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Article info Abstract:

Recieved: In this paper, we introduce two different interative methods
30/6/2021 for finding a solution of a split pseudomonotone variational
Accepted: inequality and a split feasibility problem in Hilbert spaces.
01/9/2021 The proposed algorithm is generated based on the subgradi-

ent extragradient method which requires only two projections

Keywords: at each iteration step and the second projection is conducted
split feasibility problem, split variational onto the half-space containing the constrained set. The strong
inequality, pseudomonotone mapping convergence is proven with some mild conditions imposed on
metric projection, subgradient extragradi- the operators as well as the parameters. A numerical result is
ent provided at the end of the paper with the use of Python for
the convergence illustration purpose of the studied method.
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Thong tin bai viét Tém tat:

Ngay nhan bai: Trong bai bdo nay, ching toi gidi thiéu hai thuat toan lap

30 /6/2021 dé tim nghiém ctia bai toan bat ding thic bién phan tach
Ngay duyét dang: gid don diéu vA bai toan chdp nhan tich trong khong gian
01/9/2021 Hilbert. Phuong phap mé chiing t6i dé xuit duge thiét lap

dya trén phuong phap dudi dao ham tang cudng trong dé
Tu khéa:
bai todn chdép nhan tdch, bat ding thic

ngudi ta sit dung hai phép chiéu cho mdi buée 1lap va & phép
chiéu thit hai, st dung phép chiéu lén nita khong gian chita
bién phan tdach, dnh za gid don diéu, phép  mién rang buodc. Su hoi tu manh ciia thuat toan dude ching
chiéu metric, dudi dao ham ting cuong. minh véi mot sb gia thiét gidm nhe vé tinh dondiéu lén cac
toan tit cling v6i mot s6 dieu kién dit lén cac day tham sé.
Mot vi du sb vé6i két qua thu duge bang ngdn ngit 1ap trinh
Python nhim minh hoa cho sy hdi tu ctia thusit toan ciing

dudc ching toi dua ra & cudi bai bao.

1 INTRODUCTION Denote Sol(C, Fy) and Sol(Q, F») the solution
sets of VIPs (1) and (2), respectively. Then the
(SVIP) becomes a split feasibility problem (SFP)

that is

Let C and @ be nonempty closed and convex
subsets of two real Hilbert spaces H; and Hs, re-
spectively. Let Fy : Hi — Hy and Fy : Hy, — Ho

Find z* € Sol(C, F: h that
are mappings on H; and Hj, respectively. Let ind 2% € Sol(C, ) such tha 3)
B : Hy — H, be a bounded linear operator and y" = Ba" € Sol(Q, Fy).
B* : Hy, — H; be the adjoint of B. The split varia-

So (SFP) can be deduced from (SVIP) as a spe-
tional inequality problem (SVIP) introduced firstly

cial case which has been investigated thoroughly

by Censor et al. [1] is formulated as

Find an element z* € C :

. ) (1)
(Fi(z*),z—2) >0 VYoel,

such that

y*=Bx" € Q: (Fx(y"),y—y") >0 VyecQ.
(2)

to model the intensity-modulated radiation ther-
apy (IMRT) and some other disciplines (see [2] -
[4] for example).

To solve (SVIP) involving inverse strongly mono-
tone mappings F, Fb, in [1], Censor and the coau-
thors used the projection method which was proven

to be weakly convergent.

It is worth pointing that the projection method
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for monotone VIPs may fail to converge ([5], p.
1110). To deal with this obstacle, the extragradi-
ent method introduced by Korpelevich [6] for sad-
dle problems can be applied to monotone VIPs to
ensure the convergence. The extragradient method
may be costly since finding the projection at each
step of iteration is not easy. To overcome this diffi-
culty Censor et al. [7] have modified the extragradi-
ent method for solving monotone VIPs by conduct-
ing the second projection onto a half-space contain-
ing the constrained set in stead of onto the last
mentioned set. The method is called subgradident
extragradient method. Censor and his colleagues
also obtained the weak convergence of the modi-
fied method to the unique solution of the monotone
VIP.

In 2017, Anh et al. [8] applied the subgradi-
ent extragradient method for solving a bilevel
split pseudomonotone variational inequality prob-
lem (BSVIP) involving a strongly monotone map-
ping in the upper-level problem and pseudomono-
tone mappings in the lower-level one. The authors
gained the strong convergence for the proposed
schemes. Inspired by these results in [8], in this
paper, we present the subgradient extragradient
method for solving the split variational inequality
problem (SVIP) involving pseudomonotone map-
pings and the split feasibility problem (SFP) as

special cases of the methods proposed in [8].

The next parts of the paper is divided in what fol-
lowing sections. Section 2 is for the definitions, lem-
mas and other preliminaries that is needed in our
convergence analysis. Section 3 is for the validity of
the strong convergence of the proposed algorithms
and the last section is devoted for a numerical ex-
ample with the purpose of convergence illustration

for the method considered in the previous section.

2 PRELIMINARIES

Let H be a real space with an inner product (.,.)
and norm ||.||. Let C be a nonempty, closed and
convex subset of H. Throughout this paper, with a
sequence {z*} in H, we write ¥ — z (2% — ) for
the strong (weak) convergence of z* to x. Recall
that the metric projection from H onto C denoted

by Pc is defined as
Po(z) = argmin{|lz — y|| : y € C}.
Lemma 2.1. For given x € H andy € C':
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(i) y = Pc(x) if and only if
(x—y,z—y) <0,Vz e C.
(ii) [| Po (@) —2|? < llo—2|*~[la—Po(2)||*, V2 € C.

Definition 2.1. A mapping F': H — H is said to
be

(i) L-Lipschitz continuous on H if
[1F(x) = F(y)ll < Lllz = yll, Yo,y € H;
(ii) monotone on H if
(F(z) = F(y),z —y) 2 0,Vz,y € H;
(iii) pseudomonotone on H if
(F(z),y—2) > 0= (F(y),y —x) > 0,Va,y € H.
The following crucial fact remains valid for pseu-

domonotone mappings.

Lemma 2.2. [§] Let G: H — H be pseudomono-
tone and L-Lipschitz continuous on H such that
Sol(C,G) # 0. Lt x € H,A > 0 and define
y = Po(z — AG(x)),z = Pr(z — AG(y)), where

T:={weH:{(x—\G(z)—y,w—y) <0}

Then for all z* € Sol(C,G), we have
lz=a** < [la—a"||*~(1-AL)|lz—y[* = (1-AL)|ly—=[|*.
Lemma 2.3. [9] Let {s,} be a sequence of non-
negative numbers, {a,} be a sequence in (0,1) and
{cn} be a sequence of real numbers satisfying the
conditions:

(Z) Sn41 < (1 - an) Sp + QpcCn,

(i) >°07 o o = 00, limsup,,_, o ¢, < 0.
Then lim,, .. s, = 0.

Lemma 2.4. [10] Let {a,} be a sequence of non-
negative real numbers. Suppose that for any inte-
ger m, there exists an integer p such that p > m
and ap, < api1. Let ng be an integer such that

Oy < Gpy+1- For all integer n > ng, define
7(n) =mar{k e N:ng <k <mn,ar < ags1}

Then {T(n)}n>n, i @ non-decreasing sequence sat-
isfying limp_—oom(n) =
equalities hold true:

oo and the following in-

Ar(n) < Grn)+15 On < Grm)41 YN 2> Ng.

Lemma 2.5. [8] Suppose that G : C — H s
pseudomonotone on C and limsup,,_, . (G(z*),y) <
(G(Z),y) for every sequence {z*} C C converging
weakly to T and y € H. Then, the solution set of
VIP(C,G) is closed and convez.
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3 THE ALGORITHM AND CONVERGENCE
ANALYSIS

In what follows, we impose the following assump-
tions on the mappings F}, Fs associated with the
split pseudomonotone variational inequality.

(Al): F, : Hy — H; is pseudomonotone and L;-
Lipschitz continuous.

(A2): limsupy,_, o (F1(2%),y — y*) < (F1(Z,y — 7))
for every sequences {z*}, {y*} converging weakly
to T and g, respectively.

(A3): F» : Hy — Hj is pseudomonotone and Lo-
Lipschitz continuous.

(A4): limsupy_, o (Fa(uF), v — v*) < (Fy(a,v — 0))
for every sequences {u*}, {v*} converging weakly

to w and v, respectively.
Let have some remarks on the above assumptions.

(i) Assumptions (A1)-(A4) are widely used in the
theory of VIPs.

(ii) In finite dimension spaces, condtions (A2) and
(A4) automatically follow from the Lipschitz con-
tinuity of Fiy, Fy.

(iii) If F1 and Fy satisfy the properties (Al) and
(A3), respectively, then by Lemma 2.5, the solu-
tion sets Sol(C,Fy) and Sol(Q, F») of the varia-
tional inequalities VIP(C, Fy) and VIP(Q, F») are
closed and convex. For the sake of convenience, an
empty set is considered to be closed and convex.
Therefore, the solution set Q@ = {z* € Sol(C, F}) :
Bz* € Sol(Q, F») of the (SVIP) is also closed and
convex.

The algorithm presented as follows is for find-

O minimum-norm solution of a split

ing the =z
pseudomonotone variational inequality (SVIP) in
Hilbert spaces.

Algorithm 1. Choose z° € H;, the sequences
{ar} € (0,1), {0k}, {\x} and {us} such that

limyp—yo0 ak = 0, D pe g g = 00,

{6k} C [a,b] for some a,b € (0, m), .
{A\e} C [e.d] e,de(0,4),
{pr} C e, f] for some e, f € (0, L%)

for some

For each iteration k£ > 0, compute
uf = Az,
o* = Po(u* — i Fa(uh)),
wh = Pg, (u" — pp Fy (0%)),

where Qy, := {wy € Hy : (uF — pp Fo(u¥) — v* wo —

vk) < 0}. Further, we compute
yk _ J)k +(5kB*(wk _ uk)’
t*" = Po(y® — M F1(yY)),
2 = Po, (" = MFi(tY)),

where C}, := {w1 € Hy: <yk — )\kFl(yk) — tk,wl —
t*) < 0}, and define the next iteration as

2P = a2l + (1- ak)zk k> 0.

Lemma 3.1. Suppose that the assumptions (Al)-
(Ad) and Q # O hold. Then, the sequences
{2*}, {y*} and {z*} generated by Algorithm 1 sat-
isfy the following inequality

1% —a* || < lly* = a*|| < lla* —2*|| V&,

where x* is a unique solution of the split variational
inequality (SVIP) (1) - (2) such that * = Pqo(z?).

Chatng minh. Since ©Q # (), problem (SVIP) (1) -
(2) has a unique solution, denoted by z*. From
Lemma 2.2, we have for all k,

1% — 21 <[ly* — 2™* = (1 = ML) " — ¢
= (1= L) [t = 251,
(4)

[w* = B*|* <|lu* — Ba*||* — (1 — px La)||u® — o*||?
— (1= pLo)|[v* — w”|?.
(5)
From (4), (5) and the conditions {A\;} C [¢,d] C
(0, L%) and {ur} C [e, f] C (0, L%)v we get
I -l < It -2l VE ()
|wk — Bx*|| < ||u* — Bx*|| Vk. (7)

From the last inequality (7) and u* = Bz*, we have
that for all k&
ly* —a*|?
= [t — 0B (w ) — 0"
= [la® — 2*||* + ||6x B (w® — u")||?
+ 20, (z* — ¥, B* (w® — "))
< l2* — &)1 + 61| B[ |w" — *|?
+ 20 (B(z* — 2*), w® — u*) (8)
= [la® —2*|* + &I B w" — u*||?
+ 20, [(w* — Ba*, w® — uF) — ||wk — u”|?]
< lla® = 2*|® + S IBI? w* — u*||?
S A

= ||z = a*|* = 6k (1 = ol BI*) lw* — u"|*.
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Due to . € [a,b] C (O’HBH++1)’ (5) and (8) we
obtain

125 —a*|| < lly* —a*|| < ||la* —2*|| k.
This completes the proof. O

Theorem 3.1. Suppose that the assumptions
(A1)-(A4) and Q # O hold. Then, the sequence
{x*} generated by Algorithm 1 converges strongly
to x* € Q, the solution set of (SVIP) (1)-(2) satis-
fying x* = Po(2").

Chitng minh. We will divide the proof into several

steps as follow.
Step 1. The sequences {z*}, {y*}, and {z*} gener-
ated by Algorithm 1 are bounded. Based on Lemma

2.1 and Lemma 3.1, we have

ot =22 = (1 = ) (z* — 2%) — anla” — %)
< (1= ap)le* — 2| + aulle” — 2|
<.
< [l - 2. (9)

Then the sequence {z*} is bounded and so are the
sequences {y*} and {z*}.
Step 2. For all k£ we have

lz* = 2*|* <(1 = a)[l* — 2

— 20y, (x* — 20, 2 — ),

where z* is the unique solution of the (SVIP) (1) -

2).

Indeed, using the inequality
o —yl* < zl|* = 2{y,x —y) Va.y e H,

and from Lemma 2.1 and Lemma 3.1, we obtain
that

”xk+1 _x*HQ
=11 = ) (z" = 2*) — (2™ = 2°)|?
< (1 —ap)?||2% — 2*||* — 20 (2 — 20, 2P — %)

IN

(
(1- a;g)||zk —z*||? = 20 (z* — 20, 2t — x*)
(

1— o)z — 2*||> = 20 (2 — 29, 2L — %)

<
Step 3. We show that {z*} converges strongly to
the unique solutions z* of the (SVIP) (1) - (2).
Now, we consider two posible cases:

Case 1. There exist kg such that sequence {|z* —

x*||} is decreasing for k > ko. In this case, there
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exists the limit of {|lz* — 2*|}.

From Lemma 3.1 and the proof in Step 2, we have

0 < fly* —a*|* = [l* — 2"
< fla® =2 |f? = =" — 2|2
< la® = 2P~ [l =22 (10)

— 20y (x* — 20, 2P — 2¥)

Since the limit of {||z% — 2*||} exists, limy_, s =
0, {z¥} and {2*} are two bounded sequences, it
follows from (10) that

limg oo |ly™ — 2|2 — ||2% — 2*||* = 0 and

(11)
limy o0 ||2® — %)% — ||2% — 2% = 0.
One can deduce from the last equalities that
limpsoo |2 —2*[* = [ly* — 2> =0.  (12)

From (4) and {Ax} C [e,d] C (0, £;), we obtain
(L=dLy)lly" —"* < [ly* —a*||* ~||z* —2*|%. (13)
Hence, it follows directly from (11) and (13) that

(14)

limy, o0 |[y* — t¥]| = 0.

Now, from (8) and {d;} C [a,b] C (0, HB||++1)’ we
have

a(1=b||B|*)[[w* —u®|* < [la* —2*|* — [ly* —=*|*.

Combine the last inequality and (13) we get
limg o0 Jw® — u*|| = 0.

Note that, for all k, we have

ly* = ¥ = 116k B* (w* — u)[| < 61| B*|[lw* —u”|

< BlIB||w* —u”|

Using the last inequality together with
limy o0 ||w* — u¥|| = 0, we can deduce that
limy, 00 ||y* — 2*|| = 0. (15)
From (14) and (15) we have
limy o0 ||2% — ]| = 0. (16)

We prove that liminfy, . (z* — 20, 251 — 2%) > 0.
Choose a subsequence {z*"} of {#*} such that

0 k+1 —.%'*>

. N
liminfy o0 (2™ — 2°, &

0 .k *>

= liminfy o0 (2" — 2°, 2" —x

Due to the boundedness of {z*}, we may assume

that z¥» — & € H;. Therefore, we can write

0 ,.k+1

—x,x 0

,T—x").

(17)

liminfy o0 (z* —z")=(z"—=x
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From (15) and (16) and " — Z we also deduce
that y*» — Z and tf» — Z as n — oo. Since
{tk»} C C and C is weakly closed then 7 € C.
From (16), it follows that {z* — t*} is a bounded
sequence. Since {z*} is bounded so is {t*}.

Now, we show that Z € Sol(C, F}). Indeed, from

the definition of {t*} we have
< kn )\k Fl(ykn)_tkn l‘—tk"> <O V.

Since Ag,, > 0 for every n, it follows from the above
inequality that

(Fu(y*),z —t) > (18)
Using Cauchy — Schwarz inequality and the fact

that A\, > ¢ > 0 for all n we get

(= thn = thn)|_ i =t = 0]
Ak - c

n

(19)
Since ||y — 0 as n — oo and sequence
{tF=} is bounded, we have

kn _ tkn

ly*r — t*n [llw — 50 |
C

=0.

lim,, 0

The last limit together with (19) ensure that
<yk'n 7tk",x7tk">
)\kn
dition (A2) and the weak convergence of two se-

= 0. So, using (18), con-

limy, o0

quences {y*~} and {t*»} to z, we obtain

0 < limsup,,_, . (Fi(y*),z — t') < (F(Z),z — Z),

which means # € Sol(C,Fy). Since {z*} is
bounded, then {u* = Ba2*} is bounded. This to-
gether with lim_,o||w* — w*|| = 0 implies that
{w*} is bounded.

Now, from (7) and the triangle inequality, we get,
for all k,

0 < [Ju* = Ba™||* — |jw" — Ba*||?
< (Ju* = Ba™|| + |lw" — Ba*[|)[Ju” — w|].

The last evaluation, lim||w* — «*|| = 0 and the
boundedness of two sequences {u*} and {w*}, we

gain

limkﬁoo(Huk - B:B*H2 - ||'w]C - Bac*HQ) =0. (20)

From (5) and {u} C [e, f] C (0, L%), we have

(1= fLo)||u* = o"|* < [Ju* = Ba*||* — ||lw" — Ba”|]*.

Hence, together with (20) one can deduce that

limy, o0 (fJu® — 0*||2 = 0. (21)

The boundedness of {u*} and (21) ensure that {v*}

is bounded.

From z*» — Z, we get u*» = Bz*» — Bz. From

(21), we have v¥» — Bz. Since {v"} C Q and Q
is closed and convex, is it also weakly closed, and
thus, BT € Q.

Next, we prove that Bz € Sol(Q, F3).

Indeed, let y € Q. Since v = Po(ul —
pk, Fo(u*n)) then

(P — g, Fa(u) —

Since pg, > 0 for every n, it follows from the last

ny—okn) <0 Vn.

inequality that

(ufn — vbn oy — 11""”).

ek,

(Fa(ufn),y —vfn) > (22)
Using Cauchy — Schwarz inequality and the fact
that pr, > e > 0 for all n, we find this inequality

(b —vbn g — b | _ [t

ik, e

i [}

(23)
Since ||u** — vkn|| — 0 as n — oo and sequence
{v*»} is bounded, it follows that

[l — vEn [y — o]

lim, e = 0.
e
Using (19) and the last fact, we get
ok
hmnﬁoow a—) So, using (22), con-

dition (A4) and ‘the weak convergence of two se-
quences {u*7} and {v*»} to BZ, we attain

kn

0 < limsup,, , . (Fa(u"),y — v*")

< (F»(Bz),y — Bx),

which means BZ € Sol(Q, F3).
Thus, 7 € Q. As ¥ € Q, 7 € Q, and z* = P(20),
it follows that (z° —2*, — 2*) > 0. So, from (17),
we gain liminfy_, o (z* — z0, gkt — z*) > 0.
From the results obtained in Step 2, we get

”$k+1

—a*|? < (1 - ag)ll2® — 2| + o,

where

cp = (x* — 20, 2t — o).

Using the fact limsup,,_, cr < 0.

By Lemma 2.2, we have limy_,oo||z* — %2 = 0,
that is ¥ — z* as k — oo.

Case 2. Suppose that there exists a subsequence
{x*»} of {z*} such that

2P — 2*|| < [JaF Tt —2*|| VneN.

According to Lemma 2.4, there exists a nondecreas-

ing sequence {7(k)} of N such that limy_,~, ad the
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following inequalities hold true for all sufficiently

large n € N.
T(k) _ 'Z.*H < ”x‘r(k)Jrl

7(k)+1

|l — "),
[a" — 2% <[l -7
Combine (24) and (9), we get

(k) _ I*” < ||1‘T(k)+1

(k)

(25)
°l

82 — a7

< (1= arge) 127" = 2|2 + argy 2 — @
Also, from Lemma 3.1 and (25), we get that

0< fly™™ —a| -

< Jl2™® — | ~
(k)

17 — |

127" — 2|
Il (26)

< —argll77® — 2| 4+ a2 —

Since, limg_ oo, = 0 abd {z*} is bounded, to-
gether with (26), one can deduce that

limgyooJy™™ — 2| = |27 — "] = 0

limposool|27® — | = |27 —2* =0 (27)
Now, from (26), we attain
limposooll2™® —a*|| = fly™® —a*| =0 (28)

Hence, from (27) and (28) and the boundedness of
sequences {z*}, {y*},{2*}, we can write that

—CL’*||2)
7I*H2)

From (4) and {A\z} C [¢,d] C <07 L11>7 we have

limgoo (ly7*) — 272 — |7 =0, (29)

limy o0 (2™ — 27|12 — [|ly™™ = 0. (30)

(1—dLy)|y™™®
< |ly™™®

— tf(k)||2 +

(1= dLy) [t ® — 7B

o $*||2 o Hz-r(k) o l,*HQ

Thus, it follows from (29) that

limy o0 [y™* = 7| = 0,

limg 00| t7®) — 27| = 0.

Now, from (8) and {dx} C [a,b] C
have

(07 HB\|12+1)’ we

a(l = b|[B|*)|lw™™ —u

—.’L'*||2 _ 7(k)

'r(lc)||2

< Jla™® ™ — 2|2,

From the last inequality and (30) we get

limy, s o0 || w™®) — u™®) || = 0. (32)

We also have
timgsoo ™) = 7O = -9 B (w7 ®) — u™®)|
< by | B[ w™® — )

< b B|[lw™®) —u®)|
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Combining the above inequality with (32), we get

limy 00|57 ® — 27®) || = 0. (33)

From (31), (32) and the triangle inequality, we have
arguing similarly as in the first case, we can con-
clude that

liminfy_, o (2% — 2° LTk — z*) =0. (34)
Now, consider
a7 7O = (1~ ) (27— 27®)
+ oy (20 — 27|
< 2™ —2T®| oy lla® — 27| (35)

From limy_ o) = 0, the boundedness of {z*
%[}, (32) and (3

5), we gain

limg 00|27 ® T — 27 || = 0. (36)

From (36) and Cauchy — Schwarz inequality, we ob-
tain that
T(k)+1 T(k) > |

xT(k)H

(="

< 2" —a

SC , L
0‘|H1,7—(k)+1 _

which means that

T(k)+1 _

TFy=0.  (37)

limy, o (z* — 2%

One can deduce from (34) and (37) that

liminfy, o0 (z* — g0 gr(RFL _ T(k))

= liminfy_, oo [(z* — 20, 27®) — 2*)
— (z* T(k)+1 _

= liminfy,_, o (z* — 2%,

27®)

x , T

(k) _ T(’f))

> 0. (38)

From the proof in Step 2 and (25), it leads to

T(k)+1

- < (1= Oef(m)llf(k) —a*||?

T(k)+1 _

|z

— 200 () (2™ — 20" x*),
< (1 = arry)[l27®)
T(k)+1 _

-z

— 200 () (2™ — 2%z x*),

and again, from (26) and a, ) > 0, we obtain
Hitk o x*HQ < ||.’L‘T(k)+1 . I*||2

< =2(x* — 20, aTRFL ¥y,

(39)

Taking the limit in (39) as k — oo and using (38),

we deduce that
limsupy,_, . ||z — %[> < 0

which means zF — z* as k — oo. This completes
the proof of Theorem 1. O
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When F; = 0 and F5 = 0 we have the following
algorithm as a special case of Algorithm 1 for solv-
ing a split feasibility problem in Hilbert space.

Algorithm 2. Choose 2° € H; and the sequences
{ax} and {0y} satisfying the following conditions

{ag} € (0,1), limgyooar =0, D2, ar = 0,

{0k} € [a,6] € (0, 1gr)-

For each iteration k£ > 0, compute

y* = (I — Pg)Ba*
2P = ap2® + (1 — ag) Po(z¥ — 6, B*y*).
(40)
Corollary 3.1. Let C and Q be the two closed and
conver subsets of two Hilbert spaces Hy and Ho,
respectively and let B : Hy — Hy be a bounded lin-
ear operator. Let {x*} be the sequence generated by
Algorithm 2. Then {x*} converges strongly to the
unique solution x* of the split feasibility problem
(SFP) such that x* = Py(2°), provided that the
solution set ¥ = {z* € C': Bz* € Q} of the (SFP)

is nonempty.

4 NUMERICAL RESULTS

Let H, = Hy = R* and let B : R* — R* be a
bounded linear operator defined by

Bx = (21 + 2x2, T2 + 24,21 — 224, — 23 + T4)

for each x = (21, o, x3,24) € R*.
Choose C,Q be two subsets of R* as follows

C:={x = (v1,02,23,24) ER*:

x1 4 229 — 23 — x4 = 0}
Q:={y = (y1.y2,y3,y4) ER*:

—2y1 +2y2 —y3 — 3ys = 0}

Let F; and F» be two mappings from R?* to itself

defined as follows

Fl(x) = (1’171’271’371'4),

Fy(z) = (v1, 22,73, 24).

The the solution set Q = {z* € Sol(C, F}) : Bx* €

Sol(Q, F>)} is deduced to the problem of finding x*
such that ||z*|| = min{||z| : = € C} and y* = Bx*
while ||y*|| = min{||y|| : v € Q}. It is easy to find
the solution * which is z* = (0,0,0,0)7.

Now, using the Algorithm 1 with ay, = =, e =
0r = A = 0.01 satisfying the conditions of Algo-
rithm 1 and Theorem 3.1 and z° = (1,3,1,1)T €
R*, the stopping rule of the iteration is [z* —
2z*=1|| < err. The following table shows the ap-
proximate solutions z,, = (z¥, 25 25 o) € R* of
the above problem with the corresponding param-
eters.

The experimental results shown in the above table
illustrate the convergence of the considered itera-
tive method for solving a split variational inequal-

ity.
5 CONCLUSION

We have presented in this paper an subgradient ex-
tragradient method for solving a split pseudomono-
tone variational inequality in Hilbert spaces and a
special case of the proposed one for solving a split
feasibility problem. The strong convergence of the
methods is proven under some certain assumptions
imposed on the mappings F; and F5 of the split
variational inequality which is the pseudomonotoc-
ity and a numerical example for the convergence

illustration of the proposed method is given.
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