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thermal disorder and pressure effects for materials has crystals structure
developed by using the energy of sublimation, the compressibility, and the
lattice constant. Use the Morse potential parameters received to calculate the
mean square relative displacement, spring constants, anharmonic interatomic

effective potential. and local force constant for silicic and germanium
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semiconductor crystals, are the materials have diamond structure crystals. The
received results suitable for the experimental values and other theories.

1. Introduction

In EXAFS spectra with the anharmonic effects,
the anharmonic Morse potential [1] is suitable for
describing the interaction and oscillations of atoms
in the crystals [2-7]. In the EXAFS theory.
photoelectron emitted from an absorber scattered
by surrounded vibrating atoms [1,2]. This thermal
oscillation of atoms contributes to the EXAFS
spectra, especially the anharmonic EXAFS [2-7].
which is affected by these spectra's physical
information. In the EXAFS spectrum analysis. the
parameters of Morse potential is usually extracted
from the experiment. Still, experimental data are
not available in many cases. so a theory is
necessary to deduce Morse's potential value. The
only calculation has been carried out for cubic
crystals [8]. The results have been used actively for
calculations EXAFS thermodynamic parameters [6]
and reasonable with those extracted from EXAFS

data [9] using anharmonic correlated Einstein
model [8]. Therefore, the requirement for
calculation of the anharmonic Morse interaction
potential due to thermal disorder for other
structures is essential.

The purpose of this study is to expand a method
for calculating the Morse potential parameters
using the energy of sublimation, the
compressibility, and the lattice constant with the
effect of the disorder of temperature, the application
for diamond (DIA) structure crystals. The obtained
results applied to the equation of state, mean square
relative  displacement, spring constants, the
effective anharmonic potential, and local force
constant. Numerical calculations have carried out
for Silicium (Si), Germanium (Ge)., and SiGe
semiconductor, which are suitable for the
experimental values [10]. [11].

Lh



N.B.Duc et al/No.19_Dec 2020|p.5-13

2. Formalism

The &(ry) potential of atoms i and j separated by

a distance rj is given in by the Morse function:
—2air:—1, ' —clt::—15 ’
s(rij):D{e (‘J °'_2e (U } . (D

where 1/a describes the width of the potential. D is
the dissociation energy (e(ro) = - D): rp is the

equilibrium distance of the two atoms.

To obtain the potential energy of a large crystal
whose atoms are at rest, it is necessary to sum Eq.
(1) over the entire crystal. It is quickly done by
selecting an atom in the lattice as origin, calculating
its interaction with all others in the crystal, and then
multiplying by N/2, where N is the total number of
atoms in a crystal. Therefore, the potential E is
given by:

1 - a(r-—ro ' - r-—ro.
E:—NDz_{e2 J T —2e (J '}} ()

2 ]

Here 1j is the distance from the origin atom to
the jth atom. It is beneficial to describe the
following quantities:

|2 2 22
rj_[mj+nj+lj]1 a_Mja, (3)

where myj, n;, lj are position coordinates of atoms in
the lattice. Substitute the Eq. (3) into Eq. (2). the
potential energy can be rewritten as:

1 _
E(a)=—NDe™® [emb se

ofan _ Zze—aa_\{j :| {4}
] ]

The first and second derivatives of the potential
energy of Eq. (4) concerning a, we have:

dE “20aM. —oaM. |
— =—oNDe" [e‘”"ZMJ—e T+xMe
da i} ] i

(5)
d’E 5 -2aaM, —aaM, |
_zzazNDe%[Ze%ZM]?e “ J—ZMf‘e =N
da i ]

(6)
At absolute zero T=0, ap is the value of a for
which the lattice is in equilibrium, then E(ag) gives

dE
the energy of cohesion, |—| =0, and
da la,
dE|
— is related to the compressibility [10].
da
N

That is,
dE(ag)=Ey(ag). (7)

where Eqg(ag) is the energy of sublimation at zero
pressure and temperature,

dE
DR
da /a,

and the compressibility is given by [8]

1 d’E, d’E
—=V, =V, — | . (9)
Ko dv? dv?

g ag

where Vo is the volume at T = 0 and x; is
compressibility at zero temperature and pressure.

The volume per atom N/V is related to the
lattice constant a by

Vv 3
—=ca . (10)
N

Substituting Eq. (10) into Eq. (9) the
compressibility is formulated by

1 1 (d’E
— = — . (11)
Ky 9cNag da’ aca
Using Eq. (5) to solve Eq. (8) we obtain
—oraM-
Z_Mje 1
or, ]
€ = ooaM. (12)
Z_Mje ]

]
From Eqgs. (4. 6, 7, 11) we derive the relation
—2caM; —caM.;
e™xe e -23e e
j i

2 2 —2aaM: 2 2 —caM. -
4a"e™ ZMje I —20°zMje 1 9cNa,
i i

_ EoKy

(13)

Solving the system of Eq. (12, 13) we obtain «
and rg. Using o and Eq. (4) to solve Eq. (7) we
receive D. The obtained Morse potential parameters

D. o depends on the compressibility . the energy

of sublimation Eg and the lattice constant a. These
values of all crystals are available already [12].

Next, apply the above expressions to the
equation of state and elastic constants. It is possible
to calculate the state equation from the potential
energy E. If we assumed that the Debye model
could express the thermal section of the free
energy. then the Helmholtz energy is given by [8]
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F=E+3NkgTln(l—e®'T)-NkgTD(6 /T)

. (14)
]
D(_D
T

3
T\)V6/T x°
=3 —| | —dx,. (15)
0
where Kp is Boltzmann constant, 6p is Debye

0p e¥ -1

Using Eqs. (14, 15) we derive the equation of state
as

oF 1 dE | JGRT (8
P:—(—J 76 D( D] (16)
v 3ca’ da A% T

where ), is the Grimneisen parameter, V is the

volume.
t fure.
Fpee After transformations, the Eq. (16) is resulted as
1/3
o, _ —aagM; (1-x)
|:N-De a% MJe dar —ZO:aOM-(l—x)l 3 3y RT 6p
F= 273 —NDe™ "oz M;e a +—S " p 2|, (17)
3cag(l1-x)” i Vo(l=x) \ T
Vo -V 5 ,
X=——, Vy=ca;. R=Nkz. N=6.02x10"". (18)
Vo

The equation of state (17) contains the obtained
Morse potential parameters. ¢ is a constant and has
value according to the structure of the crystal.

Elastic properties of a crystal described by an
elastic tensor contained in the motion equation of

Ci; =Cyy = \Ero [l OT"(r

V2 [low (2 )+ 1627 (212 )+ 8 193

)+ 169" (2r2 )+ 817 (3e2 ) - |-

{\/7 [ 2w (2 )+ 1627(2r2 )- 2097312 )- ]}2

the crystal. The non-vanishing elements of the
elastic tensor defined as elastic constants. They are

given for DIA structure crystals by [13]

3
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(20)
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Hence, the derived elastic constants contain the
Morse potential parameters.

Next, to calculate of anharmonic

apply
interatomic effective potential and local force

7(k)=A(k) 5
kR

exp[-2%/A(K)] | . 2ik )
e ( ]Im{el?{-k-} exp{zjkﬂi_kzuo-[n)}}}
o qnl

_a(r—ro} ]L . (24)
2r?

constant in EXAFS theory. The expression for the
anharmonic EXAFS function [2] is described by

(25)
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where A(k) is scattering amplitude of atoms,
o(K) is the total phase shift of photoelectron. k and
L are wave number and mean free path of the
photoelectron, respectively. The o® is the
cumulants to describe asymmetric of anharmonic
Morse potential, and they appear due to being
average of the function €™, in which expanded of
the asymmetric terms in a Taylor series around

L
E.(X)=—k.gx* +ksx’ +.+=E(x)+ ZE ;—X‘RH.ERI-]- . U=

b) J=1

Here ke is the effective local force constant,
and ks is the cubic parameter characterizing the
asymmetry in the pair Morse potential, x is the
deviation of instantaneous bond length between the
two atoms from equilibrium. The correlated model
defined as the oscillation of a pair of particles with
M; and M> mass. Their vibration influenced by
their neighbours atoms given by the sum in Eq.
(24), where the sum i is over absorber (i = 1), and

value R = <r>, with r is the instantaneous bond
length between absorber and backscatter atoms at T
temperature.

For describing anharmonic EXAFS, effective
anharmonic potential [6] of the system is derived
which in the current theory is expanded up to the
third - order and given by

M;M, . RN
— R=— (26)
M;+M, R|
backscatter (i = 2), and the sum j is overall their
near neighbours, excluding the absorber and
backscatter themselves. The advantage of this
model is a calculation based on including the
contributions of the nearest neighbours of absorber
and backscatter atoms in EXAFS.

For DIA structure crystals, the anharmonic
interatomic effective potential Eq. (24) has the form

X X X
E.q(x)=E (x)+2E, (——)+8E_ (——)+8E_(—). 27)

4 4

Applying Morse potential given by Eq. (1) expanded up to 4% order around its minimum point

7

E.z(x)=D(e ™ -2 ™)~ D| - 1+a’x” —’x° +—o:4x4...). (28)

From Eqgs. (26)-(28). we obtain the anharmonic
effective potential E.s effective local force
constant Kes anharmonic parameters ks, ks for DIA
crystals presented in terms of our calculated Morse
potential parameters D and .

3. Numerical results and discussion

To receive the Morse potential parameters, we
need to calculate the parameter ¢ in Eq. (10). The
space lattice of the diamond is the fcc. The
primordial basis has two identical atoms at 0 0 0, %
Y4 % connected with each point of the fee lattice.
Thus. the conventional unit cube contains eight
atoms so that we obtain the value ¢ = 1/4 for this

structure.
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Apply the above-derived expressions to
numerical calculations for DIA structure crystals
(Si, Ge and SiGe) using the energy of sublimation
[10]. the compressibility [14] and the lattice
constants [11]. as well as, the values of 6p and D
[10,15,16].

The numerical results of Morse potential
parameters showed in Table 1. The theory values of
o fit well with the measured experiment [10]. The
elastic constants calculated by Morse potential
parameters for Si and Ge are presented in Table 2
and compared to the experimental values [11].

Table 1: Morse potential parameters D, o and the related parameter vg of Si, Ge and SiGe in comparison to

some experimental results [10].

Crystal B a (A D(eV) 7, (A)
Si (Present) 120.110 1.3642 0.9862 2.8429
Si (Expt.) - 1.3106 - 2.7503
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Ge (Present) 327.210 1.5569 0.9675 2.8319
Ge (Expt.) - 1.4105 - 2.7442
SiGe (Present) - 1.4606 0.9769 2.7934

Table 2: Elastic constants (XI0!N/m) of Si and Ge have calculated by Morse potential and comparison to

experimental values [11].

Crystal ci1 c12 c13 €33

Si (Present) 1.85 0.64 0.55 2.13

Si (Expt.) 1.77 0.41 0.61 1.54

Ge (Present) 1.46 0.57 0.46 1.63

Ge (Expt.) 1.35 0.52 0.52 0.57
The next application is to calculate the state [10] represented by an extrapolation procedure of
equation. The computed results illustrated in Figure the measured data. The results show they suitable

1 for Si crystal, Figure 2 for Ge crystal. and very good, especially at low pressure.

compared with the experimental ones (dashed line)
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Figures 3 and 4 illustrate good agreement of the
anharmonic interatomic effective potentials for Si,
Ge and SiGe semiconductor calculated using the
present theory (solid line). The Morse potential
parameters presented in Table 1 and compared to

experiment obtained from Morse

potential

parameters of J. C. Slater (symbol ) [10]. and
simultaneously shows strong asymmetry of these
potentials due to the anharmonic contributions in
atomic vibrations of these DIA structure crystals
illustrate by their anharmonic shifting from the
harmonic terms (dashed line).

Anharmonic effective potential Eﬁﬁ (eV)

si

—— Present
Expt. [10]
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R -
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0
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Figure 3. Anharmonic effective potential for Si.
and SiGe semiconductor
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Anharmonic effective potential Eeﬂ (eV)
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Figure 4. Anharmonic effective potential for Ge,
and SiGe semiconductor

Figures 5, 6 shows the temperature and pressure
dependence of mean square relative displacement
02(T) and mean square displacement u2(T) for Si
and Ge crystals. They show linear proportional to
the temperature T at high temperatures, and the
classical limit is applicable. At low temperatures,
the curves for Si and Ge contain zero-point energy
contributions - a quantum effect. Simultaneously,

10

the values of 62(T) are greater than the values of
u2(T). The calculated results of 62(T). u2(T) for the
Si, Ge crystals fitting well with the experimental
values [10]. Thus, it is possible to deduce that the
calculation results of the present method for
diamond structure crystals such as Si, Ge crystals
are reasonable.
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Figure 6. Mean square relative displacement dependence on temperature and pressure

4. Conclusions

In this work., a calculation method of Morse
potential parameters and application for diamond
structure crystals have been developed based on the
calculation of volume and number of an atom in
each basic cell and the sublimation energy.
compressibility, and lattice constant. The results
applied to the mean square relative displacement,
mean square displacement, the state equation, the
elastic constants, anharmonic interatomic effective
potential, and local force constant in EXAFS
theory. The derived expressions have programmed
for the calculation of the above physical quantities.

Derived equation of state and elastic constants
satisfy all standard conditions for these values, for

example, all elastic constants are positive. The
Morse potentials obtained satisfy all their basic
properties. They are reasonable for calculating and
analyzing the anharmonic interatomic effective
potentials describing anharmonic effects in EXAFS
theory. This procedure can be generalized to the other
crystal structures based on calculating their volume
and number of an atom in each elementary cell.

Reasonable agreement between our calculated
results and the experimental data show the
efficiency of the present procedure. The calculation
of potential atomic parameters is essential for
estimating and analyzing physical effects in the
EXAFS technique. It can solve the problems

involving any deformation and of atom interaction
in the diamond structure crystals.

11
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TINH TOAN CAC THAM SO THE MORSE DUGI ANH HUONG CUA
NHIET DO VA AP SUAT TRONG PHO CAU TRUC TINH TE HAP THU TIA X

MO RONG

Neuveén Ba Pire, Trinh Phi Hiép, Vii Quang Tho, Neuvén Vin Thu

Thong tin bai viét

Tom tat

Negay nhdn bai:
8/9/2020

Negay duvét dang:
10/12/2020

Tir khoa:

Tham s6 thé Morse,
phirong trinh trang thdi,
hdang sé liec hiéu dung, hé
s6 dan hoi, do dich chuvén
firong @i trung binh
phirong

Mot phirong phdp méi dé wéc tinh cac tham so hiéu dung ciia thé Morse die6i
anh hiromg ciia roi loan nhiét va dp sudt doi véi cdc vat liéu cé cau triic tinh
thé diroc phat trién bing cach sit dung néing hirong thing hoa, kha néing nén va
hing s6 mang. Sit dung cdc tham so thé Morse dd nhdn dioc d@é tinh toan do
dich chuvén tirong doi trung binh binh phirong, hing sé dan hoi, thé hiéu dung
phi diéu hoa va hing sé hec doi véi tinh thé ban dan silicic va germani, la
nhimg vat liéu cé cau tric tinh thé kim cirong. Cdc két qua nhan diroc phit hop

véi cac két qua ciia thirc nghiém va cdac v thuvét khac.
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