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Thoéng tin bai viét Tém tat:

Ngay nhan bai: Bai béo nay dé cap t6i Dinh I kiéu Bohl-Peron cho

20/10/2021 phuong trinh Volterra trén thang thoi gian T, ¢6 dang
Ngay duyét dang: .
20/11/2021 22 (1) = A(t)z(t) + / K(t,s)z(s)As + f(1).
to
Tw khéa:

Ta sé& chi ra moéi lien hé gitta tinh bi chin cia

Dinh ly Bohl-Perron, Phuong trinh .
nghiém ctia phuong trinh Volterra v6i tinh on dinh

vi phan Volterra, Tinh bi chdn cia
nghiem, Tinh on dinh mi.

clia phuong trinh Volterra thuan nhat tuong ting.

1 Introduction

In general, it is difficult to directly study the
robust stability of systems by parameters of
the equations. Instead, we can estimate the
output of the systems via the input and if the
good input of a differential /difference equa-
tion implies the acceptable output then the
system must be exponentially stable. That
property is called Bohl-Perron Theorem. The
earliest work in this topic belongs to Perron

[1] (1930). He proved his celebrated theorem
which says that if the solution of the equation
x'(t) = A(t)x(t) + f(t),t > 0 with the initial
condition x(0) = 0 is bounded for every con-
tinuous function f bounded on [0, c0), then
the trivial solution of the corresponding ho-
mogeneous equation & (t) = A(t)z(t),t > 0 1is
uniformly asymptotically stable. Later, one
continues to study this problem for delay
equation of the form a/(t) = Y ," | Ap(t)z(t—
k) + f(t) or @(t) = Lxy + f(t),t > 0 where
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L is an operator acting on C'([—r,0],R") (see
[12] and therein). Discrete versions of Bohl-
Perron Theorem can be found in [6,7,8].

In this paper, we extend the Bohl-Perron
Theorem to a class of Volterra equations on
time scales. However, the most difficulty that
we face here is that the semi-group property
of the Cauchy operator is no longer valid,
which implies we have to find a suitable tech-
nique to solve the problem. We follow this
idea by considering the exponent stability to
the Volterra equations via weighted spaces
LY(Ty,) and C7(Ty,) defined below. We con-
struct an operator £, similar to p in [15], and
show that the exponential stability of (3.2)
is equivalent the fact that L is surjective.

The paper is organized as follows. In the next
section we recall some notion and basic prop-
erties of time scale. Section 3 present some
weighted spaces and consider the solutions
of Volterra equations as elements of these
spaces. Finally, in section 4 we show that the
exponential stability is equivalent to the sur-
jectivity of certain operators.

2 Preliminary

A time scale is an arbitrary, nonempty, closed
subset of the set of real numbers R, denoted
by T, enclosed with the topology inherited
from the standard topology on R.

Consider a time scale T, let o(t) = inf{s €
T : s > t} be the forward operator, and
then p(t) = o(t) —t be called the graininess;
p(t) = sup{s € T : s < t} be the backward
operator, and v(t) =t — p(t). We supplement
sup® = inf T,inf @ = sup T.

For all z,y € T, we define some basic calcu-
lations:

the circle plus ®: x ®y := x + y + p(t)xy;
—x

fi 11 T = —
orallz € T, &x 1—|—M(t)rc’

164|

r—y
L+ p(t)y
A point t € T is said to be right-dense if
o(t) = t, right-scattered if o(t) > t, left-
dense if p(t) = t, left-scattered if p(t) < t and
1solated if t is simultaneously right-scattered
and left-scattered.

A function f : T — R is regulated if there
exist the left-sided limit at every left-dense
point and right-sided limit at every right-
dense point.

the circle minus ©: z © y :=

A regulated function f is called rd-
continuous if it is continuous at every right-
dense point, and Id-continuous if it is contin-
uous at every left-dense point. It is easy to
see that a function is continuous if and only
if it is both rd-continuous and [d-continuous.
The set of rd-continuous functions defined on
the interval J valued in X will be denoted by
Cra(J, X).

A function f : T — Rf from T to R is
regressive (resp., positively regressive) if for
every t € T, then 1+ pu(t)f(t) # 0 (resp.,
1+ p()f(t) > 0). We denote by R =
R(T,R) (resp., R" = RT(T,R)) the set of
(resp., positively regressive) regressive func-
tions, and C,gR(T,R) (resp., C,aR*(T,R))
the set of rd-continuous (resp., positively re-
gressive) regressive functions from T to R.

Definition 2.1 (Delta Derivative). A func-
tion f : T — R? is called delta differentiable
at t if there exists a vector f2(t) such that
for alle >0,

1F (o)) =f ()= f2 (t) (o (t)=s)[| < elo(t)—s]

for all s € (t —0,t +3d)NT and for some
§ > 0. The vector f2(t) is called the delta
derivative of f att.

Theorem 2.2 (see [3]). Ifp is regressive and
to € T, then the only solution of the initial
value problem

yA(t) = plt), y(to) = 1
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on T is defined by ey(t,ty), say an exponen-
tial function on the time scales T.

Let T be a time scale. For any a,b € R,
the notation [a,b] or (a,b) means the seg-
ment on T, that is [a,b] = {t € T : a <
t <b}or (a,b) ={teT:a<t<b}
and T, = {t > a : t € T}. We can de-
fine a measure At on T by considering the
Caratheodory construction of measures when
we put Arfa,b) = b — a. The Lebesgue inte-
gral of a measurable function f with respect
to Ar is denoted by fabf(S)ATS (see [4]).
The Gronwall-Bellman’s inequality will be
introduced and applied in this paper.

Lemma 2.3 (see [13]). Let the functions
u(t),y(t),v(t), w(t,r) be nonnegative and
continuous for a < v < r < t, and let ¢
and ¢y be nonnegative. If fort € T,

u(t) <v(t) {cl + e /Tt [v(s)u(s)

+ / wls, r)u(r)dr] As} :

then fort > 1,
u(t) < ery(t)ep(t, 7),
where p(-) = e [o(17() + [} w, () Ar]

3 The solution of linear
Volterra equations

Let T be a time scale unbounded above.
Suppose that the graininess function p(t) is
bounded by q constant p*, 0 € T. Let X be a
Banach space and £(X) be the space of the
continuous linear transformations on X. De-
note T, = {t > a:t e T}. For any v > 0 we
define

L(Ty,) = { f: Ty, — X, f is measurable

ad [ et O)50 < o<},

to

Crd?(Ty,) = {x : Ty, — X is rd-continuous,

2(ty) = 0 and supe (£, to) (1) < oo},

t>to
with the norms defined respectively as fol-
lows

HfHL”(Tto):/ ey(t, o) [ f(£)[[AL, and

to
[z ]lcv(r,y) = sup e, (E, to) [z(£)]]-
to

It is noted that when v = 0 we have

L°(Ty,) —{ f: Ty — X, f is measurable

and /Oﬁf(t)H At < oo},

CPy(Tyy) = {x: Ty = X, 2(to) =0, z is
rd-continuous and bounded}.
For seeking the simplification of notations,
we write LY(T) and C7(T) for L7(Ty), C7(Ty)
if there is no confusion.
For any f € L7(T), consider the linear
Volterra equation

2 () = A(t)x(t) —I—/t K(t,s)x(s)As + f(t),

(3.1)
t > ty, where A(:) : T, — L(X) is a
continuous function; K(-,-) is a two vari-
able continuous function defined on the set
{(t,s) : t,s € T, and tm < s < t < oo},
valued in £(X). The existence and unique-
ness of solutions to (3.1) with initial condi-
tion x(tp) = 0, can be proved by similar way
as in [5].
The homogeneous equation corresponding
with (3.1) is

PO = A0+ [t )85 32

Since f may not be continuous, the equation
(3.1) perhaps does not have the classical so-
lution whose derivative exists every where.
Therefore, we come to the concept of mild
solutions as the following definition.
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Definition 3.1. The function x(t),t > tq is
said to be a (mild) solution of (3.1) if

x(t) / /KTS

It is easy to see that if xz(t) is a mild solution
of (3.1) then x(t) is ma—a.e differentiable in ¢
and its derivative satisfies the equation (3.1),
where a.e means “almost every where".

Assume that ®(t, s),t > s > to is the Cauchy

operator generated by the system (3.2), then
for t > s > ty, we have

S)As+f (T ))
(3.3)

DA (t,s) = A(t)D(t, s)—i—/t K(t,7)®(r, s)AT,

(3.4)
with ®(s,s) = I. It follows that the solu-
tion z(t) of (3.1) with the initial condition
x(to) = 0 is given by

a:(t):/ Bt o(s)) f(s)As, t > to. (3.5)

to

It is easy to show that in general the Volterra
equation (3.2), the Cauchy operator has no
property of semi-group

D(t, s) = O(t,u)P(u, ), (3.6)
for all 0 < s < u < t. That causes some
difficulties in the study of Bohl-Perron theo-
rem. To overcome, we have to find a suitable
technique to solve the problem.

Lemma 3.2. The solution y(t,s,yo) of the
homogeneous equation (3.2) with initial con-
dition y(s) = yo s continuous in (t,s, o).

Chiing minh. 1t is easy to show that the so-
lution y(t,s,vy0),t > s is continuous in t.
Thus we prove that it is continuous in (s, yp).
Let y(t, so, Yo); y(t, s1,41) be two solutions of
(3.2) with initial conditions y(sp) = yo and

166

y(s1) = wy; respectively, where sy < s1 €
T; yo,y1 € Y. First, we have

t
y(tv SOvyO) = Yo +/ A(T)y(T S0, ?/O)A

/ /K T, u)y(u, So, Yo) AuAT

for all ¢ € [0, T]. Therefore,

IIA(T)y(T, s0, Yo) || AT

S0

t T
4 / / 1 (ry )] iy, 50, 90| A
S0 S0

which implies that

(2, s0,90) | < lloll+

ly(t, 50, Y0) || < Yoep()(t; S0), (3.7)
where p(-) = [JAC)| + [ [IK(,u)[|Au.
PUt ¢<t7 80781> - Hy(t SO;CUO) y(t 31;91)”-
Hence,

gp(t, 50, 51) < ||y0 - yl”

T / LA 1y (7 50,0 | AT

S0
w7 [ IR sl arau
+ [1AG ot s0.5)87

+/ HK(T, w)|| o(u, so, 1) AuAT.

Using (3.7) we see that then there exists
number ¢ > 0

S1
||/ A(r
S0
S1 t
—l—/ /K(T,u)y(u,so,yo)ATAuH
50 u

< cf[so — s1l.

y(Tv S0, yO)AT

By using generalized Gronwall-Bellman in-
equality in Lemma 2.3 with v = 1, ¢ =
clso—s1|, v =||A|l,w = || K(7,u)|| and ¢; = 1

o(t, so, 31) < (lyo — w1l + C|30 — s1l)ep(y(t, 7),

where p(- [ )+ f ] . We have
the proof O
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Definition 3.3.

i) The Volterra equation (3.2) is uniformly
bounded if there exists a positive number My
such that

|D(t,s)|| < My, t > s> a. (3.8)

i) Let w is positive. The Volterra equation
(3.2) is w-exponentially stable if there ezists
a positive number M such that

|D(t,s)|| < Megy(t,s), t>s>a. (3.9)

4 Bohl-Perron Theorem
with unbounded mem-
ory

Based on the formula (3.5) we consider the

operator L;, defined on L7(t) associated
with the equation (3.1) as follows:

(Lo f)(t) = / B(t,0(s)f(s)As,  (41)

for t > ty, f € L7(ty). We write simply L for
Lo.

Theorem 4.1. For any v > 0, if L maps
LY(T) to C,(T), then there exists a positive
constant K such that for all to > 0,

1Ll < K. (4.2)

Chitng minh. First, we prove (4.2) when ty =
0. For every t > 0, we define an operator
F,: L'(T) —» X by

t

F(T0) =, (t.0) [ (t.0(5))(5)88
0
=e.,(t,0)Lf(1).

Since £ maps L"(T) to C,(T),

sup || Fy(f) = iggew(t,o) I£F @) < oo.

t>0

Therefore, by the Uniform Boundedness
Principle

sup | Fi|| = K < oc.
>0

It is noted that,

1 e

ey 1

SUP¢>0 I EL ()l
1/l

We now prove (4.2) with arbitrary to > 0.

Let f(t) be an arbitrary function in L7(t¢).

We define the function f as follows: f(t) =0
if t < to, else f(t) = f(t). It is seen that

1£] =

= sup

= sup || Fif| = K.
feL(T) teTo

CF(t) = / B(t,0(3))F(s) As

= [ @to(s) ()85 = Lafl0)t 2 1o

to

Therefore, from (4) we get
10l oy = stp ext.to) 1600 F 1)
" t>to
~supes 00170 = [T

< K| fllzrmy = KN fllvry)-

The proof is complete. Ol

Theorem 4.2. Let v > 0. The operator L
maps LY(T) to C,(T) if and only if (3.2) is
v-exponentially stable.

Chitng minh. The proof contains two parts.
Necessity. First, we prove that if £ maps
LY(T) to C7(T) then (3.2) is y-exponentially
stable.

By virtue of Theorem 4.1, £ is a bounded op-
erator from L7(T) to C,(T) with ||£|| = K.
For all f € LY(T) and 0 < s < t, we have

67(t70)‘ /0 O(t, o) fu)Au||  (4.3)

< ILflleryery < KNl pery -
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For any o« > 0 and v € X, we consider the
function

_ éeev(u, 0)v,
-

It is seen that

/ " e (,0)] o ()| A

if uels,s+al
if ué[s,s+al.

1 st+a
— [ w0 w0 ol ol

a

This means that f, € L7(T) and || fol|zv(1) =
||v]|. Furthermore,
t
lim [ ®(¢,
a=0 Jq

1 sta
= — lim/ O(t,0(u))esy(u, 0)vAu

= ec,(S, O;@(t, o(s))v.

Combining with (4.3) obtains the desired es-
timate

1, o(s))]| < Keey(t,s) < Keey(t,0(s)),

for t > s > 0. Let {s,} € T such that
o(sn) = s(n — 00),

o(u))fau)Au

[t a(sn))[| < Keen(t,0(sn)), t =5 > 0.

Letting n — oo and using the continuity of
solution, we obtain

|@(t,0(9))]] < Kesy(t,s), t>s>0.

Thus, (3.2) is uniformly asymptotically sta-
ble.

Sufficiency. We will show that if (3.2) is 7-
exponentially stable then £ maps L7(T) to
C(T). Let f € LY(T), from (4.1) we see
that

e (LOILF ()]
< Mer(t0) [ e (t.0(s) ()] B

0

_ M/O (14 yu(s))ey(s,0)[| f(s)[|As
< M@+ ) 1 fll g ry < 00

168

Thus, Lf € CJ,(T). The proof is com-
plete. Ol

Remark 4.3. The argument dealt with in the
proof of Theorem 4.2 is still valid for v = 0.
Thus, if L maps Ly to Cy then the solution
of (3.2) with the initial condition x(0) = 0 is
bounded.

Corollary 4.4. The equation (3.2) is -
exponentially stable if and only if the solution

of
y2(t) = A1+ p)y(t) + vy (t)
/K (t, 5)es (1), $)y(s)As + (1),

is bounded for all f € L7.

(4.4)

Chitng minh. Denote by W(t,s) the Cauchy
operator of the homogeneous equation corre-
sponding to (4.4), ie., U(s,s) =1 and

UA(t,s) = A(t)[1 + p(t)y] (L,

/ K(t,7)es (0(t), 7)U(r, s)Ar.

s) +7Y(t,s)

From (3.4) we get

(e5(1,0)0(t, 8))> = e, (a(t), 0)D2(t, 5)
+ e (t,0)D(t, 5)
= A(t)[1 + p(t)v]e (t, 0)D(t, 5)
+ e, (t,0)D(t, 5)

/ K(t,m)ey(o(t), T)ey(T,0)D(T, s) AT

The uniqueness of solutions says that

U(t,s) =e,(t,0)D(¢, s). (4.5)

Hence, the 7-exponential stability of (3.2)
implies that the solution of (4.4) is bounded.
Let y(t) be the solution of (4.4) with the ini-
tial condition y(0) = 0. By (4.1), this solu-
tion can be expressed as

y(t) = / U(t, 0(r) (1) A = e (L 0)LF (1),
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The boundedness of y(t) says that £ maps L7
to C'7. Therefore, by Theorem 4.2, the equa-
tion (3.2) is exponentially stable. The proof
is complete. O

5 Bohl-Perron Theorem
with damped memory

We consider the equation (3.1) with the as-
sumption

Assumption 5.1. A(t) is bounded on T by
a constant A and K(t,s) is bounded on the
set 0 <t —s <1 by Ny. Further, there is a
B > 0 such that

H =sup /Z;(t, SIIK(t,9)[(o(t) — s) At <oo.

5>0

It follows from this assumption that
H, = Sup/ IK (¢, 5)]| At < oo.
SZO S

Denote

x is a.e dlfferentlable and T,x € Ll(T X)}.

We endow C41(T;X) with the norm of
Ly(T; X). Then, it becomes an (incomplete)
normed vector space. Consider the operator
N associated to (3.1) given by

Na(t) = 2(t) — A(t)x(t)

x(t
/Kts

For any x € L, we have

‘ /O KCspels)s|

s%ﬁAanwMWWAﬂt
sAE@M/WMuMAms

< Hy |zl -

(5.1)

s)As, x € Li(T, X).

(5.2)

Thus, N maps from C;; to Li(T; X). By
uniqueness of solution of (3.2), it is clear that
N is an injective map.

Theorem 5.2. Let Assumption 5.1 holds.
Then, the equation (3.2) is w-exponentially
stable for an w > 0 if and only if N is sur-
jective.

Chitng minh. Suppose that the system (3.2)
is w-exponentially stable for a certain w > 0.
This means that there is a positive constant
M such that || ®(¢,s)|| < Meg,(t,s) for any
t>s>0.Forany f € Li(T, X) we put

xwzﬁﬂwzl¢wd@ﬁ@Aa

It is seen that z(t) is a.e differentiable and
Nz = f. Further,

JAECIES
_/(0)

O(t,0(s))f(s)As|| At

<M/ (/%mwmwﬂmeAt
=1 [ 1 ([ couttotepar)as

Moreover,

/ eon(t, o(5)) Al

a(s)

_/°°1 + p(t)w
o(s) —W

1 *
< SRt o(s)

O wepy(t,o(s))At

o) 1+ p'w

00 w

Thus,

AwwwwusM“+“”womf
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Therefore, * € L;(T,X), which implies
A(-)z(-) € Ly(T,X) by virtue of bounded-
ness of A(-) and

/ HY(
by (5.2). These relations say that z® €

Ly(T, X). Thus, 2 € Cy;(T; X). This means
that N is surjective.

s)As € Ly(T, X)

Conversely, assume that N is surjective, we
will show that (3.2) is w-exponentially stable,
where

0<w<min{6, ! — },
20+ A+ H)|L|

and 3, H defined in Assumption 5.1. Indeed,
since NV is injective, we can define N’ ! acting
Ly(T, X) to C11(T, X). It is clear N7t = L
Moreover, by a similar way as in the proof of
Theorem 4.1, we imply the boundedness of

L.
Putting z(t) = ecw(t, 0)y(t), since

—/OtK(t, s)x(s)As

) + Gwees,(t, 0)y(t)

Nax(t) = 22 (t)—

we gets

Na(t) = ecu(o(t),

— A(t)es,(t,0)y /Ktse@wsO()A
= ecw(0(t),0) Ny(t) + Gy(t)) .
Let

[I+u( A ]y(t)—
/ K(t o(t), s) — 1]y(s)As.
Therefore,

Nx(t) = ecn(o(t),
where M =N + G.

0)My(t), (5.3)

170

Further, for any f € Ly(T, X) we have
| Ieenmiat <+ e,

oo rt
+/ I|X (¢, s)]] AsAt.
0

with X(t,s) = K(t,s)[(ew(t,s) — 1) +
p(t)we,(t, s)] (Lf)(s). Since

¢
eu(t,s) — 1= w/ ew(T, 8)AT

< w/ ew(t, s)AT = we,(t, s)(t — s).

We have

/OOOH/tX(t,s)AsHAt
—w/oo/ewts (t —s) + p(t)]

X HK (t,s)Lf(s HAsAt

_ w/om/ew (t,5)(o(t) — 5)

HK (t,s)Lf(s HASAt

—w/Hﬁf ||/eﬁts )

x | K(t, s)| AtAs
— WK / 1££(s) 1 As.
Thus, we have
Jlicenmnat <o wa+ B s,

Therefore, GLf € Li(T, X) and with cho-
sen w as above, we obtain

1]

Gesl, < 125,
which implies that ML = [ + GL is invert-
ible.

Thus, M is a surjective, i.e., for any f €
Ly(T, X), the equation
My=f (5.4)
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has a solution in C} (T, X). Using the same
argument as in the proof of Theorem 4.2 we
can prove that M~ is bounded. Let W(t, s)
be the Cauchy operator of the equation
My = 0 with the initial condition U(s,s) =
I. Then, the solution y(t) = M~ f(t) with
the initial condition y(0) = 0 of the equation
(5.4) has the expression

y(t) = /0 U(t,o(s))f(s)As, t>0.

The bounedness of M~! says that there is a
Ky > 0 such that [|M™'f|l;, < K| fl]l,, for
all fe Ly, or

ly()lle, = M7 £,

= [ [wte.ots)

For any v € X and a > 0, put f,(s) =
]-[O,a](s)

inequality, we have

o0 1 «
/ / U(t,o(s))vAs
0 & Jo
Letting a — 0 obtains
| It At < Ko

On the other hand, since U(t,s) be the
Cauchy operator of the equation My = 0,

Y2 () = [w+ (14 p(w) A1) y(t)

f()As]| At < K[ £,

v, we have | f||, = [|v[|. From above

At < K ||v]).

Then, forall t > 0
[ (2, 0)ol[—[lv]]
t
/[w + (1 + p*w)A]||[ @ (7, 0)v[| AT
t
// S) 1K (7, s)U(s,0)v| AsAT.

Since

/1t / lew(o(7), $)K (7, 8)¥(s, 0)v|| AsAT
/H\If s,0) II/ew ) |K (T, s)|| ArAs
/qu $,0) II/eﬁ )| K (7, s)|| ATAs,

and from Assumption 5.1, we have

[ eatoto)

S(Lﬂﬂﬂlw%ﬁﬁHKﬁﬁmﬁT
~avwn( [

es(r, s) [|1IK(7, s)|| dr

+ [ears) 1K) a7)

s) | (7, s)[| AT

s+1
< (144 B)(Nie + ).

Therefore,

[W(t,0)vl] < Halv]],

for any v € X, with Hy = 1+ [(w+ (1 +
prw)A) + (14 p* 8)(Nie? + H)] Ky, which im-
plies ||¥(t,0)|| < Ha, for allt > 0. Combining
this inequality with (4.5), we get

[@(£,0)[] < Haeeu(t,0), ¢ > 0.
By a similar argument we see that
1 (t, s)|| < Haecu(t, s),

t>s>0.

The proof is complete. O
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