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Abstract:

In this paper, we introduce two different interative methods
for finding a solution of a split pseudomonotone variational
inequality and a split feasibility problem in Hilbert spaces.
The proposed algorithm is generated based on the subgradi-
ent extragradient method which requires only two projections
at each iteration step and the second projection is conducted
onto the half-space containing the constrained set. The strong
convergence is proven with some mild conditions imposed on
the operators as well as the parameters. A numerical result is
provided at the end of the paper with the use of Python for
the convergence illustration purpose of the studied method.
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Từ khóa:
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Tóm tắt:

Trong bài báo này, chúng tôi giới thiệu hai thuật toán lặp
để tìm nghiệm của bài toán bất đẳng thức biến phân tách
giả đơn điệu và bài toán chấp nhận tách trong không gian
Hilbert. Phương pháp mà chúng tôi đề xuất được thiết lập
dựa trên phương pháp dưới đạo hàm tăng cường trong đó
người ta sử dụng hai phép chiếu cho mỗi bước lặp và ở phép
chiếu thứ hai, sử dụng phép chiếu lên nửa không gian chứa
miền ràng buộc. Sự hội tụ mạnh của thuật toán được chứng
minh với một số giả thiết giảm nhẹ về tính đơnđiệu lên các
toán tử cùng với một số điệu kiện đặt lên các dãy tham số.
Một ví dụ số với kết quả thu được bằng ngôn ngữ lập trình
Python nhằm minh họa cho sự hội tụ của thuật toán cũng
được chúng tôi đưa ra ở cuối bài báo.

1 INTRODUCTION

Let C and Q be nonempty closed and convex
subsets of two real Hilbert spaces H1 and H2, re-
spectively. Let F1 : H1 → H1 and F2 : H2 → H2

are mappings on H1 and H2, respectively. Let
B : H1 → H2 be a bounded linear operator and
B∗ : H2 → H1 be the adjoint of B. The split varia-
tional inequality problem (SVIP) introduced firstly
by Censor et al. [1] is formulated as

Find an element x∗ ∈ C :

⟨F1(x
∗), x− x∗⟩ ≥ 0 ∀x ∈ C,

(1)

such that

y∗ = Bx∗ ∈ Q : ⟨F2(y
∗), y − y∗⟩ ≥ 0 ∀y ∈ Q.

(2)

Denote Sol(C,F1) and Sol(Q,F2) the solution
sets of VIPs (1) and (2), respectively. Then the
(SVIP) becomes a split feasibility problem (SFP)
that is

Find x∗ ∈ Sol(C,F1) such that

y∗ = Bx∗ ∈ Sol(Q,F2).
(3)

So (SFP) can be deduced from (SVIP) as a spe-
cial case which has been investigated thoroughly
to model the intensity-modulated radiation ther-
apy (IMRT) and some other disciplines (see [2] -
[4] for example).

To solve (SVIP) involving inverse strongly mono-
tone mappings F1, F2, in [1], Censor and the coau-
thors used the projection method which was proven
to be weakly convergent.

It is worth pointing that the projection method
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for monotone VIPs may fail to converge ([5], p.
1110). To deal with this obstacle, the extragradi-
ent method introduced by Korpelevich [6] for sad-
dle problems can be applied to monotone VIPs to
ensure the convergence. The extragradient method
may be costly since finding the projection at each
step of iteration is not easy. To overcome this diffi-
culty Censor et al. [7] have modified the extragradi-
ent method for solving monotone VIPs by conduct-
ing the second projection onto a half-space contain-
ing the constrained set in stead of onto the last
mentioned set. The method is called subgradident
extragradient method. Censor and his colleagues
also obtained the weak convergence of the modi-
fied method to the unique solution of the monotone
VIP.

In 2017, Anh et al. [8] applied the subgradi-
ent extragradient method for solving a bilevel
split pseudomonotone variational inequality prob-
lem (BSVIP) involving a strongly monotone map-
ping in the upper-level problem and pseudomono-
tone mappings in the lower-level one. The authors
gained the strong convergence for the proposed
schemes. Inspired by these results in [8], in this
paper, we present the subgradient extragradient
method for solving the split variational inequality
problem (SVIP) involving pseudomonotone map-
pings and the split feasibility problem (SFP) as
special cases of the methods proposed in [8].

The next parts of the paper is divided in what fol-
lowing sections. Section 2 is for the definitions, lem-
mas and other preliminaries that is needed in our
convergence analysis. Section 3 is for the validity of
the strong convergence of the proposed algorithms
and the last section is devoted for a numerical ex-
ample with the purpose of convergence illustration
for the method considered in the previous section.

2 PRELIMINARIES

Let H be a real space with an inner product ⟨., .⟩
and norm ∥.∥. Let C be a nonempty, closed and
convex subset of H. Throughout this paper, with a
sequence {xk} in H, we write xk → x (xk ⇀ x) for
the strong (weak) convergence of xk to x. Recall
that the metric projection from H onto C denoted
by PC is defined as

PC(x) = argmin{∥x− y∥ : y ∈ C}.

Lemma 2.1. For given x ∈ H and y ∈ C:

(i) y = PC(x) if and only if

⟨x− y, z − y⟩ ≤ 0, ∀z ∈ C.

(ii) ∥PC(x)−z∥2 ≤ ∥x−z∥2−∥x−PC(x)∥2, ∀z ∈ C.

Definition 2.1. A mapping F : H → H is said to
be

(i) L-Lipschitz continuous on H if

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ H;

(ii) monotone on H if

⟨F (x)− F (y), x− y⟩ ≥ 0, ∀x, y ∈ H;

(iii) pseudomonotone on H if

⟨F (x), y − x⟩ ≥ 0 ⇒ ⟨F (y), y − x⟩ ≥ 0, ∀x, y ∈ H.

The following crucial fact remains valid for pseu-
domonotone mappings.

Lemma 2.2. [8] Let G : H → H be pseudomono-
tone and L-Lipschitz continuous on H such that
Sol(C,G) ̸= ∅. Lt x ∈ H,λ > 0 and define
y = PC(x− λG(x)), z = PT (x− λG(y)), where

T := {w ∈ H : ⟨x− λG(x)− y, w − y⟩ ≤ 0}.

Then for all x∗ ∈ Sol(C,G), we have

∥z−x∗|2 ≤ ∥x−x∗∥2−(1−λL)∥x−y∥2−(1−λL)∥y−z∥2.

Lemma 2.3. [9] Let {sn} be a sequence of non-
negative numbers, {αn} be a sequence in (0, 1) and
{cn} be a sequence of real numbers satisfying the
conditions:

(i) sn+1 ≤ (1− αn) sn + αncn,

(ii)
∑∞

n=0 αn = ∞, lim supn→∞ cn ≤ 0.

Then limn→∞ sn = 0.

Lemma 2.4. [10] Let {an} be a sequence of non-
negative real numbers. Suppose that for any inte-
ger m, there exists an integer p such that p ≥ m

and ap ≤ ap+1. Let n0 be an integer such that
an0

≤ an0+1. For all integer n ≥ n0, define

τ(n) = max{k ∈ N : n0 ≤ k ≤ n, ak ≤ ak+1}.

Then {τ(n)}n≥n0
is a non-decreasing sequence sat-

isfying limn→∞τ(n) = ∞ and the following in-
equalities hold true:

aτ(n) ≤ aτ(n)+1, an ≤ aτ(n)+1 ∀n ≥ n0.

Lemma 2.5. [8] Suppose that G : C → H is
pseudomonotone on C and limsupk→∞⟨G(xk), y⟩ ≤
⟨G(x̄), y⟩ for every sequence {xk} ⊂ C converging
weakly to x̄ and y ∈ H. Then, the solution set of
VIP(C,G) is closed and convex.
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3 THE ALGORITHM AND CONVERGENCE
ANALYSIS

In what follows, we impose the following assump-
tions on the mappings F1, F2 associated with the
split pseudomonotone variational inequality.

(A1): F1 : H1 → H1 is pseudomonotone and L1-
Lipschitz continuous.

(A2): limsupk→∞⟨F1(x
k), y − yk⟩ ≤ ⟨F1(x̄, y − ȳ)⟩

for every sequences {xk}, {yk} converging weakly
to x̄ and ȳ, respectively.

(A3): F2 : H2 → H2 is pseudomonotone and L2-
Lipschitz continuous.

(A4): limsupk→∞⟨F2(u
k), v − vk⟩ ≤ ⟨F2(ū, v − v̄)⟩

for every sequences {uk}, {vk} converging weakly
to ū and v̄, respectively.

Let have some remarks on the above assumptions.

(i) Assumptions (A1)-(A4) are widely used in the
theory of VIPs.

(ii) In finite dimension spaces, condtions (A2) and
(A4) automatically follow from the Lipschitz con-
tinuity of F1, F2.

(iii) If F1 and F2 satisfy the properties (A1) and
(A3), respectively, then by Lemma 2.5, the solu-
tion sets Sol(C,F1) and Sol(Q,F2) of the varia-
tional inequalities VIP(C,F1) and VIP(Q,F2) are
closed and convex. For the sake of convenience, an
empty set is considered to be closed and convex.
Therefore, the solution set Ω = {x∗ ∈ Sol(C,F1) :

Bx∗ ∈ Sol(Q,F2) of the (SVIP) is also closed and
convex.

The algorithm presented as follows is for find-
ing the x0-minimum-norm solution of a split
pseudomonotone variational inequality (SVIP) in
Hilbert spaces.

Algorithm 1. Choose x0 ∈ H1, the sequences
{αk} ⊂ (0, 1), {δk}, {λk} and {µk} such that



limk→∞ αk = 0,
∞

k=0 αk = ∞,

{δk} ⊂ [a, b] for some a, b ∈ (0, 1
∥A∥2+1 ),

{λk} ⊂ [c, d] for some c, d ∈ (0, 1
L1

),

{µk} ⊂ [e, f ] for some e, f ∈ (0, 1
L2

).

.

For each iteration k ≥ 0, compute

uk = Axk,

vk = PQ(u
k − µkF2(u

k)),

wk = PQk
(uk − µkF2(v

k)),

where Qk := {w2 ∈ H2 : ⟨uk −µkF2(u
k)− vk, w2 −

vk⟩ ≤ 0}. Further, we compute

yk = xk + δkB
∗(wk − uk),

tk = PC(y
k − λkF1(y

k)),

zk = PCk
(yk − λkF1(t

k)),

where Ck := {w1 ∈ H1 : ⟨yk − λkF1(y
k)− tk, w1 −

tk⟩ ≤ 0}, and define the next iteration as

xk+1 = αkx
0 + (1− αk)z

k k ≥ 0.

Lemma 3.1. Suppose that the assumptions (A1)-
(A4) and Ω ̸= ∅ hold. Then, the sequences
{xk}, {yk} and {zk} generated by Algorithm 1 sat-
isfy the following inequality

∥zk − x∗∥ ≤ ∥yk − x∗∥ ≤ ∥xk − x∗∥ ∀k,

where x∗ is a unique solution of the split variational
inequality (SVIP) (1) - (2) such that x∗ = PΩ(x

0).

Chứng minh. Since Ω ̸= ∅, problem (SVIP) (1) -
(2) has a unique solution, denoted by x∗. From
Lemma 2.2, we have for all k,

∥zk − x∗∥2 ≤∥yk − x∗∥2 − (1− λkL1)∥yk − tk∥2

− (1− λkL1)∥tk − zk∥2,
(4)

∥wk −B∗∥2 ≤∥uk −Bx∗∥2 − (1− µkL2)∥uk − vk∥2

− (1− µkL2)∥vk − wk∥2.
(5)

From (4), (5) and the conditions {λk} ⊂ [c, d] ⊂
(0, 1

L1
) and {µk} ⊂ [e, f ] ⊂ (0, 1

L2
), we get

∥zk − x∗∥ ≤ ∥yk − x∗∥ ∀k, (6)

∥wk −Bx∗∥ ≤ ∥uk −Bx∗∥ ∀k. (7)

From the last inequality (7) and uk = Bx∗, we have
that for all k

∥yk − x∗∥2

= ∥xk − δkB
∗(wk − uk)− x∗∥2

= ∥xk − x∗∥2 + ∥δkB∗(wk − uk)∥2

+ 2δk⟨xk − x∗, B∗(wk − uk)⟩

≤ ∥xk − x∗∥2 + δ2k∥B∗∥2∥wk − uk∥2

+ 2δk⟨B(xk − x∗), wk − uk⟩

= ∥xk − x∗∥2 + δ2k∥B∥2∥wk − uk∥2

+ 2δk[⟨wk −Bx∗, wk − uk⟩ − ∥wk − uk∥2]

≤ ∥xk − x∗∥2 + δ2k∥B∥2∥wk − uk∥2

− δk∥wk − uk∥2

= ∥xk − x∗∥2 − δk(1− δk∥B∥2)∥wk − uk∥2.

(8)

4
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Due to δk ∈ [a, b] ⊂
(
0, 1

∥B∥2+1

)
, (5) and (8) we

obtain

∥zk − x∗∥ ≤ ∥yk − x∗∥ ≤ ∥xk − x∗∥ ∀k.

This completes the proof.

Theorem 3.1. Suppose that the assumptions
(A1)-(A4) and Ω ̸= ∅ hold. Then, the sequence
{xk} generated by Algorithm 1 converges strongly
to x∗ ∈ Ω, the solution set of (SVIP) (1)-(2) satis-
fying x∗ = PΩ(x

0).

Chứng minh. We will divide the proof into several
steps as follow.

Step 1. The sequences {xk}, {yk}, and {zk} gener-
ated by Algorithm 1 are bounded. Based on Lemma
2.1 and Lemma 3.1, we have

∥xk+1 − x∗∥2 = ∥(1− αk)(z
k − x∗)− αk(x

∗ − x0)∥

≤ (1− αk)∥xk − x∗∥+ αk∥x∗ − x0∥

≤ . . .

≤ ∥x0 − x∗∥. (9)

Then the sequence {xk} is bounded and so are the
sequences {yk} and {zk}.
Step 2. For all k we have

∥xk+1 − x∗∥2 ≤(1− αk)∥xk − x∗∥2

− 2αk⟨x∗ − x0, xk+1 − x∗⟩,

where x∗ is the unique solution of the (SVIP) (1) -
(2).
Indeed, using the inequality

∥x− y∥2 ≤ ∥x∥2 − 2⟨y, x− y⟩ ∀x, y ∈ H,

and from Lemma 2.1 and Lemma 3.1, we obtain
that

∥xk+1 − x∗∥2

= ∥(1− αk)(z
k − x∗)− αk(x

∗ − x0)∥2

≤ (1− αk)
2∥zk − x∗∥2 − 2αk⟨x∗ − x0, xk+1 − x∗⟩

≤ (1− αk)∥zk − x∗∥2 − 2αk⟨x∗ − x0, xk+1 − x∗⟩

≤ (1− αk)∥xk − x∗∥2 − 2αk⟨x∗ − x0, xk+1 − x∗⟩

Step 3. We show that {xk} converges strongly to
the unique solutions x∗ of the (SVIP) (1) - (2).
Now, we consider two posible cases:
Case 1. There exist k0 such that sequence {∥xk −
x∗∥} is decreasing for k ≥ k0. In this case, there

exists the limit of {∥xk − x∗∥}.
From Lemma 3.1 and the proof in Step 2, we have

0 ≤ ∥yk − x∗∥2 − ∥zk − x∗∥2

≤ ∥xk − x∗∥2 − ∥zk − x∗∥2

≤ ∥xk − x∗∥2 − ∥xk+1 − x∗∥2 (10)

− 2αk⟨x∗ − x0, xk+1 − x∗⟩

Since the limit of {∥xk − x∗∥} exists, limk→∞αk =

0, {xk} and {zk} are two bounded sequences, it
follows from (10) that

limk→∞∥yk − x∗∥2 − ∥zk − x∗∥2 = 0 and

limk→∞∥xk − x∗∥2 − ∥zk − x∗∥2 = 0.
(11)

One can deduce from the last equalities that

limk→∞∥xk − x∗∥2 − ∥yk − x∗∥2 = 0. (12)

From (4) and {λk} ⊂ [c, d] ⊂
(
0, 1

L1

)
, we obtain

(1−dL1)∥yk−tk∥2 ≤ ∥yk−x∗∥2−∥zk−x∗∥2. (13)

Hence, it follows directly from (11) and (13) that

limk→∞∥yk − tk∥ = 0. (14)

Now, from (8) and {δk} ⊂ [a, b] ⊂
(
0, 1

∥B∥2+1

)
, we

have

a(1−b∥B∥2)∥wk−uk∥2 ≤ ∥xk−x∗∥2−∥yk−x∗∥2.

Combine the last inequality and (13) we get

limk→∞∥wk − uk∥ = 0.

Note that, for all k, we have

∥yk − xk∥ = ∥δkB∗(wk − uk)∥ ≤ δk∥B∗∥∥wk − uk∥

≤ b∥B∥∥wk − uk∥

Using the last inequality together with
limk→∞∥wk − uk∥ = 0, we can deduce that

limk→∞∥yk − xk∥ = 0. (15)

From (14) and (15) we have

limk→∞∥xk − tk∥ = 0. (16)

We prove that liminfk→∞⟨x∗ − x0, xk+1 − x∗⟩ ≥ 0.
Choose a subsequence {xkn} of {xk} such that

liminfk→∞⟨x∗ − x0, xk+1 − x∗⟩

= liminfk→∞⟨x∗ − x0, xkn − x∗⟩.

Due to the boundedness of {xkn}, we may assume
that xkn ⇀ x̄ ∈ H1. Therefore, we can write

liminfk→∞⟨x∗ − x0, xk+1 − x∗⟩ = ⟨x∗ − x0, x̄− x∗⟩.
(17)

5
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From (15) and (16) and xkn ⇀ x̄ we also deduce
that ykn ⇀ x̄ and tkn ⇀ x̄ as n → ∞. Since
{tkn} ⊂ C and C is weakly closed then x̄ ∈ C.
From (16), it follows that {xk − tk} is a bounded
sequence. Since {xk} is bounded so is {tk}.
Now, we show that x̄ ∈ Sol(C,F1). Indeed, from
the definition of {tkn} we have

⟨ykn − λkn
F1(y

kn)− tkn , x− tkn⟩ ≤ 0 ∀n.

Since λkn ≥ 0 for every n, it follows from the above
inequality that

⟨F1(y
kn), x− tkn⟩ ≥ ⟨ykn − tkn , x− tkn⟩

λkn

. (18)

Using Cauchy – Schwarz inequality and the fact
that λkn

≥ c > 0 for all n we get
∣∣∣∣
⟨ykn − tkn , x− tkn⟩

λkn

∣∣∣∣≤
∥ykn − tkn∥∥x− tkn∥

c
·

(19)
Since ∥ykn − tkn∥ → 0 as n → ∞ and sequence
{tkn} is bounded, we have

limn→∞
∥ykn − tkn∥∥x− tkn∥

c
= 0.

The last limit together with (19) ensure that
limn→∞

⟨ykn−tkn ,x−tkn ⟩
λkn

= 0. So, using (18), con-
dition (A2) and the weak convergence of two se-
quences {ykn} and {tkn} to x̄, we obtain

0 ≤ limsupn→∞⟨F1(y
kn), x− tkn⟩ ≤ ⟨F1(x̄), x− x̄⟩,

which means x̄ ∈ Sol(C,F1). Since {xk} is
bounded, then {uk = Bxk} is bounded. This to-
gether with limk→∞∥wk − uk∥ = 0 implies that
{wk} is bounded.
Now, from (7) and the triangle inequality, we get,
for all k,

0 ≤ ∥uk −Bx∗∥2 − ∥wk −Bx∗∥2

≤ (∥uk −Bx∗∥+ ∥wk −Bx∗∥)∥uk − wk∥.

The last evaluation, lim∥wk − uk∥ = 0 and the
boundedness of two sequences {uk} and {wk}, we
gain

limk→∞(∥uk −Bx∗∥2 − ∥wk −Bx∗∥2) = 0. (20)

From (5) and {µk} ⊂ [e, f ] ⊂
(
0, 1

L2

)
, we have

(1−fL2)∥uk−vk∥2 ≤ ∥uk−Bx∗∥2−∥wk−Bx∗∥2.

Hence, together with (20) one can deduce that

limk→∞(∥uk − vk∥2 = 0. (21)

The boundedness of {uk} and (21) ensure that {vk}
is bounded.
From xkn ⇀ x̄, we get ukn = Bxkn ⇀ Bx̄. From
(21), we have vkn ⇀ Bx̄. Since {vkn} ⊂ Q and Q

is closed and convex, is it also weakly closed, and
thus, Bx̄ ∈ Q.

Next, we prove that Bx̄ ∈ Sol(Q,F2).

Indeed, let y ∈ Q. Since vkn = PQ(u
kn −

µknF2(u
kn)) then

⟨ukn − µknF2(u
kn)− vkn , y − vkn⟩ ≤ 0 ∀n.

Since µkn > 0 for every n, it follows from the last
inequality that

⟨F2(u
kn), y − vkn⟩ ≥ ⟨ukn − vkn , y − vkn⟩

µkn

· (22)

Using Cauchy – Schwarz inequality and the fact
that µkn

≥ e > 0 for all n, we find this inequality
∣∣∣∣
⟨ukn − vkn , y − vkn⟩

µkn

∣∣∣∣≤
∥ukn − vkn∥∥y − vkn∥

e
·

(23)
Since ∥ukn − vkn∥ → 0 as n → ∞ and sequence
{vkn} is bounded, it follows that

limn→∞
∥ukn − vkn∥∥y − vkn∥

e
= 0.

Using (19) and the last fact, we get
limn→∞

⟨ukn−vkn ,y−vkn ⟩
µkn

= 0. So, using (22), con-
dition (A4) and the weak convergence of two se-
quences {ukn} and {vkn} to Bx̄, we attain

0 ≤ limsupn→∞⟨F2(u
kn), y − vkn⟩

≤ ⟨F2(Bx̄), y −Bx̄⟩,

which means Bx̄ ∈ Sol(Q,F2).

Thus, x̄ ∈ Ω. As x∗ ∈ Ω, x̄ ∈ Ω, and x∗ = PΩ(x
0),

it follows that ⟨x0 − x∗, x̄− x∗⟩ ≥ 0. So, from (17),
we gain liminfk→∞⟨x∗ − x0, xk+1 − x∗⟩ ≥ 0.
From the results obtained in Step 2, we get

∥xk+1 − x∗∥2 ≤ (1− αk)∥xk − x∗∥2 + αkck,

where
ck = ⟨x∗ − x0, xk+1 − x∗⟩.

Using the fact limsupk→∞ck ≤ 0.
By Lemma 2.2, we have limk→∞∥xk − x∗∥2 = 0,
that is xk → x∗ as k → ∞.
Case 2. Suppose that there exists a subsequence
{xkn} of {xk} such that

∥xkn − x∗∥ ≤ ∥xkn+1 − x∗∥ ∀n ∈ N.

According to Lemma 2.4, there exists a nondecreas-
ing sequence {τ(k)} of N such that limk→∞ ad the
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following inequalities hold true for all sufficiently
large n ∈ N.

∥xτ(k) − x∗∥ ≤ ∥xτ(k)+1 − x∗∥,

∥xk − x∗∥ ≤ ∥xτ(k)+1 − x∗∥.
(24)

Combine (24) and (9), we get

∥xτ(k) − x∗∥ ≤ ∥xτ(k)+1 − x∗∥ (25)

≤ (1− ατ(k))∥zτ(k) − x∗∥2 + ατ(k)∥x∗ − x0∥

Also, from Lemma 3.1 and (25), we get that

0 ≤ ∥yτ(k) − x∗∥ − ∥zτ(k) − x∗∥

≤ ∥xτ(k) − x∗∥ − ∥zτ(k) − x∗∥

≤ −ατ(k)∥zτ(k) − x∗∥+ ατ(k)∥x∗ − x0∥ (26)

Since, limk→∞αk = 0 abd {zk} is bounded, to-
gether with (26), one can deduce that

limk→∞∥yτ(k) − x∗∥ − ∥zτ(k) − x∗∥ = 0

limk→∞∥xτ(k) − x∗∥ − ∥zτ(k) − x∗∥ = 0 (27)

Now, from (26), we attain

limk→∞∥xτ(k) − x∗∥ − ∥yτ(k) − x∗∥ = 0 (28)

Hence, from (27) and (28) and the boundedness of
sequences {xk}, {yk}, {zk}, we can write that

limk→∞
(
∥yτ(k) − x∗∥2 − ∥zτ(k) − x∗∥2

)
= 0, (29)

limk→∞
(
∥xτ(k) − x∗∥2 − ∥yτ(k) − x∗∥2

)
= 0. (30)

From (4) and {λk} ⊂ [c, d] ⊂
(
0, 1

L1

)
, we have

(1− dL1)∥yτ(k) − tτ(k)∥2 + (1− dL1)∥tτ(k) − zτ(k)∥2

≤ ∥yτ(k) − x∗∥2 − ∥zτ(k) − x∗∥2.

Thus, it follows from (29) that

limk→∞∥yτ(k) − tτ(k)∥ = 0,

limk→∞∥tτ(k) − zτ(k)∥ = 0.
(31)

Now, from (8) and {δk} ⊂ [a, b] ⊂
(
0, 1

∥B∥2+1

)
, we

have

a(1− b∥B∥2)∥wτ(k) − uτ(k)∥2

≤ ∥xτ(k) − x∗∥2 − ∥yτ(k) − x∗∥2.

From the last inequality and (30) we get

limk→∞∥wτ(k) − uτ(k)∥ = 0. (32)

We also have

limk→∞∥yτ(k) − xτ(k)∥ = ∥δτ(k)B∗(wτ(k) − uτ(k))∥

≤ δτ(k)∥B∗∥∥wτ(k) − uτ(k)∥

≤ b∥B∥∥wτ(k) − uτ(k)∥

Combining the above inequality with (32), we get

limk→∞∥yτ(k) − xτ(k)∥ = 0. (33)

From (31), (32) and the triangle inequality, we have
arguing similarly as in the first case, we can con-
clude that

liminfk→∞⟨x∗ − x0, xτ(k) − x∗⟩ = 0. (34)

Now, consider

∥xτ(k)+1 − xτ(k)∥ = ∥(1− ατ(k))(z
τ(k) − xτ(k))

+ ατ(k)(x
0 − xτ(k))∥

≤ ∥zτ(k) − xτ(k)∥+ ατ(k)∥x0 − xτ(k))∥. (35)

From limk→∞αk = 0, the boundedness of {xk −
x0∥}, (32) and (35), we gain

limk→∞∥xτ(k)+1 − xτ(k)∥ = 0. (36)

From (36) and Cauchy – Schwarz inequality, we ob-
tain that

|⟨x∗ − x0, xτ(k)+1 − xτ(k)⟩|

≤ ∥x∗ − x0∥∥xτ(k)+1 − xτ(k)∥

which means that

limk→∞⟨x∗ − x0, xτ(k)+1 − xτ(k)⟩ = 0. (37)

One can deduce from (34) and (37) that

liminfk→∞⟨x∗ − x0, xτ(k)+1 − xτ(k)⟩

= liminfk→∞[⟨x∗ − x0, xτ(k) − x∗⟩

− ⟨x∗ − x0, xτ(k)+1 − xτ(k)⟩]

= liminfk→∞⟨x∗ − x0, xτ(k) − xτ(k)⟩

≥ 0. (38)

From the proof in Step 2 and (25), it leads to

|∥xτ(k)+1 − x∗∥ ≤ ∥(1− ατ(k))∥xτ(k) − x∗∥2

− 2ατ(k)⟨x∗ − x0, xτ(k)+1 − x∗⟩,

≤ ∥(1− ατ(k))∥xτ(k) − x∗∥

− 2ατ(k)⟨x∗ − x0, xτ(k)+1 − x∗⟩,

and again, from (26) and ατ(k) > 0, we obtain

∥xk − x∗∥2 ≤ ∥xτ(k)+1 − x∗∥2

≤ −2⟨x∗ − x0, xτ(k)+1 − x∗⟩. (39)

Taking the limit in (39) as k → ∞ and using (38),
we deduce that

limsupk→∞∥xk − x∗∥2 ≤ 0

which means xk → x∗ as k → ∞. This completes
the proof of Theorem 1.

7
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When F1 = 0 and F2 = 0 we have the following
algorithm as a special case of Algorithm 1 for solv-
ing a split feasibility problem in Hilbert space.

Algorithm 2. Choose x0 ∈ H1 and the sequences
{αk} and {δk} satisfying the following conditions



{αk} ⊂ (0, 1), limk→∞αk = 0,
∞

k=0 αk = ∞,

{δk} ⊂ [a, b] ⊂
�
0, 1

∥B∥2+1


·

For each iteration k ≥ 0, compute



yk = (I − PQ)Bxk

xk+1 = αkx
0 + (1− αk)PC(x

k − δkB
∗yk).

(40)

Corollary 3.1. Let C and Q be the two closed and
convex subsets of two Hilbert spaces H1 and H2,
respectively and let B : H1 → H2 be a bounded lin-
ear operator. Let {xk} be the sequence generated by
Algorithm 2. Then {xk} converges strongly to the
unique solution x∗ of the split feasibility problem
(SFP) such that x∗ = PΨ(x

0), provided that the
solution set Ψ = {x∗ ∈ C : Bx∗ ∈ Q} of the (SFP)
is nonempty.

4 NUMERICAL RESULTS

Let H1 = H2 = R4 and let B : R4 → R4 be a
bounded linear operator defined by

Bx = (x1 + 2x2, x2 + x4, x1 − 2x4,−x3 + x4)

for each x = (x1, x2, x3, x4) ∈ R4.

Choose C,Q be two subsets of R4 as follows

C := {x = (x1,x2, x3, x4) ∈ R4 :

x1 + 2x2 − x3 − x4 = 0}

Q := {y = (y1,y2, y3, y4) ∈ R4 :

− 2y1 + 2y2 − y3 − 3y4 = 0}

Let F1 and F2 be two mappings from R4 to itself
defined as follows

F1(x) = (x1, x2, x3, x4),

F2(x) = (x1, x2, x3, x4).

The the solution set Ω = {x∗ ∈ Sol(C,F1) : Bx∗ ∈
Sol(Q,F2)} is deduced to the problem of finding x∗

such that ∥x∗∥ = min{∥x∥ : x ∈ C} and y∗ = Bx∗

while ∥y∗∥ = min{∥y∥ : y ∈ Q}. It is easy to find
the solution x∗ which is x∗ = (0, 0, 0, 0)T .

Now, using the Algorithm 1 with αk = 1
k+3 , µk =

δk = λk = 0.01 satisfying the conditions of Algo-
rithm 1 and Theorem 3.1 and x0 = (1, 3, 1, 1)T ∈
R4, the stopping rule of the iteration is ∥xk −
xk−1∥ ≤ err. The following table shows the ap-
proximate solutions xn = (xk

1 , x
k
2 , x

k
3 , x

k
4) ∈ R4 of

the above problem with the corresponding param-
eters.

The experimental results shown in the above table
illustrate the convergence of the considered itera-
tive method for solving a split variational inequal-
ity.

5 CONCLUSION

We have presented in this paper an subgradient ex-
tragradient method for solving a split pseudomono-
tone variational inequality in Hilbert spaces and a
special case of the proposed one for solving a split
feasibility problem. The strong convergence of the
methods is proven under some certain assumptions
imposed on the mappings F1 and F2 of the split
variational inequality which is the pseudomonotoc-
ity and a numerical example for the convergence
illustration of the proposed method is given.
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