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 Trong bài báo này, chúng tôi đề xuất một mở rộng mới của phương pháp thác 

triển theo tham số giải phương trình toán tử loại hai. Bằng cách tách toán tử 

thành tổng của hai toán tử: toán tử đơn điệu, liên tục Lipschitz và toán tử co, 

khả năng áp dụng của phương pháp được mở rộng. Sự phù hợp của cách tiếp 

cận đề xuất được trình bày thông qua một ví dụ. 

  

Từ khóa: Phương pháp thác 

triển theo tham số, Toán tử 

đơn điệu, Toán tử co, Phương 

trình toán tử loại hai, Giải 

xấp xỉ. 

 

 

 

1. Introductions 

Parameter continuation method (PCM) was 

suggested and developed by Bernstein [1] and 

Schauder [3] which is the inclusion of the equation 

( ) 0P x   into the one-parametric family of 

equations ( , ) 0, [0,1]G x     connecting the 

given equation ( 1)   with a solvable equation 

( 0)   and study the dependence of the solution 

from parameter. The PCM is a powerful technique 

for solving operator equations, see for example [5–

7]. Gaponenko [2] introduced the PCM for solving 

operator equations of the second kind 

                 ( ) ,x A x f                          (1) 

where A  is a Lipschitz-continuous and monotone 

operator, which operates in an arbitrary Banach 

space .X  The monotone operator in Banach space 

is defined as follows. 

 

Definition 1.1.  [2, Definition 2] The mapping A , 

which operates in the Banach space X  is called 

monotone  if  for any elements 1 2,x x X  and any 

0    the following inequality holds  

       1 2 1 2 1 2( ) ( ) .x x A x A x x x            (2) 

Remark 1.1. [2, Remark 1] If X  is Hilbert space 

then the condition of monotonicity (2) is equivalent 

to the classical condition  

             1 2 1 2 1 2( ) ( ), 0, , ,A x A x x x x x X      
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where ,   is an inner product in the Hilbert space 

X . 

We obtain the following result from the 

definition above. 

Lemma 1.1. [2, Lemma] Assume that A  is a 

monotone mapping which operates in the Banach 

space .X  Then for any elements 1 2,x x X  and 

any positive numbers 1 2 1 2, , 0 1      , the 

following inequality holds 

   1 2 1 1 2 1 2 2 1 2( ) ( ) ( ) ( ) .x x A x A x x x A x A x       

 
The results obtained by Gaponenko are summarized 

in Theorem 1 and Theorem 2. 

Theorem 1.1. [2, Theorem 1]  Suppose that the 

mapping ,A which operates in the Banach space 

X  is Lipschitz - continuous and monotone. Then  

the equation (1) has a unique solution for any 

element f X . 

The following iteration process is constructed to 

find approximate solutions of the equation (1).  

 1

1 1 1
( ) ( ) ( ) , , ,..., 0,1, ... . 3i i j p

N terms

x A x A x A x f i j p
N N N

       

                      

The symbolic notation (3) should be understood as 

the following  iteration processes, which consist of 

N  iteration processes 

 

 

 

 

(1)
1 0

(1) (2)1 (1)
0 11

( 1) 1 1 ( 1)
0 1 11

( ) , 0,1, 2

d

,...,

( ) , 0,1, 2,...

,

4a

4b

4

,

.

4c.

.

..

2

.,

( ) 0,1, ,. .

i i j

jj l

N N
N pp

x A x x i

x AG x x j

x AG G x f p












   


   

   

   

  

 

For simplicity, assume that (0) 0A   and the 

number of steps in each iteration scheme of the 

iteration process (3) is the same and equals n . 

Denoting ( , ) nx n N x  as the approximate solutions 

of the equation (1), which is constructed by the 

iteration process (3). In this case, Gaponenko 

received  the error estimations of approximate 

solutions of the equation (1), which are presented in 

the following theorem. 

Theorem 1.2. [2, Theorem 2] Assume that the 

conditions of Theorem 1.1 are satisfied. Then the 

sequence of approximate solutions 

{ ( , )}, 1, 2, ...x n N n   constructed by iteration 

process (3) converges to the exact solution x  of the 

equation (1). Moreover, the following estimates 

hold  

        
1 1

( , ) .
1 1

n qN

q

q e
x n N x f

q e

 
 

 
             (5) 

where L  is Lipschitz coefficient of the operator 

,A N is the smallest natural number such that 

1, 1, 2, .. ..
L

q n
N

    

2. MAIN RESULTS 

Consider the general operator equation (1) 

( ) ,x A x f   

where A  is a nonlinear operator from a Banach 

space X  into ,X  f  is a given function in .X  

Without loss of generality, one can express the 

operator A  as a composition of two operators 1A  

and 2.A  Then the equation (1) can be rewritten as 

follow                                                                                                                

                  1 2( ) ( ) .x A x A x f                           (6) 

Theorem 2.1.  Assume that 1A  is a Lipschitz-

continuous and monotone operator, 2A is a 

contractive operator. Then the equation (1) has a 

unique solution.  

Proof.  We take a minimal natural number N  such 

that 1 0 0

1
1,q L

N
    , where L  is the Lipschitz  

coefficient of the operator 1A . The equation (6) can 

be written as the following form 

                   0 1 2( ) ( ) .x N A x A x f                  (7) 

Consider the following subsidiary problems. 

Problem 1  ( 1N  ). Consider the operator 

equation 

            0 1 2( ) ( ) .x A x A x f                            (8) 

We shall carry out a change of variable 

             
(1)

0 1 1( ) ( ).x x A x G x                         (9) 

We have  

147
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0 0 0

1

1 1( ) ( )

, , .

x x L

x

A

q

A x x

x x x X

    

   

 

Hence 0 1A  is a contractive operator  with 

contraction coefficient equal to 1 0 1q L  . Then 

the  equation (9) has a unique solution for any 

(1)x X , i.e., the operator 
1 (1)

1 ( )G x
 is  

determined in the whole space .X  By virtue of the 

monotonicity of the operator 1,A  the operator 
1

1G
 

is Lipschitz - continuous with Lipschitz coefficient 

equal to 1 . Indeed, for any (1) (1),x x X , we have 

 

1 (1) 1 (1)
1 1

0 1 1

(1) (1)

( ) ( )

( ) ( )

.

G x G x x x

x x A x A x

x x



   

   

 

 

After changing the variable (9), the equation (8) 

will take the following form 

      (1) (1) 1 (1)
1 12 ( ) .P x x A G x f                    (10) 

For any (1) (1),x x X , we have 

1 (1) 1 (1)
1 1

1 (1) 1 (1) (1) (1)
2 1 1

2 2

2

( ) ( )

( ) ( ) ,

A G x A G x

q G x G x q x x

 

 



  
 

where 2q  is contraction coefficient of the operator 

2.A  Thus 
1

2 1A G
 is a contractive operator with 

contraction coefficient equal to 2 1q  . Then the 

equation (10)  has a unique solution for any .f X  

Consequently, the equation (8) has a unique 

solution 0( )x   for any .f X  

Problem 2  ( 2N  ). Consider the operator 

equation 

        0 1 22 ( ) ( ) .x A x A x f                 (11) 

We shall carry out two changes of variables     

 

 

(1)
0 1 1

(2) (1) 1 (1) (1)
0 1 1 2

( ) ( ), 12a

( ) ( ). 12b

x x A x G x

x x A G x G x



 

  

  

 

For any (1) (1),x x X , we have 

1 (1) 1 (1) (1) (1)
0 1 1 0 1 1 0

(1) (1)
1

( ) ( )

.

A G x A G x L x x

q x x

     

 
 

Hence 
1

0 1 1A G 
 is a contractive operator with 

contraction coefficient equal to 1 1q  . Then the 

equation (12b) has a unique solution for any 

(2)x X , i.e., the operator 
1

2G
 is determined in 

the whole space .X  By Lemma 1.1, for any 

(2) (2),x x X , we have 

1 (2) 1 (2) (1) (1)
2 2

0 1 1 0 1 1

) )

[ ( ) ( )] 2 [ (

(

( ) )]

(G x G x x x

x x A x A x x x A x A x 

   

       

 

(1) (1) 1 (1) 1 (1) (2) (2)
0 1 1 1 1[ ) )] .( (x x AG x AG x x x       

 

Thus the operator 
1

2G
 is Lipschitz - continuous 

with Lipschitz coefficient equal to 1 . After  

changing the variables (12a) and (12b), the 

equation (11) will take the following form 

       (2) (2) 1 1 (2)
2 2 1 2( ) ( ) .P x x A G G x f       (13) 

For any (2) (2),x x X , we have 

1 1 (2) 1 1 (2) (2) (2)
2 1 2 2 1 2 2( ) ( ) . A G G x A G G x q x x     

 

Thus 
1 1

2 1 2A G G 
 is a contractive operator  with 

contraction coefficient equal to 2 1q  . Then the 

equation (13)  has a unique solution for any f X . 

Therefore  the equation (11) has a unique solution 

0(2 )x   for any f X .  

Problem N  ( 2N  ). Consider the operator 

equation                     

0 1 2 1 2( ) ( ) ( ) ( ) .x N A x A x x A x A x f       (14) 

We shall carry out N  changes of variables                                    

 

 

 

 

(1)
0 1 1

(2) (1) 1 (1) (1)
0 1 1 2

( ) ( 1) 1 1 ( 1) ( 1)
0 1 1 1

( ) ( ), 15a

( ) ( ), 15b

..., 15c

( ) ( ). 15dN N N N
N N

x x A x G x

x x A G x G x

x x A G G x G x









    


  

  

  

 

Similarily, we show that the operators 

1
3 4

1 1,, ..., NG G G  
 are determined in the whole space 

X  and are Lipschitz - continuous with Lipschitz 

coefficients equal to 1 . Hence after the change of 

variables (15a)-(15d) the  equation (14) will take 

the following form 
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( ) ( ) 1 1 ( )
2 1( ) ( ) .N N N

N NP x x A G G x f         

(16) 

For any ( ) ( ),N Nx x X , we have 

1 1 ( ) 1 1 ( )
2 1 2 1

( ) ( )
2

( ) ( )

.

N N
N N

N N

A G G x A G G x

q x x

   

 
 

Thus 
1 1

2 1 NA G G 
 is a contractive operator  with 

contraction coefficient equal to 2 1q  . Then the 

integral equation (16)  has a unique solution for any 

f X . Consequently,  the  equation (14) has a 

unique solution 0( )x N x X    for any f X , 

i.e. the  equation (1) has a unique solution x X  

for any f X .This completes the proof.       

We now construct the iterative algorithm to 

find approximate solution of the operator equation 

(1). Firstly, we construct the iterative algorithm to 

find approximate solution of the Problem 1 . The 

approximate solutions of the equation (10) are 

obtained by using the standard  iteration process 

(1) (1)1 (1)
2 11 0( ) , 0,1,2,..., .jjx A G x f j x f

       

At the same time at each step of above iteration 

process when calculating the value 1 (1)
1 ( )jG x  we 

will again use the standard iteration process   

(1) (1)
1 0 1 0( ) , 0,1,2,..., .i i j jx A x x i x x       

As a result, the approximate solutions of the 

equation (8) can be found by the following iteration 

processes 

 

 

(1)
1 0

(1) (1)1 (
1

1

1)
1 02

( ) , 0,1,2,..., 17a

) , 0,1,2,..., . 17b(

i i j

jj

x x x i

x A G x f j x f

A




   

   

 

Next, we construct the iterative algorithm to 

find approximate solution of the Problem 2. The 

approximate solutions of the integral equation (13) 

are obtained by using the standard  iteration process 

(2) (2) (2)1 1
2 1 2 01 ( ) , 0,1,2,..., .l lx A G G x f l x f 

       

At the same time we will use “subsidiary”  iteration 

processes  to invert the operators 1 2,G G  at each 

step of this iteration process when calculating the 

value of 
(2)1 1

1 2 ( ).lG G x 
 Hence the approximate 

solutions of the integral equation (11) can be found 

by   

iteration processes                       

 

 

 

(1)
1 0 1

(1) (2)1 (1)
0 1 11

(2) (2) (2)1 1
2 1 2 01

( ) , 0,1,2,..., 18a

( ) , 0,1,2,..., 18b

( ) , 0,1,2,..., . 18c

i i j

jj l

l l

x A x x i

x A G x x j

x A G G x f l x f










 


   

   

    

 

Finally, we construct the iterative algorithm to 

find approximate solution of the Problem .N The 

approximate solutions of the integral equation (16)  

are obtained by using the standard  iteration process  

( ) ( )1 1 ( )
2 11 0( ) , 0,1,2,..., .

N NN
N ppx A G G x f p x f 

     

 

At the same time we will use “subsidiary” iteration 

processes  to invert the operators 1 2, ,..., NG G G  at 

each step of this iteration process when calculating 

the value of 1 1 1 ( )
1 2 ( )N

N pG G G x   . Hence the 

approximate solutions of the  equation (14) can be 

found by  iteration processes 

 

 

 

 

(1)
1 0 1

(1) (2)1 (1)
0 1 11

( ) ( )1 1 ( )
2 11 0

( ) , 0,1,2,..., 19a

( ) , 0,1,2,..., 19b

..., 19c

( ) , 0,1,2,..., . 19d

i i j

jj l

N NN
N pp

x A x x i

x A G x x j

x A G G x f p x f










 


   

   

    

 

The iteration processes (19a)-(19d) can be written 

as the following symbolic notation          

 

1 1 1 1 2

1 1 1
( ) ( ) ( ) ( ) ,

, ,..., 0,1,... . 20

i i j h p

N terms

x A x A x A x A x f
N N N

i j p

       



             

Assume that the number of steps in each  

iteration scheme of iteration processes (19a)-(19d) 

is the same and equals n . Let nx  be approximate 

solutions of the equation (1). Note that nx  depends 

on N . Hence we denote ( , ) nx n N x . We have the 

following theorem. 

Theorem 2.2.  Let the assumptions of  Theorem  

2.1 be satisfied. Then the sequence of approximate  

solutions { ( , )}, 1,2,...x n N n   constructed by 

iteration processes (19a)-(19d)  converges to the 

exact solution x X  of  the operator equation (1). 
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Moreover, the following estimates hold                       

1

1

1 1
11 2

2
2 1 2

11 1
( , ) ,

1 1 1 1

n n q N
n

q

q q e
x n N x q f

q q q e

 


  
   

     

                                                            

(21) 

where N  is the smallest natural number such that 

1 1
L

q
N

  , L  is Lipschitz coefficient of the 

operator 1 2,A q  is a contraction coefficient  of the 

operator 2 , 1,2,....A n  . 

Proof.  Without loss of generality, we assume that 

1 2(0) 0, (0) 0.A A   Let us consider successive 

problems 1, 2, ..., .N  The approximate solutions 

of  Problem 1  assumes are obtained by  iteration 

processes (17a)-(17b). The values 1 (1)
1 ( )jG x   are 

calculated by using the iteration process (17a) with 

the error  

1
* (1)1

1

.
1

n

n j

q
x x x

q



 


 

 For any  1,2,...,k n , we have 

(1) (1) (1) (1)1 1
2 1 2 11 1 2

1(1) (1) (1) (1)
2 2 1 01 2

( ) ( )

,

k k k k

k
k k

x x A G x A G x

q x x q x x

 
  


 

  

    

 

so that 

 

(1) (1) (1) (1)(1) (1)
1 1 0 0

1 2 (1) (1) (1)
22 2 1 0 0

(1) (1) (1)2
1 0 0

2

1

1
.

1

j j j

j j

j

x x x x x x

q q q x x x

q
x x x

q



 

     

      


  



 

Since  1(0) 0A  , we have   1 0 1(0) 0 (0) 0G A  

. Hence 

(1) (1) (1) (1)1
2 11 0 0 0

1 1
2 1 2 1 2

( )

( ) (0) .

x x A G x f x

A G f A G q f



 

   

  
 

Then from above inequality it follows that  

(1) (1) (1)(1) 2 2
21 0 0

2 2

1
2 2

2
2 2

1 1

1 1

1 1
.

1 1

j j

j

n n

q q
x x x x q f f

q q

q q
q f f f

q q



 
    

 

 
  

 

 

Consequently,  the values 1 (1)
1 ( )jG x   are calculated 

with the error 
*

1 1( ) ( ) ( ),nn n x x n       

where                                                                                 

             
11

1 2

1 2

1
( ) .

1 1

nn qq
n f

q q


 


 
           (22) 

Since 2A  is a contractive operator with contraction 

coefficient equal to 2 1q  , the error 1( )n  in 

specifying the argument of the operator 2A  is 

equivalent to the error 2 1( )q n  in specifying  the 

right - hand side f  of the integral equation (8). On 

the other hand, the operator 
1

1P
 is Lipschitz - 

continuous with Lipschitz coefficient equal to 

2

1

1 q
. Indeed, for any ,f f X , we have 

1 1 (1) (1)
1 1

(1) (1) 1 (1) 1 (1) 1 (1) 1 (1)
2 1 2 1 2 1 2 1

( ) ( )

( ) ( ) ( ) ( )

P f P f x x

x x A G x A G x A G x A G x

 

   

  

      
 

 

(1) (1) 1 (1) 1 (1) 1 (1) 1 (1)
2 1 2 1 2 1 2 1( ) ( ) ( ) ( )x x A G x A G x A G x A G x        

 

(1) (1) (1) (1)
1 1 2

(1) (1)
2

( ) ( )

,

P x P x q x x

f f q x x

   

   

 

so that  

1 1
1 1

2

.( (
1

) )
1

P f P f f f
q

   


 

 Hence the substitution of the error  2 1( )q n  

into the right – hand side of the integral equation 

(8) causes an error of not more than 
2

2
1( )

1
n

q

q



 

in the corresponding solution (1)x . The error of 

an iteration process in the calculation of (1)x  

equals  
1

2

21

nq
f

q




. Therefore we have   

1
(1) (1) 2 2

1
2 2

( ) .
1 1

n

n

q q
x x n f

q q



   
 

 

The inverse substitution, i.e., the transition from the 

variable (1)x  to the variable x  again introduces the 

error 1( )n . Then the error of approximate 

solutions nx  of Problem 1  gives the estimate 

150



N.T.Binh/ No.21_Jun 2021|p.145-153 

 

 

1
2 2

0 1 1
2 2

1
2

1
2 2

( ) ( ) ( )
1 1

1
( ) .

1 1

n

n

n

q q
x x n n f

q q

q
n f

q q






     
 

  
 

 

The approximate solutions of  Problem 2  assumes 

are obtained by  iteration processes  (18a)-(18c). 

The values 
(2)1 1

1 2 ( )lG G x 
  are calculated by using 

iteration processes  (18a)-(18b). The values 

1 (1)
1 ( )jG x   are calculated by using the iteration 

process (18a) with the error 

1
* (1)1

1

.
1

n

n j

q
x x x

q



 


 

We have 

(1) (1) (1) (1)(1) (1)
1 1 0 0 .j j jx x x x x x       

 Since the operator 
1

2G
 is Lipschitz - continuous 

with Lipschitz coefficient equal to 1 , it follows that 

 

(1) (1) (2) (2)1 1
2 21 1

(2) (2)
1

) )

, 1,2,..., .

( (k k k k

k k

x x G x G x

x x k n

 
 



  

   
 

Hence 

(2) (2) (2) (2)(1) (2)
1 1 0 0 .j j jx x x x x x       

For any  1,2,...,k n , we have 

(2) (2) (2) (2)1 1 1 1
1 1 2 1 1 21 1 2

1(2) (2) (2) (2)
2 2 1 01 2

( ) ( )

.

k k k k

k
k k

x x F G G x F G G x

q x x q x x

   
  


 

  

    

 

Thus 

  (2) (2) (2)(1) 1 2
2 2 2 1 0 0

(2) (2) (2)2
1 0 0

2

1

1
.

1

j j
j

j

x q q q x x x

q
x x x

q

       


  



 

Since  1(0) 0,A   it follows that  

11 00) 0 0) 0( (G A    and 

1
2 0 1 1(0) 0 0 0( )AG G    . Therefore 

(2) (2) 1 1
2 1 21 0

1 1 1 1
2 1 2 2 1 2

2

( )

( ) (0)

.

x x A G G f f f

A G G f A G G

q f

 

   

   

 



 

Then we have 

(2) (2) (2)(1) 2
1 0 0

2

2
2

2

2
2

2

1
2

2

1

1

1

1

1

1

1
.

1

j

j

j

n

n

q
x x x x

q

q
q f f

q

q
q f f

q

q
f

q




  


















+

+

 

Therefore  the values 1 (1)
1 ( )jG x   are calculated with 

the error  

1 1
* 1 2

1 2

1
( ).

1 1

n n

n

q q
x x f n

q q


 
  

 
 

Since 0 1A  is a contractive operator  with 

contraction coefficient equal to 1 1q  , the error 

( )n  in specifying  the argument of the operator 

0 1A  is equivalent to the error 1 ( )q n  in 

specifying  the right - hand side (2)x  of the 

equation (12b): 
(1) 1 (1) (2)

0 11 )(x A G x x   . Since 

the operator 
1

2G
 is Lipschitz – continuous with 

Lipschitz coefficient equal to 1 , the substitution of 

the error 1 ( )q n  into the right –hand side of  the 

integral equation (12b) causes an error of not more 

than 1 ( )q n  in the corresponding solution (1)x . 

The error of an iteration process in the calculation 

of (1)x equals 
1

(2)1

11

n

l

q
x

q




.  For any  1,2,..., ,l n

we have 

 

(2) (2) (2) (2) (2) (2)
1 0 01

(2) (2) (2)1 2
2 2 2 1 0 01

l l l

l l

x x x x x x

q q q x x x



 

     

      

 

(2) (2) (2)2
1 0 0

2

2
2

2

2
2

2

1
2

2

1

1

1

1

1

1

1
.

1

l

l

n

n

q
x x x

q

q
q f

q

q
q f

q

q
f

q

f

f




  




 




 








 

Then  the error of an iteration process in the 

calculation of (1)x  equals ( )n . Hence 

(1) (1)
2 1 1 1( ) ( ) ( ) ( ) ( ).nn x x q n n q n n         
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The inverse substitution, i.e., the transition from the 

variable (1)x  to the variable x  again introduces the 

error ( )n . Consequently, 
(2)1 1

1 2 ( )lG G x    is 

calculated with the error  

*
2 1 2 1( ) ( ) 2 ( ) ( ) ( ).nn x x q n n n n         

 

Since  2A  is a contractive operator with contraction 

coefficient equal to 2 1q  , the error 2 ( )n  in 

specifying the argument of the operator 2A  is 

equivalent to the error 2 2( )q n  in specifying  the 

right - hand side f  of the  equation (13). On the 

other hand the operator 
1

2P
 is Lipschitz - 

continuous with Lipschitz coefficient equal to 

2

1

1 q
. Indeed, for any ,f f X , we have 

1 1 (2) (2)
2 2

(2) (2) 1 1 (2)
2 1 2

1 1 (2) 1 1 (2) 1 1 (2)
2 1 2 2 1 2 2 1 2

(2) (2) 1 1 (2) 1 1 (2)
2 1 2 2 1 2

1 1 (2) 1 1 (2)
2 1 2 2 1 2

(2) (
2 2

( ) ( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) (

P f P f x x

x x A G G x

A G G x A G G x A G G x

x x A G G x A G G x

A G G x A G G x

P x P x

 

 

     

   

   

  

  

   
 

   

 

  2) (2) (2)
2

(2) (2)
2

)

,

q x x

f f q x x

 

   

 

 

so that 1 1
2 2

2

1
( ) ( ) .

1
P f P f f f

q

   


 

Hence the substitution of the error  2 2( )q n  into 

the right – hand side of the integral equation (13) 

causes an error of not more than 2
2

2

( )
1

q
n

q



 in the 

corresponding solution (2) .x  The error of an 

iteration process in the calculation of (2)x  equals 

1
2

2

.
1

nq
f

q




 Therefore we have 

1
(2) (2) 2 2

2
2 2

( ) .
1 1

n

n

q q
x x n f

q q



   
 

 

The inverse substitution, i.e., the transition from the 

variable (2)x  to the variable x  again introduces the 

error 2 ( )n . Then the error of  approximate 

solutions nx  of Problem 2  gives the estimate 

1
2 2

0 2 2
2 2

1
2

2
2 2

(2 ) ( ) ( )
1 1

1
( ) .

1 1

n

n

n

q q
x x n n f

q q

q
n f

q q






     
 

  
 

 

By using similar arguments for the problem k : 

0 1 2( ) ( ) , [1, ]x k A x A x f k N    , we obtain the 

estimation                                          

1
2

0
2 2

1
( ) ( ) ,

1 1

n

n k

q
x x k n f

q q




   
 

       (23) 

where                                           

1 1( ) ( ) ( ) ( ),k k kn n n n                   (24) 

and                                

 1 1 1( ) ( ) ( ) ( ),1 .h hn q n n n h k          (25) 

We shall rewrite inequality (25) in the following 

form                                   

1

1 1

1

( ) ( ) ( ), ( ) ( ), 2,3,..., .

k

k h

h

n n q n n n k N    




   

                                         (26)                       

 By virtue of the discrete analogue of the well - 

known Bellman-Gronwall lemma (see [4, Theorem 

1.28]), from inequality (26) we get 

  1 1

1 1
( 1)

1

1 1

( ) ( ) 1 ( ) ( ) ,

1,2,..., .

k k
q q k

k

h h

n n q n e n e

k N

   
 



 

   



 

  

Hence the inequality (24) can be written as 

1

1

1

( 1)

1 1

1
( ) ( ) ( ) ( ) .

1

k k kq
q h

k h q
h h

e
n n n e n

e
  

 


   


   

Consequently, we can rewrite the estimation of the 

error (23) for problem k  as the form  

    
1

1

1
2

0
2 2

1 1
( ) ( ) .

1 11

nkq

n q

qe
x x k n f

q qe
 




  
 

 

Substituting N  for k  and by (22), we  obtain (21). 

This completes the proof of the theorem.               

Remark 2.1. These results are extension of the 

known result on the application of the method of 

contractive mapping and PCM for solving 

operator equation of the second kind. Indeed, we 

consider the two following special cases. When 
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1 0,A  the equation (6) has form 2( ) ,x A x f 

where 2A is a contractive operator. When 2 0,A   

the equation (6) has form 1( ) ,x A x f  where 1A is 

monotone and Lipschitz – continuous. 

Example. Consider the following nonlinear 

Fredholm integral equation              

1

0

9 2
( ) ( ) ( ( ))

2 3

7 20 (1) 20 (1)
, 0 1.

15

x t ts x s t cos x s ds

sin cos
t t t

 
  

 

 
   


       

(27) 

We define two operators 

   2 2
1 2, : ; ;A A L a b L a b  by  

  

    

1

1

0

1

2
2

0

9
( ) ;

2

2
( ( )) , ; .

3

A x t ts x s ds

A x t t cos x s ds x L a b



  





 

It is easy to verify that 1A  is monotone and 

Lipschitz – continuous with Lipschitz coefficient 

3

2
L  , 2A is a contractive operator with contraction 

coefficient 2

2 3
1.

9
q    Consequently, all 

conditions of 

Theorem 2.1 are satisfied. Then the equation (27) 

has a unique solution. By applying the iteration  

processes (19a)-(19d) with 2, 30, 50N n  we 

obtain approximate solutions of this equations as 

follows 

n  Approximate solution Error 

30 3
0.124238398349 10 t t


   

2
0.8963691179 10


  

50 6
0.635113898 10 t t


   

4
0.2842576447 10


  

Table. Approximate solutions and corresponding 

errors of the equation (27). 

3. CONCLUSION  

In this paper, we have presented a new 

extension of the PCM for solving operator equation 

of the second kind. The reason for the powerful 

extension is that the new decomposition strategy for 

nonlinear operator, which increase the applicability 

of the method.  The obtained results have been 

illustrated by an example. 
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