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Article info Abstract:

Recieved: The variational inequality problem have many important ap-
08/09/2021 plications in the fields of signal processing, image process-
Accepted: ing, optimal control and many others. In this paper, we in-
01/12/2021 troduce two projection algorithms for solving strongly pseu-

domonotone variational inequalities. The considered methods

Keywords: are based on some existing ones. Our algorithms use dynamic

Variational inequality, Hillbert spaces, step-sizes, chosen based on information of previous steps and

strong pseudomonotonicity, algorithmic  their strong convergence is proved without the Lipschitz con-

complexity. tinuity of the underlying mappings. Some numerical experi-
ments are presented to verify the effectiveness of the proposed
algorithms.
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Tw khoa:
Bai todn bat ding thic bién phan, khong
gian Hilbert, gid don diéu manh, do phic

tap cia thudt todn.

Bai toan bat ding thic bién phan c6 nhic¢u tng dung quan
trong trong céc linh virc xit 1y tin hicu, x 1§ 4nh, didu khién
t6i wu v nhidu tng dung. Trong bai b4o nay, chiing toi gidi
thieu hai thuat toan dé giai cac bat déng thitc bién phan
gid don diéu manh. Phuong phap méi cai thién mot s6 thuat
toan hién c6. Cac thuit toan ctia ching toi st dung ¢d budc tu
thich nghi, duge xay dung dya trén thong tin ctia buée truée
va sy hoi tu manh cia cdc phuong phép nay dugc ching
minh ma khéng can tinh lién tuc Lipschitz ctia cac 4nh xa
gid. Ching to6i tién hanh mot vai thit nghiém s6 dé minh hoa

tinh hiéu qué cta cac thuat toan mdi.

1 Introduction

Let C be a nonempty, closed and convex set in
Hilbert space H, F : C — C be a mapping. The
variational inequality problem of F' on C' is

find z* € C such that (F(z

(VIP(F,C))
This problem is an important tool in economics,
operations research, and mathematical physics. It
includes many problems of nonlinear analysis in
a unified form, such as optimization, fixed point
problems, Nash equilibrium problems, saddle point
problems.

The simplest iterative procedure for a variational
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") y—z*) >0y e C.

inequality problem in a Hilbert space H may be
well-known projected gradient method

20eC

(1.1)
1= Pc (J?k — )\kF(:Ek))

Under the assumptions that F' is y-strongly pseu-

domonotone and L-Lipschitz continuous on C, A €

(0,21
b L2

verges linearly to the unique solution of the prob-

lem (VIP(F,C)).

If the Lipschitz continuity of F' is eliminated and

), the sequence {z*} generated by (1.1) con-

{Ar} is bounded away from zero, algorithm (1.1),
in general, is not convergent. In this case, we need
to use step sizes tending to zero. In 2010, Bello

Cruz et al. [6] proposed the following self-adaptive
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algorithm
20eC

_ Br
Ak = e (GIFETT
2kt = Po (a% — MF(29))

(1.2)

where C' is a subset of R” and {0} is a sequence

of nonegative numbers satisfying

oo oo
Zﬂk = 00; Zﬁf < 00.
k=0 k=0

Under the assumption that F' is paramonotone, the
authors proved that the sequence {z*} generated
by (1.2) converges to a solution of VIP(F, C'). How-
ever, the condition Y :° 3 < co, makes the step
size of (1.2) tend to zero very fast, and hence, slows
down the convergence rate of this algorithm. More-
over, in (1.2), one need ||F(z*)||. This procedure
increases the computational cost of the algorithm.
Motivated by the works in [6, 11], in this pa-
per, we introduce two new algorithms for solving
(VIP(F,C)). Our algorithms are designed to in-
herit the advantages and overcome the disadvan-
tages of the existing ones. Namely, in each iteration
of the first algorithm, we do not need to compute
||F(z*)||, and in the second algorithm, we can esti-
mate the maximum iterations to get a given ac-
curacy. Also, the new algorithms do not require
the Lipchitz continuity of the involving mapping.
Moreover, the steps size A; in the new algorithms
needs not to satisfy the condition Y po (A7 < oc.
All these features help to reduce the computational
cost and speed up our algorithms.

The remaining part of this paper is organized as
follows: the next section presents some notations,
definitions and lemmas that will be used in the se-
quel. The third section is devoted to the proof of
our main result. In Section 4, some numerical ex-
amples are also given to illustrate the convergence
of the proposed algorithms.

2 Preliminaries

We present some notations and preliminary results,
which will be used in thenext sections. We refer the
reader to [5, 22] for more details.

For each x € H, denote

Po(z) = argmin{||z — z|| : z € C}.

The mapping P : ¢ — Pe(x) is called the projec-

tion onto C.

Proposition 2.1. [5] For all xz,y € H, it holds
that:

(i) [IPe(z) = Po(y)ll < llz—yll,
(ii) (y — Pe(z),z — Po(x)) < 0.

Definition 2.1. A mapping F : C — H is called
1. monotone on C' if for all x,y € C,

(F(x) = F(y),z —y) > 0;

2. v-strongly monotone on C' if there exists a
constant v € (0, 00) such that for all z,y € C,

(F(z) = F(y),x —y) = 7llz =yl

3. ~-strongly pseudomonotone on C' if there ex-
ists a constant v € (0,00) such that for all
z,y € C,

(F(y),z—y) > 0= (F(x),z—y) > vllz—y|>.

3 Main Results

In this paper, we consider the problem VIP(F,C)

under the following conditions:

Assumption 3.1.

(C1) The mapping F is 7-strongly pseudomono-
tone on C.

(C2) The mapping F' is bounded on bounded sub-
sets of C.

(C3) The solution set of VIP(F, C) is not empty.

Under these conditions, the problem VIP(F, C') has
a unique solution x*. In order to find this solution,
we propose the following algorithm:

Algorithm 3.1.

Step 0. Choose 2z € C and a nonincreasing
sequence {A;} C (0,00) satisfying A, — 0,
Yoo Ak = 00. Set k = 0.

If C is bounded then K = C else

K=Cn{z e R :v|z—2°)? < (F(29),2° — x)}.

+

Step 1. Given z*, compute 2**! as follows

.Z‘k+1 = PK(xk — )\kF(.Ek))

Step 2. If z* = z**1  then STOP, otherwise up-
date k := k+ 1 and GOTO Step 1.
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As we can see, in Algorithm 3.1, we do not need to
calculate any ||F(z%).

If Algorithm 3.1 stops at step k, using Proposi-
tion 2.1-ii, we obtain that z* is the solution of
VIP(F,C). Consider the case when Algorithm 3.1

does not stop after finite iterations.

Theorem 3.1. If the conditions (C1)- (C8) in As-
sumption 3.1 are satisfied. Then, the sequence {x*}
generated by Algorithm 3.1 strongly converges to
the unique solution =* of VIP(F,C).

Proof. For all x € K, we have
(gFT — 2k + N F (), 25 —2) <.
Hence,

<mk+1 — P g = x> < A\ <F(ack)7 T — xk+1> .
(3.1)
Denote by z* the unique solution of VIP(F,C). It
implies that

J2*+1 = 2| = [l — ¥ — o+ — a¥|?
12 (g g R g
e e e b
+2X\ (F(2),2* — z*T1) vk e N.
(3.2)

Denote
I:= {k €N: (F(a¥),z* — ") > —%

We have two cases:

Case 1: |I| = co. We have
(F(z'),2* — 2') > (F(a"),2"t" — ")

7|

2

Because F is strongly pseudomonotone mapping on

|z" — 2*||* Vi € I.

C' and the Cauchy—Schwarz inequality, we have
|F@)|[l" = 2| > (F(a%), 2" — 2" 1)
> (Fla).a' —a%) = Jle* — 2"

> ng* — 2|2 Viel

(3.3)
We have F' is bounded on K-bounded, so we obtain
2t — 2| = || P (2" — N F(2*)) — Prc(a)]

< Al F (")

<M., VkeEN, (3.4)

where M :=sup {||F(z)| : 2 € K}.
It follows from (3.3) and (3.4), we have

2la* = a2 < Ml )2 < M2,

176

la* — a2} .

or

: 2);
z* =o' <[ —.M, Viel (3.5)
v

Take € > 0 arbitrarily. Since Ay, — 0 and |I] = oo,
there exists a number kg € I such that

2/\k €
Aeit | — ¢ < =—— Vk > ko.
max{ ks ’y}QM = R0

For all k > ko, we will show that [|z* — 2*|| < e.
Indeed,

o If k € I, from (3.5), we have ||z* — 2F| <

2\; € €
M. <M-S =C e
5 Mo T

o If k¢ I, leti(k):=max{i €l:i<k}, then
k > i(k) > ko. It follows from (3.2) that

o+ — 27| < [l2* — o) W ¢ 1.
From (3.4) and (3.5), we obtain

la* — 2|
< ||1,i(k:)+1 7 x*H

< (29 — o B 40 — 07|

< M. (g + 1 )

€ €
<M(— —):.
=M\oarTar) T

Therefore, we get 2% — x*. Case 2: |I| < oo. Let
m :=max{i:4 € I} + 1. From (3.2), we have

2"t = 2| < (1= Ay) [la* — 2|2
k
<[] @=xm) 2™ — 2% Vk = m.
i=m

Therefore, the sequence {z*} is bounded. Because

[ee]
E )\k = 00,
k=0

which implies that limy_, .o Hf:m (I-=X7) =0,
and hence, zF — 2*.

Remark 3.1. In Algorithm 3.1, we do not need
to know the constant v of the strong pseudomono-
tonicity of F. When this constant is known, we can
control the accuracy of the algorithm by the num-

ber of iterative steps as follows:
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Algorithm 3.2.

Step 0. Let € > 0 be the given accuracy. Choose

€, rg:= %HF(IO)H, k=0.

If C is bounded then K = C else

K=Cn{ze€R":v|lz—a°)? <( 2F(a: ), 20 — z)}.
1 2 €

Set A = 1 5 +4M —

sup {||F(z)| : x € K}.

Step 1. Given z*. If r, < ¢, then STOP, otherwise

compute

2
) , where M =
~y

T4l = TeV 1 — Ay
2" = P (2 — AF(2)).

Step 2. If 2 = zF*! then STOP, otherwise up-
date k := k+ 1 and GOTO Step 1.

Theorem 3.2. If the conditions (C1)- (C3) in As-
sumption 3.1 are satisfied. Then, Algorithm 3.2

G| 2
steps. Moreover, the final output xP of Algorithm

stops after mazimum 210g(1 M) T o 7

3.2 satisfies ||xP — x*|| < €, where x* is the unique

solution of VIP(F,C).

Proof. If Algorithm 3.2 stops at step p when zP =
xP1 or r, < e. In the first case, z? is the solution of
VIP(F,C), and hence, ||zP — z*|| = 0 < €. In other
case, we suppose 1, < € for some p € N, we will
prove that ||z — z*|| < e. By the same argument
that led us to (3.2), we have

kaJrl ”xk+1 _ LL'k||2

— 2" < |2

+ 2\ (F(2*),2* -

— w*HZ —
") Yk e N.
(3.6)

Denote
I :{I{:EN:<F(zk),:v*fx

J:={keN:k<p}.

: ¥
k+1> > 7§|| k

We have two cases:
Case 1: INJ = . From (3.6), we have

lz* =2 < (1= M) [l

Hence,
2P — 2| <

(1 =27 2 — 2%

On the other hand, since (F(z*),2° — 2*) > 0, us-

ing the strong pseudomonotonicity of F', we have

(3.7)

IF @) |2°=2*[| > (F(2°),2° — 2*) > ~|2°
It follows that

L1
la” —2*|| < ;HF(xO)\L (3.8)

k=,

—z*|?Vk=0,...,p—1.

—z*|)%.

Combining (3.7) and (3.8), we obtain

p
Jo? — 2|l < (VI=N)" [l2® - 27

1
Fxa) CIEG)

p
To

IN

1-A

s}
N—

Il
<

p S €

Case 2: INJ #£ 0.

e If p € I, following the same argument that
led us to (3.5), we have

2\
2P — 2| < Moy [ —.
Y
We have,
2
1 2 € 2
= —+4— — /= 0
4(Vv+ M \/;) g
€ 1

(3.9)

M \/ 7_7<6
’Y ’Y
@M ,/ —M[\/><e
Y ’Y

RSV o 3.10
S (3.10)

It follows from (3.9), (3.10), hence

¥ — 2 H<M\/

o If p & I, let i(p) := max{i:ie€INJ}, we

have

lz? — 2*|| < Jla"P+ — 2|

< |t @FY — @) 4|2t ®) — |

2
< MM+ M. —A
g
We have,

M.A+M.\/5_M+E;Mfm+
R

(3.12)

(3.11)

From (3.11), (3.12), then

2\
2P — 27| < M+ M.y | =2 =€,
Y
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Now, prove that if m > 2log;_y,) HF’(V;O)H +1
x

then r,,, <e.

1
Tim = (1= M) F@E”)]
. Y
1
= —||F(2°
7H Cll
<e
Because 0 <1 — Ay < 1, so
m—1 ] 0
(I—=Xy) 2 ;IIF(w ) <e
m=1 €Y
S(l=-XA) 7 <G
[1E (=)l
m;l €y
©log_ny (1 =Ay) 2 <logn_xy TEE
m—1 €y
s—— >1 —_—
2 = RO E@E)
> 21 e
< m > Og(l—)\v) W + 1.

4 Numerical Results

In this section, we present two numerical exam-
ples to verify the effectiveness of the proposed algo-
rithms. Also, we compare our algorithms with the
some existing ones. Numerical experiments were
conducted using Matlab version R2016, running on

a PC with CPU i3 and 10GB Ram.

Example 4.1. We compare Algorithm 3.1 with
the algorithm (1.2) (shortly, T.N.Hai) given by
Trinh Ngoc Hai and the algorithm (1.1) (shortly,
B.C) given by Bello Cruz and Isuem. Let H =
R™ F(z) = (51n(||x||) + 2)x, for all z € R™. The
feasible set is C' = {x € R™: ||z|| < 1}.

We can see all the conditions of the algorithms are
satisfied. In all the algorithms, we use the same
stoping rule ||z* — z*|| < 107%, where z* = 0 is the
unique solution of the problem, the same starting
point xg, which is randomly generated. We compare
the algorithms with the different A;. The results are
presented in Table 1.

Table 1: Comparison of Algorithm 3.1 with T.N.Hai and B.C, (-) means Ay is not satisfy.

T.N.Hai Algorithm 3.1 B.C
Times(s) Iter. Times(s) Iter. Times(s) Iter.
o 0.0084 19 0.0060 52 (-) ()
R 0.0077 12 0.0065 16 (-) ()
s 0.0065 8 0.0044 8 ) ()
s 0.0073 13 0.0043 8 0.0152 13
o 0.0091 19 0.0056 14 0.0162 11
s 0.0069 33 0.0044 17 0.0139 11
o 0.0083 74 0.0044 25 0.0135 33
moorsn  0-0066 35 0.0050 32 “) )

As we can see from this table, the computational time of Algorithm 3.1 are much smaller than those of

T.N.Hai and B.C.

Example 4.2. Let H be an Hilbert space,
C ={x € H:|z| <1}, mapping F : C — C
is defined by

We will show that F' is strongly psedoumonotone
on C.
For all z,y € C satisfying (F(z),y — z) > 0, we

178

obtain (z,y — x) > 0. We have

1 1
Fy),y —z) = () Yy —x
F@y=o) = (g —3) =)
1 1
> =5 )|y —2) = (z,y —2))
<|y| 2)
1
>y~ al?
Next, we apply Alogrithm 3.2 to prob-
lem VIP(F,C), using the stopping rule
|z* — 2*|] < 1072, where z* = 0 is the unique
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solution of problem VIP(F,C). We have
9_
F(20 = —— ™ 1 —
1FE) = 2]

2 —
M:sup{ 2|\:1:|| 'mEC’}:l

2
1 2 € 2
== —4+4——/—-) =24 1075.
v (T ) s

Using the formula provided in Theorem 3.2, we cac-

ulate the maximum number of steps is 273489. In
fact, Alogirthm 3.2 stops after 273236 steps.

5 Conclusion

We have presented in this paper the gradient pro-
jection algorithm for solving strongly pseudomono-
tone variational inequalities. We establish conver-
gence of these algorithms without Lipschitz conti-
nuity assumption. The strong convergence of the
methods is proved and the numerical illustration is

given.
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