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In this paper, we develop a robust stability theorem
for Volterra equations on time scales. We prove that
these equations are preserved the boundedness and
exponential stability under perturbations. The find-
ings can be considered as a generalization for the ro-
bust stability of differential and difference Volterra
equations.
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Thoéng tin bai bao Abstract:

Ngay nhan bai: Trong bai béo nay, ching ta phat trién dinh 1y vé tinh

25/10/2021 on dinh vitng cho 16p cic phuong trinh Volterra trén
Ngay duyét dang: thang thoi gian. Ching ta chitng minh dudc rang, dudi
20/11/2021 tac dong ctia nhiéu, nghiém ctia nhitng phuong trinh

nay béo toan tinh bi chan va tinh 6n dinh viing. Két
Tw khoa: qué dat dugc cling duge xem nhu 1a sy khéai quat hoa

ctia tinh én dinh vitng ctia phuong trinh vi phan va
phuong trinh sai phan Volterra.

Tinh on dinh viing, Phuong trinh vi
phan Volterra, Dinh ly Bohl-Perron

1 Introduction many works dealing with conditions imposed
on coefficients under which the system is ro-
bustly stable. For example, one can measure
the robust stability by using the so-called sta-
bility radii for linear systems [6]. However, it
is difficult to compute the stability radius of
a time-varying system, which leads to con-
sider conditions of perturbations under which

some the stability of perturbed systems is

Studying the robust stability of systems plays
an important role both in theory and prac-
tice. Since the system always operates under
the effect of uncertain perturbations. The de-
signers want to have systems working stably
under small perturbations. If the system is
described by mathematical models, the study

of its robust stability via analyzing param-
eters is an interesting problem. There are
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preserved (see [7,12]).
To unify the presentation in difference equa-
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tions and differential equations of the results
for studied above problems, Tien and Du in
[8] have considered ordinary dynamic equa-
tions on time scale T. They have proved that
under small perturbations, the perturbed dy-
namic equations preserve the exponential sta-
bility if the original systems are exponentially
stable. The aim of this paper is to continue
the study of this problem by considering the
robust stability for the Volterra systems un-
der the form

t

22(t) = A(t)a(t) + / H(t, s)e(s)As + f(2),

’ (1.1)
forallt > 0,t € T, where A(-) and H(,-) are
specified later. We deal with the preservation
of the stability for this dynamic equation un-
der small perturbations. Since the derivative
of state process x(t) at time t depends on all
past path z(s),0 < s < t, we have to use a
more general inequality of Gronwall-Bellman
type to obtain the upper bound of perturba-
tions.
The paper is organized as follows. In the next
section we recall some basic notions and pre-
liminary results on time scales. In section 2,
we present the properties of linear Volterra
equation. Finally, in section 3, we prove that
if the linear Volterra equations are exponen-
tially stable, then under small Lipschitz per-
turbations they are still exponentially stable.

2 Linear Voltera differen-
tial equations on time
scales

2.1 Time scales

In recent years, to unify continuous and dis-
crete analysis or to describe the processing
of numerical calculation with non-constant
steps, a new theory was born and is more and

more extensively concerned, that is the the-
ory of the analysis on time scales, which was
introduced by Stefan Hilger 1988 (see [1]). A
time scale is a nonempty closed subset of the
real numbers, enclosed with the topology in-
herited from the standard topology on R .
We usually denote it by the symbol T. On
the time scale T, we define the forward jump
operator o(t) = inf{s € T : s > t} and the
graininess p(t) = o(t) —t. Similary, the back-
ward operator is defined as o(t) = sup{s €
T : s < t} and the backward graininess is
wu(t) =t — o(t). A point t € T is said to
be right-dense if o(t) = ¢, right-scattered if
o(t) > t, left-dense if o(t) = ¢, left-scattered
if o(t) < t and isolated if ¢ is simultaneously
right-scattered and left-scattered.

A regulated function f is called rd-continuous
if it is there exist the left-sided limit at every
left-dense point and right-sided limit at ev-
ery right-dense point and continuous at every
right-dense point. The set of rd-continuous
functions defined on the interval J valued in
X will be denoted by C,q(J, X). A function f
from T to R is regressive (resp., positively re-
gressive) if for every t € T, then 14+pu(t) f(t) #
0 (resp., 1+pu(t)f(t) > 0). We denote by R =
R(T,R) (resp., Rt = R*(T,R)) the set of
(resp., positively regressive) regressive func-
tions, and CqR(T,R) (resp., C,qR*(T,R))
the set of rd-continuous (resp., positively re-
gressive) regressive functions from T to R. For
all x,y € T, we define the circle plus and the
circle minus:

pP—q
1+ pu(t)q
It is easy to verify that, for all p,q € R,
P®¢pOqOp,6q €R. Element (Sq)(-) is
called the inverse element of element ¢(-) €

R. Hence, the set R(T,R) with the calcula-
tion @ forms an Abelian group.

p®q:=ptq+ult)ps, poq:=

Definition 2.1 (Delta derivative). A func-
tion ¢ : T — R? is called delta differentiable
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at t if there exists a vector ¢™(t) such that
for all e > 0,

le(a(8))=o(s) = () (o (1)

foralls € (t—06,t+0)NT and for some 6 > 0.
The vector ™ (t) is called the delta derivative

of f att.

—s)|| < elo(t)—s|

2.2 Exponential Functions

Let T be an unbounded above time scale, that
issupT = oo.

Definition 2.2 (Exponential stability). Let
p: T — R is regressive, we define the expo-
nential function by

ep(t,to) = exp { lt lim Ln(l—i_hMS))As},

o MN(s) h

where Lna is the principal logarithm of the
number a.

We state properties of the exponential func-
tion as follow: If p,q are regressive, rd-
continuous functions and t,r,s € T then the
following hold:

eo(t,s) = 1,and e,(t,t) = 1;

ep(t, 5)eq(t, s) = epiqg(t, ).
ep(a(t), ) = (14 u(t)p(t))ep(t, s);
ep(t, s)ep(s, 1) = epy(t,r).
ep(i’ 8) = pr(t, S) = ep(S, t);
i )

Theorem 2.3 (see [1]). If p is regressive and

to € T, then ey(.,to) is a unique solution of

the initial value problem
22 (t) = p(t)x(t), x(ty) = 1.

Let T be time scale that is unbounded above.
For any a,b € R, the notation [a,b] or (a,b)
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means the segment on T, that is [a,b] = {t €
T:a<t<b}or(ab)={teT:a<t<b}
and T, = {t > a : t € T}. We can de-
fine a measure At on T by considering the
Caratheodory construction of measures when
we put Agfa,b) = b — a. The Lebesgue inte-
gral of a measurable function f with respect
to Ar is denoted by f; f(s)Ars (see [2]).
The Gronwall-Bellman’s inequality will be in-
troduced and applied in this paper.

Lemma 2.4 (see [9]). Let the functions
u(t), o(t),v(t), w(t,r) be nonnegative and
continuous for a < 7 < r < t, and let ¢
and ¢y be nonnegative. If for all t € T,

u(t) < go(t){cl + ¢y /Tt [v(s)u(s)

+ /TS w(s, r)u(r)Ar] As},

then for allt > T,
u(t) < clsO(t)ep(-) (t, T),
)+ [rw

In the whole paper, the time variable ¢ will be
omited for brevity, if it does not cause misun-
derstanding. For any function g(¢) defined on
the time scale T, we write g,(t) for g(o(t)).

where p(-) = ¢ [v(- (r)Ar].

2.3 Solution of linear Volterra
differential equations

Let a € T be a fixed point. Let X be a Banach
space and L(X) be the space of the continu-
ous linear transformations on X. We consider
the linear Volterra equation

s)As + q(t),

/Ht s
(2.1)

for all ¢ > a, with the initial condition
x(to) = o € X, where A(:) : T, — L(X) is
a continuous function; H(-,-) is a two vari-
able continuous function defined on the set

22 (t) =
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{(t,s) : t,s € T, and typ < s <t < oo}, val-
ued in £(X) and ¢ : T, — X is a continuous
function. The existence and uniqueness of so-
lutions to (2.1) can be proved by a similar
manner as in [4].

The homogeneous equation corresponding

with (2.1) is
/ H(t,s)x

for all t > a. We define the Cauchy operator
O(t,s),t > s > tg generated by the system
(2.2) as the solution of the equation

2 (t) = As, (2.2)

DA(t,s) = A(t)D(t,s) + ['H(t, T
O(s,s)=1,t>s>a.
(2.3)

In the following, we stipulate that ®(t,s) =0
if t < s. With this convention we have the
following useful lemma, called the variation
of constants formula,

YO (7, $)AT

Lemma 2.5. The solution of the Volterra
equation (2.1) can be expressed as

t

2(8) = B(t, to)ao + / B(t, o(5))q(s)As,

to

(2.4)
for all t > t,.

Chiing minh. By directly differentiating both
sides of (2.4) we get

22(t) = (A1) (o)

+ /tt H(t, 7)®(r, to)AT>$o +q(t)

+ /t [A(t)@(t,a(s))

to

+ [ 17800 als) 25

— At) ((P(t, to)To + /t t o(t, o—(s))q(s)As)
—I-/tH(t,T)CI)(T, to)ToAT
+/t As/Hth)(TU())AT-i—q()

= A(t /HtT O(T, )0
/ (1,0(s )As)AT—i-q()

= A(t /HtT

The proof is complete. O

T)AT + ¢q(t).

» We note that for the Volterra equation (2.2)

the semi-group property of the Cauchy oper-
ator in general is not true. Indeed, by defini-

tion
¢
O(t,s) + /H(t, T)® (7, ) AT

= A@t)®(t,s) + /}{(t, T)®(T, 8)AT + ¢s(t),

_ / H(t,7)D(r, 5)Ar

Therefore, by applying (2.4) it follows that

DA (t,s) =

where

B(t, 5) = B(t, w)D(u, )+ / B(t, o (h))gs(h) AR
= O(t,u)P(u, s)
+ [ ®(t,o h))/q.LH(h,T)(I)(T, S)ATA.

u

Thus, the semi-group property
O(t,s) = O(t,u)P(u, s)

is true if and only if

/1t d(t,o(h)) /“ H(h,7)®(7,s)ATAh =0
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for all a < s < w < t, which implies that
H(t,s)=0forallt > s> a.

This fact tells us that the classical method
using semi-group property to study the Bohl-
Perron Theorem for Volterra equations is no
longer valid because this method profits the
semi-group property to obtain an inequality
by which we can prove the exponential sta-
bility of the unperturbed equation (see [7, 8]
for examples).

Definition 2.6.
xg € R" and w > 0,

Let t > to, t,tg € T,

i) The Volterra equation (2.2) is uniformly
bounded if there exists a positive number My,
independent of tg, such that

(2, to, zo) | < Mo [| P(to)yoll (2.5)
ii) The Volterra equation (2.2) is said to be
w-exponentially stable if there exists a positive
number M, independent of ty such that

[[(t, to, zo) || < M [|P(to)yoll ecw(t,to),  (2.6)
The following characterizations of uni-
form stability and exponential stability are
straightforward generalizations of the well-
known results for ordinary differential equa-
tions, see the proof of (3.5) and (4.13) in [3].
Therefore, we omit the details of the proof.

Theorem 2.7. There hold the following
statements

i) The Volterra equation (2.2) is uniformly
bounded if and only if there exists a positive
number My such that

D¢, 8)]| < Mo, t > 5 > a. (2.7)

ii) Let w is positive. The Volterra equation
(2.2) is w-exponentially stable if and only if
there exists a positive number M such that

|0t s)|| < Meou(t,s), t =5 > a. (28)
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3 Stability of Volterra

equation under small

perturbations

In this section, we consider the effect of small
perturbations to the stability of the Volterra
equation (2.2). Let H(-,-) be a continuous
kernel defined onthe set {(¢,s) : t > s,t,s5 €
To}. Suppose that for every ¢t > s and z € X,
the coefficients H(t,s)z and A(t)z of the
equation (2.2) are perturbed by noise and
they become H(t,s)x — H(t,s)x + f(t,s,x)
and A(t)xr — A(t)x + g(t,x). Thus, for any
tgy € Ty, the Cauchy problem for the per-
turbed equation (2.2) has the form

o2 (t)=At)x(t) + jH(t, s)x(s)As

_|_tft ft,s,x(s))As + g(t, z(t)),

x(tg) = xp € X, t >ty
(3.1)
where f(t,s,2) and g(t,x) are continuous
functions, Lipschitz in  with Lipschitz coef-
ficients k; ; and [, respectively, where k; 5, >
s> 0 and l;,t > 0 are continuous functions.

For any =y € X and ¢y > 0, the equation (3.1)
has a unique solution, namely z(-, to, zo), with
the initial condition z(tg, tg, o) = x¢ and this
solution is defined on t > ty. The proof of this
fact can be done by using Picard approxima-
tions (see [4, Theorem 3|). Suppose further
that

f(t,s,0)=0; g¢(t,0) =0, forallt >s>0.

With these assumptions, the equation (3.1)
has the trivial solution z(-) = 0.

In the following, we write simply z(-) or
x (-, tg) for x(-, ty, zo) if there is no confusion.
The robust stability for the system (3.1) when
T = R under small perturbations has been
studied by T.A. Burton in [5] and R. Grim-
mer et al. in [10] via Lyapunov functions. S. I.



Nguyen Thu Ha et al/No.24_Dec 2021|p153-161

Grossman et al., in [11], considered the uni-
form stability of (3.1) with the functions f
and g to be “hight order" by direct estimates.

In this paper, we develop the robust stabil-
ity dealing with in R to the arbitrary times
scale. Further, we approach the problem by
an other technique. We will use the general
Gronwall-Bellman inequality to give condi-
tions under which the solution of the system
(3.1) is either bounded or exponentially sta-
ble. To proceed, we need the following Lemma
2.4

Firstly, we consider the boundedness of solu-
tions of the equation (2.2) under small per-
turbations. For convenience, we denote v, ; =
fst kinAu, t > s> a.

Theorem 3.1. Assume that the equation
(2.2) is uniformly bounded and

N = / (lt + Vt,t[)) At < 0.
to

Then, there exists a constant My > 0 such
that the solution x(-) of (3.1) satisfies

eI < Millz(to)ll, t=t.  (3.2)

Chitng minh. From the variation of constants
formula (2.4), it follows that

2(t) = B¢, to)z(to)

[0 (s(rs7)
+ /tTf(T, u, I(u))Au) AT,

+ (3.3)

for all ¢t > t. By virtue of Lipschitz condition
of f(t,s,x), g(t,z) in x and the boundedness
assumption of solutions (see Definition 2.7),
we get

le(®)]| < Molx(to)]
T M, /(z ()] + / ' kT,uHx(u)HAu) A,

for all ¢ > ty. By using generalized Gronwall-
Bellman inequality in Lemma 2.4 with ¢ =
1, ¢; = My ||z(to)|| and c; = My we have

[ < Mollz(to)llep() (¢ to),

where

p(T) = M, (lT + /T kT,uAu).

to

Since p(7) is positive,
to
ep(y(t, to) < exp (/ p(T)AT)
t
to T
= exp <MO/ (lT +/ k‘T,uAu) AT)
t t

0
< Mo,

Therefore, we get (3.2)
lz()]] < Moe||z(to) ], t > to.

The proof is complete. Ol

Next, we consider the robust exponential sta-
bility of (2.2). We will show that the Volterra
equation (2.2) preserves the exponential sta-
bility under small perturbations.

With w is a regressive number, denote

t
Pt,s = / 6w(t7u)kt7uAu, t>s>0.

Then, we have the following theorem

Theorem 3.2. Assume that the equation
(2.2) is w-exponentially stable and

w

S L
S MO+ )

limsup (It + pr4,) (3.4)

t—o0
Then, there exist positive constants K, wq
such that

()] < Keew, (,s)llz(s)]],

forallt > s > to, where x(-) = x(+, s) is the
solution of (3.1), with the initial condition
x(s). That is, the perturbed equation (3.1) is
wr -exponentially stable.
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Chiing minh. Let €y be a positive number
such that

D Q. A—
0= M1+ prw)

Then, from (3.4), there exists a number T >

0 in T such that
Ly + P, <0 +eo, t2>1T. (3.5)

By the continuity of solutions of (3.1) on the
initial condition we can find a positive con-
stant Mrp,, depending only on T such that

lz@)I] < My ||z(s)]l, to <5 <t <Th.

(3.6)

By formula (3.3), estimate (2.8) we get

(@) < [[@(, s)x(s)]]
+ [ oo

+/||f T, U, T u))HAu)AT

NI (g7 2

< Meew(
+M/%w ) (i ()
+/S o |20 )HAu)AT.

Therefore,
[z (t)llew(t, s) < M|z(s )||

+M/% ) (1 ()1

L/ v 1 )HAu)AT

< Mija(s)]
#0014 ) (e, )
+ / e (72 1) Vom0 1, S)AU) AT,

Using the generalized Gronwall-Bellman in-
equality in Lemma 2.4 with ¢(t) = M,

s)z(s)
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c1 = ||z(s)]], ca =1, and v(t) =
it follows that

ew(t, s)|[x()]| < Mz (s)[| eqy (2, ),

ew(o (), )y,

(3.7)

where

qh%—Mﬂ+uHWKb+/

S

T

ew(T, u)kT,uAu> )
(3.8)

First, we consider the case ;3 < s < Ty < t.
Since ¢(t) is positive, by the definition of the
exponential function it follows that
()]l < M[z(s)|lecw (t, 5) eq() (t, 5)
= M||z(s)llecw(t, s) eq() (t, To)- eq() (To, 5)
< M|z(s)llecw(t, 5) eqe(E, 5)- eq() (T, to)
< M||z(s) | €q() (To, to) €geu(t, 5).
Combining with (3.5) and (3.
M1+ p(7)w]

I, +/ ew(T, u)k;mAu> Sw

8) we have

goOw=

< M1+ p(r)wl(l; +s0m)@w
< M0+ eo)[1 + p(T)w] ©

M (6 + o)1 + p(r)w] —
1+ p(r)w
T T ae

where wy := w—M (0+¢¢)[1+p*w] > 0. Thus,
)] < Kie—w, (2, 8)]lx(s)]],
= Meq(.) (To, to)

Next, in case tg < Ty < s < t, using a similar
argument as above we get

[z < Mljz(s)le-w (1, 5)-

where K;

Consider the remaining case tg < s <t < Ty.
With w; > 0 defined above and from the in-
equality (3.6), we have

[ < Mz, [|(s)]]

< MToewl (tv S>€9w1 (ta 3)H95(5)||
< MToeun (T07 tO)eewl (ta 5) HJZ’(S)H
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Combining the above estimates yields

|lz(@)|| < Kegw, (t,s)]|z(s)|| for all t > s > to,

where K = max{M, Ky, Mry,e,, (To,to)}. The

proof is complete.

O

For the Volterra equations with bounded
memory we have the following assessment.

Corollary 3.3. Suppose that the equation
(2.2) is w-exponentially stable and there ex-
ists a positive constant B such that ks = 0
when t — s > B. Then, the inequality

lim sup
t—00

w
:5 e
<M

t
(lt + 6w'8/
ov(t—p)

kt7uAU>

implies the exponential stability of the equa-
tion (3.1).

Chaing minh. Since ks = 0 when t — s > f3,
we have

t
s :/ ew(t, u)k,Au < e“’ﬁ/
s ov(t—p5)

t

ktﬂJAU.

Therefore,

limsup(l; + ¢rs) <

t—o00

The proof is complete.

lim sup
t—o0

t
(lt + ewﬂ /
ov(t—p)

kftyuAU> S 0.

O

Remark 3.4. In case there is only outer
force perturbation intervening into the equa-
tion (2.2), i.e., ks = 0, the condition (3.4)

becomes w
limsupl; =90 < —.
t—>cx>p ! M
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