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Abstract:

In this paper, we develop a robust stability theorem
for Volterra equations on time scales. We prove that
these equations are preserved the boundedness and
exponential stability under perturbations. The find-
ings can be considered as a generalization for the ro-
bust stability of differential and difference Volterra
equations.
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Abstract:

Trong bài báo này, chúng ta phát triển định lý về tính
ổn định vững cho lớp các phương trình Volterra trên
thang thời gian. Chúng ta chứng minh được rằng, dưới
tác động của nhiễu, nghiệm của những phương trình
này bảo toàn tính bị chặn và tính ổn định vững. Kết
quả đạt được cũng được xem như là sự khái quát hóa
của tính ổn định vững của phương trình vi phân và
phương trình sai phân Volterra.

1 Introduction

Studying the robust stability of systems plays
an important role both in theory and prac-
tice. Since the system always operates under
the effect of uncertain perturbations. The de-
signers want to have systems working stably
under small perturbations. If the system is
described by mathematical models, the study
of its robust stability via analyzing param-
eters is an interesting problem. There are

many works dealing with conditions imposed
on coefficients under which the system is ro-
bustly stable. For example, one can measure
the robust stability by using the so-called sta-
bility radii for linear systems [6]. However, it
is difficult to compute the stability radius of
a time-varying system, which leads to con-
sider conditions of perturbations under which
some the stability of perturbed systems is
preserved (see [7, 12]).

To unify the presentation in difference equa-
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tions and differential equations of the results
for studied above problems, Tien and Du in
[8] have considered ordinary dynamic equa-
tions on time scale T. They have proved that
under small perturbations, the perturbed dy-
namic equations preserve the exponential sta-
bility if the original systems are exponentially
stable. The aim of this paper is to continue
the study of this problem by considering the
robust stability for the Volterra systems un-
der the form

x∆(t) = A(t)x(t) +

∫ t

0

H(t, s)x(s)∆s+ f(t),

(1.1)
for all t ≥ 0, t ∈ T, where A(·) and H(·, ·) are
specified later. We deal with the preservation
of the stability for this dynamic equation un-
der small perturbations. Since the derivative
of state process x(t) at time t depends on all
past path x(s), 0 ≤ s ≤ t, we have to use a
more general inequality of Gronwall-Bellman
type to obtain the upper bound of perturba-
tions.

The paper is organized as follows. In the next
section we recall some basic notions and pre-
liminary results on time scales. In section 2,
we present the properties of linear Volterra
equation. Finally, in section 3, we prove that
if the linear Volterra equations are exponen-
tially stable, then under small Lipschitz per-
turbations they are still exponentially stable.

2 Linear Voltera differen-

tial equations on time

scales

2.1 Time scales

In recent years, to unify continuous and dis-
crete analysis or to describe the processing
of numerical calculation with non-constant
steps, a new theory was born and is more and

more extensively concerned, that is the the-
ory of the analysis on time scales, which was
introduced by Stefan Hilger 1988 (see [1]). A
time scale is a nonempty closed subset of the
real numbers, enclosed with the topology in-
herited from the standard topology on R .
We usually denote it by the symbol T. On
the time scale T, we define the forward jump
operator σ(t) = inf{s ∈ T : s > t} and the
graininess µ(t) = σ(t)− t. Similary, the back-
ward operator is defined as �(t) = sup{s ∈
T : s < t} and the backward graininess is
µ(t) = t − �(t). A point t ∈ T is said to
be right-dense if σ(t) = t, right-scattered if
σ(t) > t, left-dense if �(t) = t, left-scattered
if �(t) < t and isolated if t is simultaneously
right-scattered and left-scattered.

A regulated function f is called rd-continuous
if it is there exist the left-sided limit at every
left-dense point and right-sided limit at ev-
ery right-dense point and continuous at every
right-dense point. The set of rd-continuous
functions defined on the interval J valued in
X will be denoted by Crd(J,X). A function f
from T to R is regressive (resp., positively re-
gressive) if for every t ∈ T, then 1+µ(t)f(t) �=
0 (resp., 1+µ(t)f(t) > 0). We denote by R =
R(T,R) (resp., R+ = R+(T,R)) the set of
(resp., positively regressive) regressive func-
tions, and CrdR(T,R) (resp., CrdR+(T,R))
the set of rd-continuous (resp., positively re-
gressive) regressive functions from T to R. For
all x, y ∈ T, we define the circle plus and the
circle minus:

p⊕ q := p+ q + µ(t)pq, p� q :=
p− q

1 + µ(t)q
.

It is easy to verify that, for all p, q ∈ R,
p ⊕ q, p � q,�p,�q ∈ R. Element (�q)(·) is
called the inverse element of element q(·) ∈
R. Hence, the set R(T,R) with the calcula-
tion ⊕ forms an Abelian group.

Definition 2.1 (Delta derivative). A func-
tion ϕ : T → Rd is called delta differentiable
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at t if there exists a vector ϕ∆(t) such that
for all ε > 0,

‖ϕ(σ(t))−ϕ(s)−ϕ∆(t)(σ(t)−s)‖ ≤ ε|σ(t)−s|

for all s ∈ (t−δ, t+δ)∩T and for some δ > 0.
The vector ϕ∆(t) is called the delta derivative
of f at t.

2.2 Exponential Functions

Let T be an unbounded above time scale, that
is supT = ∞.

Definition 2.2 (Exponential stability). Let
p : T → R is regressive, we define the expo-
nential function by

ep(t, t0) = exp
{∫ t

t0

lim
h↘µ(s)

Ln(1 + hp(s))

h
∆s

}
,

where Ln a is the principal logarithm of the
number a.

We state properties of the exponential func-
tion as follow: If p, q are regressive, rd-
continuous functions and t, r, s ∈ T then the
following hold:

e0(t, s) = 1, and ep(t, t) = 1;

ep(t, s)eq(t, s) = ep+q(t, s).

ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

ep(t, s)ep(s, r) = ep(t, r).

1

ep(t, s)
= e−p(t, s) = ep(s, t);

ep(t, s)

eq(t, s)
= ep−q(t, s).

Theorem 2.3 (see [1]). If p is regressive and
t0 ∈ T, then ep(., t0) is a unique solution of
the initial value problem

x∆(t) = p(t)x(t), x(t0) = 1.

Let T be time scale that is unbounded above.
For any a, b ∈ R, the notation [a, b] or (a, b)

means the segment on T, that is [a, b] = {t ∈
T : a ≤ t ≤ b} or (a, b) = {t ∈ T : a < t < b}
and Ta = {t ≥ a : t ∈ T}. We can de-
fine a measure ∆T on T by considering the
Caratheodory construction of measures when
we put ∆T[a, b) = b − a. The Lebesgue inte-
gral of a measurable function f with respect
to ∆T is denoted by

∫ b

a
f(s)∆Ts (see [2]).

The Gronwall-Bellman’s inequality will be in-
troduced and applied in this paper.

Lemma 2.4 (see [9]). Let the functions
u(t), ϕ(t), v(t), w(t, r) be nonnegative and
continuous for a ≤ τ ≤ r ≤ t, and let c1
and c2 be nonnegative. If for all t ∈ Ta

u(t) ≤ ϕ(t)
{
c1 + c2

∫ t

τ

[
v(s)u(s)

+

∫ s

τ

w(s, r)u(r)∆r
]
∆s

}
,

then for all t ≥ τ ,

u(t) ≤ c1ϕ(t)ep(·)(t, τ),

where p(·) = c2
[
v(·)ϕ(·) +

∫ ·
τ
w(·, r)ϕ(r)∆r

]
.

In the whole paper, the time variable t will be
omited for brevity, if it does not cause misun-
derstanding. For any function g(t) defined on
the time scale T, we write gσ(t) for g(σ(t)).

2.3 Solution of linear Volterra
differential equations

Let a ∈ T be a fixed point. Let X be a Banach
space and L(X) be the space of the continu-
ous linear transformations on X. We consider
the linear Volterra equation

x∆(t) = A(t)x(t) +

∫ t

0

H(t, s)x(s)∆s+ q(t),

(2.1)
for all t ≥ a, with the initial condition
x(t0) = x0 ∈ X, where A(·) : Ta → L(X) is
a continuous function; H(·, ·) is a two vari-
able continuous function defined on the set
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{(t, s) : t, s ∈ Ta and t0 ≤ s ≤ t < ∞}, val-
ued in L(X) and q : Ta → X is a continuous
function. The existence and uniqueness of so-
lutions to (2.1) can be proved by a similar
manner as in [4].

The homogeneous equation corresponding
with (2.1) is

x∆(t) = A(t)x(t) +

∫ t

0

H(t, s)x(s)∆s, (2.2)

for all t ≥ a. We define the Cauchy operator
Φ(t, s), t ≥ s ≥ t0 generated by the system
(2.2) as the solution of the equation

{
Φ∆(t, s) = A(t)Φ(t, s) +

∫ t

s
H(t, τ)Φ(τ, s)∆τ,

Φ(s, s) = I, t ≥ s ≥ a.

(2.3)

In the following, we stipulate that Φ(t, s) = 0
if t < s. With this convention we have the
following useful lemma, called the variation
of constants formula,

Lemma 2.5. The solution of the Volterra
equation (2.1) can be expressed as

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, σ(s))q(s)∆s, (2.4)

for all t > t0.

Chứng minh. By directly differentiating both
sides of (2.4) we get

x∆(t) =
(
A(t)Φ(t, t0)

+

∫ t

t0

H(t, τ)Φ(τ, t0)∆τ
)
x0 + q(t)

+

∫ t

t0

[
A(t)Φ(t, σ(s))

+

∫ t

s

H(t, τ)Φ(τ, σ(s))∆τ
]
q(s)∆s

= A(t)
(
Φ(t, t0)x0 +

∫ t

t0

Φ(t, σ(s))q(s)∆s
)

+

∫ t

t0

H(t, τ)Φ(τ, t0)x0∆τ

+

∫ t

t0

q(s)∆s

∫ t

s

H(t, τ)Φ(τ, σ(s))∆τ + q(t)

= A(t)x(t) +

∫ t

t0

H(t, τ)
(
Φ(τ, t0)x0

+

∫ τ

t0

Φ(τ, σ(s))q(s)∆s
)
∆τ + q(t)

= A(t)x(t) +

∫ t

t0

H(t, τ)x(τ)∆τ + q(t).

The proof is complete.

We note that for the Volterra equation (2.2)
the semi-group property of the Cauchy oper-
ator in general is not true. Indeed, by defini-
tion

Φ∆(t, s) = A(t)Φ(t, s) +

∫ t

s

H(t, τ)Φ(τ, s)∆τ

= A(t)Φ(t, s) +

∫ t

u

H(t, τ)Φ(τ, s)∆τ + qs(t),

where

qs(t) =

∫ u

s

H(t, τ)Φ(τ, s)∆τ.

Therefore, by applying (2.4) it follows that

Φ(t, s) = Φ(t, u)Φ(u, s)+

∫ t

u

Φ(t, σ(h))qs(h)∆h

= Φ(t, u)Φ(u, s)

+

∫ t

u

Φ(t, σ(h))

∫ u

s

H(h, τ)Φ(τ, s)∆τ∆h.

Thus, the semi-group property

Φ(t, s) = Φ(t, u)Φ(u, s)

is true if and only if

∫ t

u

Φ(t, σ(h))

∫ u

s

H(h, τ)Φ(τ, s)∆τ∆h = 0
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for all a ≤ s ≤ u ≤ t, which implies that
H(t, s) = 0 for all t ≥ s ≥ a.

This fact tells us that the classical method
using semi-group property to study the Bohl-
Perron Theorem for Volterra equations is no
longer valid because this method profits the
semi-group property to obtain an inequality
by which we can prove the exponential sta-
bility of the unperturbed equation (see [7, 8]
for examples).

Definition 2.6. Let t ≥ t0, t, t0 ∈ T,
x0 ∈ Rn and ω > 0,

i) The Volterra equation (2.2) is uniformly
bounded if there exists a positive number M0,
independent of t0, such that

‖x(t, t0, x0)‖ ≤ M0 ‖P (t0)y0‖ , (2.5)

ii) The Volterra equation (2.2) is said to be
ω-exponentially stable if there exists a positive
number M , independent of t0 such that

‖x(t, t0, x0)‖ ≤ M ‖P (t0)y0‖ e�ω(t, t0), (2.6)

The following characterizations of uni-
form stability and exponential stability are
straightforward generalizations of the well-
known results for ordinary differential equa-
tions, see the proof of (3.5) and (4.13) in [3].
Therefore, we omit the details of the proof.

Theorem 2.7. There hold the following
statements

i) The Volterra equation (2.2) is uniformly
bounded if and only if there exists a positive
number M0 such that

‖Φ(t, s)‖ ≤ M0, t ≥ s ≥ a. (2.7)

ii) Let ω is positive. The Volterra equation
(2.2) is ω-exponentially stable if and only if
there exists a positive number M such that

‖Φ(t, s)‖ ≤ Me�ω(t, s), t ≥ s ≥ a. (2.8)

3 Stability of Volterra

equation under small

perturbations

In this section, we consider the effect of small
perturbations to the stability of the Volterra
equation (2.2). Let H(·, ·) be a continuous
kernel defined onthe set {(t, s) : t ≥ s, t, s ∈
T0}. Suppose that for every t ≥ s and x ∈ X,
the coefficients H(t, s)x and A(t)x of the
equation (2.2) are perturbed by noise and
they become H(t, s)x ↪→ H(t, s)x + f(t, s, x)
and A(t)x ↪→ A(t)x + g(t, x). Thus, for any
t0 ∈ T0, the Cauchy problem for the per-
turbed equation (2.2) has the form



x∆(t)=A(t)x(t) +
t∫

t0

H(t, s)x(s)∆s

+
t∫

t0

f(t, s, x(s))∆s+ g(t, x(t)),

x(t0) = x0 ∈ X, t ≥ t0
(3.1)

where f(t, s, x) and g(t, x) are continuous
functions, Lipschitz in x with Lipschitz coef-
ficients kt,s and lt respectively, where kt,s, t ≥
s ≥ 0 and lt, t ≥ 0 are continuous functions.

For any x0 ∈ X and t0 ≥ 0, the equation (3.1)
has a unique solution, namely x(·, t0, x0), with
the initial condition x(t0, t0, x0) = x0 and this
solution is defined on t ≥ t0. The proof of this
fact can be done by using Picard approxima-
tions (see [4, Theorem 3]). Suppose further
that

f(t, s, 0) = 0; g(t, 0) = 0, for all t ≥ s ≥ 0.

With these assumptions, the equation (3.1)
has the trivial solution x(·) ≡ 0.

In the following, we write simply x(·) or
x(·, t0) for x(·, t0, x0) if there is no confusion.

The robust stability for the system (3.1) when
T = R under small perturbations has been
studied by T.A. Burton in [5] and R. Grim-
mer et al. in [10] via Lyapunov functions. S. I.
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Grossman et al., in [11], considered the uni-
form stability of (3.1) with the functions f
and g to be “hight order" by direct estimates.

In this paper, we develop the robust stabil-
ity dealing with in R to the arbitrary times
scale. Further, we approach the problem by
an other technique. We will use the general
Gronwall-Bellman inequality to give condi-
tions under which the solution of the system
(3.1) is either bounded or exponentially sta-
ble. To proceed, we need the following Lemma
2.4

Firstly, we consider the boundedness of solu-
tions of the equation (2.2) under small per-
turbations. For convenience, we denote γt,s =∫ t

s
kt,u∆u, t ≥ s ≥ a.

Theorem 3.1. Assume that the equation
(2.2) is uniformly bounded and

N =

∫ ∞

t0

(lt + γt,t0)∆t < ∞.

Then, there exists a constant M1 > 0 such
that the solution x(·) of (3.1) satisfies

‖x(t)‖ ≤ M1‖x(t0)‖, t ≥ t0. (3.2)

Chứng minh. From the variation of constants
formula (2.4), it follows that

x(t) = Φ(t, t0)x(t0)

+

∫ t

t0

Φ(t, σ(τ))
(
g(τ, x(τ))

+

∫ τ

t0

f(τ, u, x(u))∆u
)
∆τ,

(3.3)

for all t ≥ t0. By virtue of Lipschitz condition
of f(t, s, x), g(t, x) in x and the boundedness
assumption of solutions (see Definition 2.7),
we get

‖x(t)‖ ≤ M0‖x(t0)‖

+M0

∫ t

t0

(
lτ ‖x(τ)‖+

∫ τ

t0

kτ,u‖x(u)‖∆u

)
∆τ,

for all t ≥ t0. By using generalized Gronwall-
Bellman inequality in Lemma 2.4 with ϕ =
1, c1 = M0 ‖x(t0)‖ and c2 = M0 we have

‖x(t)‖ ≤ M0‖x(t0)‖ep(·)(t, t0),

where

p(τ) = M0

(
lτ +

∫ τ

t0

kτ,u∆u
)
.

Since p(τ) is positive,

ep(·)(t, t0) ≤ exp
(∫ t0

t

p(τ)∆τ
)

= exp
(
M0

∫ t0

t

(
lτ +

∫ τ

t0

kτ,u∆u
)
∆τ

)

≤ eM0N .

Therefore, we get (3.2)

‖x(t)‖ ≤ M0e
M0N‖x(t0)‖, t ≥ t0.

The proof is complete.

Next, we consider the robust exponential sta-
bility of (2.2). We will show that the Volterra
equation (2.2) preserves the exponential sta-
bility under small perturbations.

With ω is a regressive number, denote

ϕt,s =

∫ t

s

eω(t, u)kt,u∆u, t ≥ s ≥ 0.

Then, we have the following theorem

Theorem 3.2. Assume that the equation
(2.2) is ω-exponentially stable and

lim sup
t→∞

(lt + ϕt,t0) = δ <
ω

M(1 + µ∗ω)
. (3.4)

Then, there exist positive constants K, ω1

such that

‖x(t)‖ ≤ Ke�ω1(t, s)‖x(s)‖,

for all t ≥ s ≥ t0, where x(·) = x(·, s) is the
solution of (3.1), with the initial condition
x(s). That is, the perturbed equation (3.1) is
ω1-exponentially stable.
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Chứng minh. Let ε0 be a positive number
such that

δ + ε0 ≤
ω

M(1 + µ∗ω)

Then, from (3.4), there exists a number T0 >
0 in T such that

lt + ϕt,t0 < δ + ε0, t ≥ T0. (3.5)

By the continuity of solutions of (3.1) on the
initial condition we can find a positive con-
stant MT0 , depending only on T0 such that

‖x(t)‖ ≤ MT0‖x(s)‖, t0 ≤ s ≤ t ≤ T0.
(3.6)

By formula (3.3), estimate (2.8) we get

‖x(t)‖ ≤ ‖Φ(t, s)x(s)‖

+

∫ t

s

∥∥Φ(t, σ(τ))‖
(
‖g(τ, x(τ))‖

+

τ∫

s

‖f(τ, u, x(u))‖∆u
)
∆τ

≤ Me�ω(t, s)‖x(s)‖

+M

∫ t

s

e�ω

(
t, σ(τ)

)(
lτ ‖x(τ)‖

+

∫ τ

s

kτ,u ‖x(u)‖∆u
)
∆τ.

Therefore,

‖x(t)‖eω(t, s) ≤ M‖x(s)‖

+M

∫ t

s

eω(σ(τ), s)
(
lτ ‖x(τ)‖

+

∫ τ

s

kτ,u ‖x(u)‖∆u
)
∆τ

≤ M‖x(s)‖

+M

∫ t

s

(1 + ωµ(τ))
(
lτ‖x(τ)‖eω(τ, s)

+

∫ τ

s

eω(τ, u))kτ,u‖x(u)‖eω(u, s)∆u
)
∆τ.

Using the generalized Gronwall-Bellman in-
equality in Lemma 2.4 with ϕ(t) = M,

c1 = ‖x(s)‖, c2 = 1, and v(t) = eω(σ(τ), τ)lt,
it follows that

eω(t, s)‖x(t)‖ ≤ M‖x(s)‖ eq(·)(t, s), (3.7)

where

q(τ) = M [1 + µ(τ)ω]
(
lτ +

∫ τ

s

eω(τ, u)kτ,u∆u
)
.

(3.8)

First, we consider the case t0 ≤ s ≤ T0 < t.
Since q(t) is positive, by the definition of the
exponential function it follows that

‖x(t)‖ ≤ M‖x(s)‖e�ω(t, s) eq(·)(t, s)

= M‖x(s)‖e�ω(t, s) eq(·)(t, T0). eq(·)(T0, s)

≤ M‖x(s)‖e�ω(t, s) eq(·)(t, s). eq(·)(T0, t0)

≤ M‖x(s)‖ eq(·)(T0, t0) eq�ω(t, s).

Combining with (3.5) and (3.8) we have

q � ω = M [1 + µ(τ)ω]

×
(
lτ +

∫ τ

s

eω(τ, u)kτ,u∆u
)
� ω

≤ M [1 + µ(τ)ω](lτ + ϕτ,t0)� ω

≤ M(δ + ε0)[1 + µ(τ)ω]� ω

=
M(δ + ε0)[1 + µ(τ)ω]− ω

1 + µ(τ)ω

= − ω1

1 + µ(τ)ω
= �ω1

where ω1 := ω−M(δ+ε0)[1+µ∗ω] > 0. Thus,

‖x(t)‖ ≤ K1e−ω1(t, s)‖x(s)‖,

where K1 = M eq(·)(T0, t0).

Next, in case t0 < T0 ≤ s ≤ t, using a similar
argument as above we get

‖x(t)‖ ≤ M‖x(s)‖e−ω1(t, s).

Consider the remaining case t0 ≤ s ≤ t ≤ T0.
With ω1 > 0 defined above and from the in-
equality (3.6), we have

‖x(t)‖ ≤ MT0‖x(s)‖
≤ MT0eω1(t, s)e�ω1(t, s)‖x(s)‖
≤ MT0eω1(T0, t0)e�ω1(t, s)‖x(s)‖.
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Combining the above estimates yields

‖x(t)‖ ≤ Ke�ω1(t, s)‖x(s)‖ for all t ≥ s ≥ t0,

where K = max{M,K1,MT0eω1(T0, t0)}. The
proof is complete.

For the Volterra equations with bounded
memory we have the following assessment.

Corollary 3.3. Suppose that the equation
(2.2) is ω-exponentially stable and there ex-
ists a positive constant β such that kt,s = 0
when t− s > β. Then, the inequality

lim sup
t→∞

(
lt + eωβ

∫ t

0∨(t−β)

kt,u∆u

)
= δ <

ω

M

implies the exponential stability of the equa-
tion (3.1).

Chứng minh. Since kt,s = 0 when t − s > β,
we have

ϕt,s =

∫ t

s

eω(t, u)kt,u∆u ≤ eωβ
∫ t

0∨(t−β)

kt,u∆u.

Therefore,

lim sup
t→∞

(lt + ϕt,s) ≤

lim sup
t→∞

(
lt + eωβ

∫ t

0∨(t−β)

kt,u∆u

)
≤ δ.

The proof is complete.

Remark 3.4. In case there is only outer
force perturbation intervening into the equa-
tion (2.2), i.e., kt.s = 0, the condition (3.4)
becomes

lim sup
t→∞

lt = δ <
ω

M
.

REFERENCES

[1] Bohner, M., Peterson, A. (2001).
Dynamic equations on time scales:
An Introduction with Applications,
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