihilation and creation operators in derivation of the 

considered XAFS quantities.

2. The derived anharmonic interatomic effective 

potential can be considered as a new potential model 

which provides meaningful simplifications of the 

complicated many-body problem in materials studies: -

Taking the many-body effects of the considered material 

into account by including the first shell near neighbor 
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contributions to the vibrations between absorber and 

backscatter atoms, - By projecting the first shell near 

neighbor contributions along the bond direction the one-

dimensional model has been recovered.

3. By using the only Einstein frequency the 

calculations and analysis of the considered XAFS 

quantities in a quantum statistical problem have been 

reduced and simplified, yet provide the good 

agreement of the obtained results with the 

experimental data.

4. The description of XAFS quantities in terms of 

second cumulant leads to the advanced method based 

on which all the considered theoretical and 

experimental XAFS quantities including XAFS 

spectra and theier Fourier transform magnitudes, as 

well as those which are difficult to be directly 

measured have been obtained and extracted from the 

calculated and measured second cumulant or MSRD.

5. Based on the obtained temperature-dependent 

theoretical and experimental XAFS cumulants and 

thermal expansion coefficient the thermodynamic 

properties of the considered material have been in 

detail analyzed and valuated. They include the evident 

anharmonic effects and satisfy all their fundamental 

properties in temperature dependence, as well as 

approach the classical values at high-temperatures and 

contain zero-point energy contributions at low-

temperatures, a quantum effect.

6. The XAFS spectra containing the obtained 

cumulants and their Fourier transform magnitudes 

provide the accurate structural determination of the 

considered material.

All the above results illustrate the simplicity and 

efficiency of the ACEM in XAFS data analysis and in 

materials studies.
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Mô h�nh Einstein tương quan phi điều hòa và một số ứng dụng trong nghiên cứu

các thuộc tính nhiệt động lực học và xác định cấu trúc của vật liệu

Nguyễn Văn Hùnga*

Thông tin bài viết Tóm tắt

Ngày nhận bài:
19/4/2018
Ngày duyệt đăng:
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Bài báo này trình bày m� hình Einstein tương quan phi điều hòa trong 

nghiên cứu các hệ số Debye-Waller dưới dạng khai triển cumulant và một 

vài ứng dụng của nó. M� hình được dẫn giải dựa trên lý thuyết thống kê 

lượng tử. Ở đây, vấn đề phức tạp của hệ nhiều hạt đã được đơn giản hóa 

bằng việc diễn giải thế tương tác nguyên tử hiệu dụng phi điều hòa mà 

bao gồm các ảnh hưởng của hệ nhiều hạt với đóng góp của các dao động 

giữa các nguyên tử hấp thụ và tán xạ lân cận lớp thứ nhất và bằng cách 

chiếu những đóng góp này dọc theo hướng liên kết trong m� hình một 

chiều. Thế Morse được giả định để m� tả thế tương tác nguyên tử đơn 

cặp. Các kết quả t�nh toán số cho một số vật liệu phù hợp tốt với thực 

nghiệm chỉ ra sự phụ thuộc tất yếu vào nhiệt độ của các thuộc t�nh nhiệt 

động lực học, các hiệu ứng phi điều hòa và các tham số cấu trúc của vật 

liệu được xem xét.

Từ khoá:
Hệ số Debye-Waller, khai triển 
cumulant, XAFS, các thuộc tính 
nhiệt động lực học.


