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In this paper, we propose an extension of the parameter continuation method
for solving operator equations of the second kind. By splitting of the operator
into a sum of two operators: one monotone, Lipschitz-continuous and one
contractive, the applicability of the method is broader. The suitability of the
proposed approach is presented through an example.
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Théng tin bai viét Tom tit

Trong bai bao nay, chung t6i dé xuat mdt mo rdng mdi cia phuong phap thac

Ngay nhgn bai:

trién theo tham s6 giai phuong trinh toan tir loai hai. Bang cach tich toan tir

27/3/2021 thanh tong ctia hai toan tir: toan tir don diéu, lién tuc Lipschitz va toan tir co,
Ngay duyét ding: kha ning ap dung cua phuong phap duge mé rong. Su phu hop cua cach tiép
3/5/2021 can dé xuat dugc trinh bay théng qua mot vi du.

Tw khéa: Phirong phap théc
trién theo tham so, Toan ti
don diéu, Toan tu co, Phuong
trinh toan tu logi hai, Gidgi
Xdp Xi.

1. Introductions

Parameter continuation method (PCM) was
suggested and developed by Bernstein [1] and
Schauder [3] which is the inclusion of the equation
P(xX)=0 into the one-parametric family of

equations G(x,£) =0, [0,1] connecting the
given equation (¢=1) with a solvable equation
(¢ =0) and study the dependence of the solution

from parameter. The PCM is a powerful technique
for solving operator equations, see for example [5—
7]. Gaponenko [2] introduced the PCM for solving
operator equations of the second kind

X+ A(x) = f, 1)
where A is a Lipschitz-continuous and monotone
operator, which operates in an arbitrary Banach
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space X. The monotone operator in Banach space
is defined as follows.

Definition 1.1. [2, Definition 2] The mapping A,
which operates in the Banach space X is called

monotone if for any elements x;,x, € X and any
¢>0 the following inequality holds
[ =% + e[ AC) = A 2 [} =% (@)

Remark 1.1. [2, Remark 1] If X is Hilbert space
then the condition of monotonicity (2) is equivalent
to the classical condition

(A~ A), % — %) =0, V), %, € X,
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where (-,-) is an inner product in the Hilbert space
X.

We obtain the following result from the
definition above.

Lemma 1.1. [2, Lemma] Assume that A is a
monotone mapping which operates in the Banach
space X. Then for any elements x;, x, € X and

any positive numbers g,¢&,,0<g <g, <1, the

following inequality holds

X =%, + & [ACG) = A | <% — %o + &2 [AG) = A(xp)]-

The results obtained by Gaponenko are summarized
in Theorem 1 and Theorem 2.

Theorem 1.1. [2, Theorem 1] Suppose that the
mapping A, which operates in the Banach space

X is Lipschitz - continuous and monotone. Then
the equation (1) has a unique solution for any

element f e X.

The following iteration process is constructed to
find approximate solutions of the equation (1).

1 1 1 -
X1 :_NA(Xi)_ﬁA(Xi)_m_ﬁA(XPH fi§,..p=01...(3)

N terms

The symbolic notation (3) should be understood as
the following iteration processes, which consist of
N iteration processes

Xiy1 =€ A(Xi)+X§1), i=012.., (4a)
X§1+)1:‘50 AG{l(Xgl))Hfz), i=012,.., (4b)
(4c)
K =y AG G (VD) 41, =01 2... (4d)

For simplicity, assume that A(0)=0 and the

number of steps in each iteration scheme of the
iteration process (3) is the same and equals n.
Denoting x(n,N) = x,, as the approximate solutions
of the equation (1), which is constructed by the
iteration process (3). In this case, Gaponenko
received the error estimations of approximate
solutions of the equation (1), which are presented in
the following theorem.

Theorem 1.2. [2, Theorem 2] Assume that the
conditions of Theorem 1.1 are satisfied. Then the

sequence of solutions

{x(n,N)},n=12,... constructed by iteration

approximate

process (3) converges to the exact solution x of the
equation (1). Moreover, the following estimates
hold

qn+:L eqN -1

X(n,N)—x|| £ —
[x(n, N) = x| 1= e 1

-

where L is Lipschitz coefficient of the operator
A, N is the smallest natural number such that

L
=—<ln=12,...
a N

2. MAIN RESULTS
Consider the general operator equation (1)
X+ A(X) = f,
where A is a nonlinear operator from a Banach
space X into X, f is a given function in X.

Without loss of generality, one can express the
operator A as a composition of two operators A

and A,. Then the equation (1) can be rewritten as
follow

X+ A)+AM)=f. (6)
Theorem 2.1. Assume that A is a Lipschitz-
continuous and monotone operator, A,is a

contractive operator. Then the equation (1) has a
unique solution.

Proof. We take a minimal natural number N such

that o =gl <l gy = % where L is the Lipschitz

coefficient of the operator A . The equation (6) can
be written as the following form

X+Negg AX)+A(X) = f. (7
Consider the following subsidiary problems.

Problem 1 (N =1). Consider the operator

equation

X+2y A(X)+AN)=1. (8)
We shall carry out a change of variable

X = X+ 84 (X) = Gy (). ©)
We have
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leo A (X) — goA(X)|| < gL ||x—X]|
=g [x—X||, Vx, X € X.

Hence &gyA is a contractive operator  with
contraction coefficient equal to ¢, =&)L <1. Then
the equation (9) has a unique solution for any
xYeX, ie, the operator G*(x®) s
determined in the whole space X. By virtue of the
monotonicity of the operator A, the operator Gl‘1
is Lipschitz - continuous with Lipschitz coefficient

equal to 1. Indeed, for any x® x® < X , we have

|6t -6 ) | =) x-x |
<[ x=x+5[A)-A®]|
o],

After changing the variable (9), the equation (8)
will take the following form

R (x(l) ) =xY + AG(x®) = 1. (10)
Forany x®,x® e X , we have
|G ) - AG (x®) |
<0 6 () -6 (X)) < g [ - %)
where @, is contraction coefficient of the operator

A,. Thus A,G,* is a contractive operator with
contraction coefficient equal to g, <1. Then the
equation (10) has a unique solution for any f e X.

Consequently, the equation (8) has a unique
solution x(g,) forany f e X.

Problem 2 (N =2). Consider the operator

equation
X+255A(X)+ A (X) = . (11)
We shall carry out two changes of variables
X = x+ £, (X) =Gy (x), (12a)
x® = x® 4 £ AG (xY) =G, (x). (12b)

Forany x®,x® e X , we have

leoAGT (x®) - o AGTH (X)) < oL [x® -x@|
s 57
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Hence &,AG,* is a contractive operator with
contraction coefficient equal to @ <1. Then the
equation (12b) has a unique solution for any
x® e X, ie., the operator G," is determined in
the whole space X. By Lemma 1.1, for any

x? %@ e X, we have

||GZ—1(X(2) )-G;! (Y(Z))" _ ||X(1) 50 "
= =R colA ()~ AN X+ 25l A G- AN

— “X(l) —x® 4 &l ALGlfl(X(l)) _ Ain (y(l) )]“ - “X(Z) _x@ “

Thus the operator G, is Lipschitz - continuous

with Lipschitz coefficient equal to 1. After
changing the variables (12a) and (12b), the
equation (11) will take the following form

P,(x?)=x?@ + AGTG (x@) = . (13)

Forany x® %@ e X, we have

” AG G (x?) - AzGl’le’l(Y(Z))” <q, “X(Z) _X(Z)H'

Thus A,G;'G," is a contractive operator with
contraction coefficient equal to g, <1. Then the
equation (13) has a unique solution forany f e X .
Therefore the equation (11) has a unique solution

X(2gy) forany f e X.

Problem N (N >2). Consider the operator
equation

X+NgAX)+AX) =x+AX)+AX) =Tf. (14)

We shall carry out N changes of variables

X = x+g,A (X) = Gy (), (15a)
x® =x® 4 £ AGH(xW) =G, (xY), (15b)
(15¢

Similarily, we show that the operators
G;', G;1,...,Gy are determined in the whole space

X and are Lipschitz - continuous with Lipschitz
coefficients equal to 1. Hence after the change of
variables (15a)-(15d) the equation (14) will take
the following form
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Ay (M) =X+ AG TG (M) = .
(16)

For any X(N),Y(N) e X, we have

AR (") - AGT G ()
<q, “X(N) —X(N)”.

Thus A,G;*---Gy! is a contractive operator with
contraction coefficient equal to g, <1. Then the
integral equation (16) has a unique solution for any
f e X . Consequently, the equation (14) has a
unique solution x(Ng)=xe X for any feX,

i.e. the equation (1) has a unique solution x e X
forany f e X .This completes the proof. [

We now construct the iterative algorithm to
find approximate solution of the operator equation
(2). Firstly, we construct the iterative algorithm to
find approximate solution of the Problem 1. The
approximate solutions of the equation (10) are
obtained by using the standard iteration process

X0 =—AG(xP)+ f, j=012,...x8 = 1.

At the same time at each step of above iteration
process when calculating the value G;*(x{") we
will again use the standard iteration process

X =—6A0) +xP,1=012,..,% =x.

As a result, the approximate solutions of the
equation (8) can be found by the following iteration
processes

X =—&A0)+xP, =012, (17a)
X =—AG () + f, j=012,...x" = f.(17b)

j+1

Next, we construct the iterative algorithm to
find approximate solution of the Problem 2. The
approximate solutions of the integral equation (13)
are obtained by using the standard iteration process

X2 = —AGG () + £,1=0,1,2,..,x82 = f.
At the same time we will use “subsidiary” iteration
processes to invert the operators G;,G, at each
step of this iteration process when calculating the

value of G'G,*(x?). Hence the approximate

solutions of the integral equation (11) can be found
by
iteration processes

X1 = =6 A0G) +x,1=012,., (18a)
X =-aAG (M) +x?, [ =012..., (18b)

X2 =—AG G (xP) + 1,1=01,2,...,x? = f. (18¢)

Finally, we construct the iterative algorithm to
find approximate solution of the Problem N. The
approximate solutions of the integral equation (16)
are obtained by using the standard iteration process

XM =—AG Gl (x) + f, p=012,... x5 = f.

At the same time we will use “subsidiary” iteration
processes to invert the operators G,G,,...,Gy at
each step of this iteration process when calculating
the value of G;'G;"---Gy"(x()). Hence the

approximate solutions of the equation (14) can be
found by iteration processes

Xi+1:‘50A1(Xi)+le)yi=0,1,2,---, (19a)
K =-eoAG () + X, j=01.2,.., (19b)
(19c)

XM =-AG G (x(V)+ £, p=0,1,2...x0") = f. (19d)

The iteration processes (19a)-(19d) can be written

as the following symbolic notation
K == A== A~ A )~ At)+
N N N
N terms
B jyen P=0.... (20)

Assume that the number of steps in each
iteration scheme of iteration processes (19a)-(19d)
is the same and equals n. Let x, be approximate

solutions of the equation (1). Note that x, depends
on N . Hence we denote x(n, N) = x,. We have the
following theorem.

Theorem 2.2. Let the assumptions of Theorem
2.1 be satisfied. Then the sequence of approximate

solutions  {x(n,N)},n=212,... constructed by

iteration processes (19a)-(19d) converges to the
exact solution x e X of the operator equation (1).
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Moreover, the following estimates hold

1 q1n+1 l_qz n+l e%N -1

x(n,N)=x|| <
(o) =] 1-g,|1-q 1-0, e*-1

(21)
where N is the smallest natural number such that

Q1:ﬁ<1' L is Lipschitz coefficient of the

operator A, g, is a contraction coefficient of the
operator A,,n=12,.... .

Proof. Without loss of generality, we assume that
A(0)=0,A,(0)=0. Let us consider successive
problems 1, 2,..., N. The approximate solutions
of Problem 1 assumes are obtained by iteration
processes (17a)-(17b). The values G;*(x{) are

calculated by using the iteration process (17a) with
the error

W] = )
n l—q1 ]
Forany ke{12,..,n}, we have

% x4 = | A6 62 - ARG 2,)|
st s sa )

so that
<)< HX‘” B N il
“(ofval g 4 ]
ST e
Since A (0)=0, we have G;(0)=0+¢,A(0)=0

. Hence
[ -] =[ac o)+ 1 -]
=[ 4G (1) - 4G O) < 0 £,

Then from above inequality it follows that

)= xé”u+uxé”usqz1‘_—“*nfn+ufn

q
Sq 5 ||f||+||f||—

||f||
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+a™ ],

Consequently, the values G;*(x{") are calculated

with the error A,(n) =6;(n) =

xn—x*“ < u(n),

where

n+1

() = fl - ||f|| (22)

Since A, is a contractive operator with contraction
coefficient equal to g, <1, the error A;(n)

specifying the argument of the operator A, is
equivalent to the error g,A,(n) in specifying the
right - hand side f of the integral equation (8). On
the other hand, the operator P is Lipschitz -

continuous with Lipschitz coefficient equal to

. Indeed, forany f,f e X, we have

1-q;
[P () -RA ()] =[x -x®)]

= X0 =%+ AG ) - AT () - AG () - AT () |

< -x+ AG ) - A (X + |G ) - AG(KY)

<[RO®) - RED)|+ g [x® x|
=[[f = Fll+ 0z < x|,

so that

ENORNG B

Hence the substitution of the error g,A;(n)

into the right - hand side of the integral equation
9

(8) causes an error of not more than A (n)

4z
in the corresponding solution x® . The error of

an iteration process in the calculation of x®

q n+l
equals 12 ||f||.Theref0re we have
—%

) xO< ,m)+ 2— G ||f||
q

The inverse substitution, i.e., the transition from the
variable x® to the variable x again introduces the

error  A;(n). Then the error of approximate

solutions x, of Problem 1 gives the estimate
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02 "
X, — X(&9)| £ A(n)+A(n)+ f
|| n 0 " 1-q, 1 1 1-q, || "
1 g™
= A f
o)

The approximate solutions of Problem 2 assumes
are obtained by iteration processes (18a)-(18c).

The values G;'G,*(x?) are calculated by using

(18a)-(18b). The values
G '(x{?) are calculated by using the iteration

iteration processes

process (18a) with the error

s ol

We have
e R e e N

Since the operator G,' is Lipschitz - continuous

with Lipschitz coefficient equal to 1, it follows that
% - x4 = ez ) - 652 (2

<[40 -x), vk efL2...m).
Hence

bl pd? - =7+

Forany ke{12,..,n}, we have

9 |- i 07 4% - Ry 651042,

<q, "X(Z) —x ||<

Thus
(e v -0
)

Since A (0) =0, it follows that
G,(0) =0+&A(0)=0 and
G,(0) =0+£,AG;*(0) =0. Therefore
S R
= AGrte: (1) - GG O
< G | £

Then we have

0t )

2] = 2292 @ 2]+ 162

1- q

< _—2 f f
A e Fl+ I

Therefore the values G;*(x{) are calculated with

the error

qer—l
f
<A L% )

Since gy,A is a contractive operator  with
contraction coefficient equal to ¢, <1, the error
w(n) in specifying the argument of the operator
&A is equivalent to the error qu(n) in
specifying the right - hand side x® of the
equation (12b): x® + £, AG T (x®)=x® . Since
the operator GZ’l is Lipschitz — continuous with

Lipschitz coefficient equal to 1, the substitution of
the error gyu(n) into the right —hand side of the

integral equation (12b) causes an error of not more
than quu(n) in the corresponding solution x® .

The error of an iteration process in the calculation
of x¥ equals %”x@” For any | e{1,2,...n},
we have

b 2] )

o e -

T he-

1—q,
<d, 1_q22 (REERAY

x|+

1—qg,"
sqzﬁnfnwfn

1q
2||||

Then the error of an iteration process in the

calculation of x® equals z(n) . Hence

5,(n) =

X =X < auen) + () = 0y, (m) + ().

151



N.T.Binh/ No.21_Jun 2021|p.145-153

The inverse substitution, i.e., the transition from the
variable x® to the variable x again introduces the
error p(n). Consequently, G'G,'(x?) s

calculated with the error

A,(n) =

X =X < 0 () +204() = 5, (m) + 8, ().

Since A, is a contractive operator with contraction
coefficient equal to g, <1, the error A,(n) in
specifying the argument of the operator A, is
equivalent to the error g,A,(n) in specifying the
right - hand side f of the equation (13). On the
other hand the operator Pz‘l is Lipschitz -

continuous with Lipschitz coefficient equal to

. Indeed, forany f,f e X, we have
1-0,

[Py (=R (D= [x@ -x@)

= Hx<2) -x@ 4+ AG'G, (x?)

— &G, (X)) - [ A6, () - AG G, () |

<[x® —x@ -+ 4616 () - AGIG; ()|
+|AGrie,t () - AG 6, (X))
<[P (x®) = By (x| + ¢, [x@ - x|

=1t =Tl e [ %],

5o that ”P{l( f)— (f)”

Hence the substitution of the error g,A,(n) into
the right — hand side of the integral equation (13)
92

2

causes an error of not more than

A,(n) inthe

corresponding solution x®. The error of an

iteration process in the calculation of x® equals
q n+1
12—|| f|. Therefore we have

Q2 A (n)+Q2 "f”

<=5

The inverse substitution, i.e., the transition from the

variable x® to the variable x again introduces the
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error A,(n). Then the error of approximate

solutions x, of Problem 2 gives the estimate

[0~ x@eo)] < 12 “2 H H

1
e Ay )+ 2 HfH

By using similar arguments for the problem k:
X+KegA(X)+ A (X) = f,ke[l,N], we obtain the

estimation

%, — x(keo)]| < —— Ay (m) + 22 " 1, @3)
1-q, 1-q,

where

A (N) £ (N) + 51 (N) +---+6,(N), (24)

and

S (M) < g [G 1 (N)+---+6,(n)]+ p(n), 1< h <k. (25)
We shall rewrite inequality (25) in the following
form

k-1

8 (n) < u(n) +q125h(n),51(n) <u(n), k=23 N.
h=1

(26)
By virtue of the discrete analogue of the well -
known Bellman-Gronwall lemma (see [4, Theorem
1.28]), from inequality (26) we get

k-1 k-1
() < u(m] J@+a) < ] Je® = unet®?,
h=1 h=1

k=12,..N.

Hence the inequality (24) can be written as

k k kg
_ et -1
A <" 8, () < () e 4D = y(n) -
h=1 h=1 -

Consequently, we can rewrite the estimation of the
error (23) for problem k as the form

1 kql_l n+l
[~ (k)] < = =+ g

eql -1 1_q2
Substituting N for k and by (22), we obtain (21).
This completes the proof of the theorem. 0

Remark 2.1. These results are extension of the
known result on the application of the method of
contractive mapping and PCM for solving
operator equation of the second kind. Indeed, we
consider the two following special cases. When
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A =0, the equation (6) has form x+A,(x)=f,
where A, is a contractive operator. When A, =0,
the equation (6) has form x+ A (x) = f,where A/is
monotone and Lipschitz — continuous.

Example. Consider the following nonlinear
Fredholm integral equation
1

x(t) +IBts X(s) + gt cos(x(s))} ds
0

_Jie 7+ 20sin(2) + 20cos(1)

t,0<t<1.
15

(27)
We define two
A, A, L?[a;b] - L2[a;b] by

operators

1
(AX)(t)= %Its x(s)ds;
0

1
(AX)(t) = %It cos(x(s))ds, Vx € L*[a;b].
0

It is easy to verify that A is monotone and

Lipschitz — continuous with Lipschitz coefficient

3 . . . .
L= E ) AZ is a contractive operator with contraction

23

coefficient 0, =TS<1' Consequently, all

conditions of

Theorem 2.1 are satisfied. Then the equation (27)
has a unique solution. By applying the iteration

processes (19a)-(19d) with N =2, n =30, 50 we

obtain approximate solutions of this equations as

follows
N | Approximate solution Error
30

0.124238398349 x 10" t + \/t_ 0.8963691179 %10

50

0.635113898 %10 ° t + \/t- 0.2842576447 x 10"

Table. Approximate solutions and corresponding
errors of the equation (27).

3. CONCLUSION

In this paper, we have presented a new
extension of the PCM for solving operator equation
of the second kind. The reason for the powerful
extension is that the new decomposition strategy for
nonlinear operator, which increase the applicability
of the method. The obtained results have been
illustrated by an example.
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