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Abstract:

This paper is concerned with the Bohl-Perron theorem
for Volterra in the form equations

x∆(t) = A(t)x(t) +

∫ t

t0

K(t, s)x(s)∆s+ f(t),

on time scale T. We will show a relationship between
the boundedness of the solution of Volterra equation
and the stability of the corresponding homogeneous
equation.
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Tóm tắt:

Bài báo này đề cập tới Định lý kiểu Bohl-Peron cho
phương trình Volterra trên thang thời gian T, có dạng

x∆(t) = A(t)x(t) +

∫ t

t0

K(t, s)x(s)∆s+ f(t).

Ta sẽ chỉ ra mối liên hệ giữa tính bị chặn của
nghiệm của phương trình Volterra với tính ổn định
của phương trình Volterra thuần nhất tương ứng.

1 Introduction

In general, it is difficult to directly study the
robust stability of systems by parameters of
the equations. Instead, we can estimate the
output of the systems via the input and if the
good input of a differential/difference equa-
tion implies the acceptable output then the
system must be exponentially stable. That
property is called Bohl-Perron Theorem. The
earliest work in this topic belongs to Perron

[1] (1930). He proved his celebrated theorem
which says that if the solution of the equation
x′(t) = A(t)x(t) + f(t), t ≥ 0 with the initial
condition x(0) = 0 is bounded for every con-
tinuous function f bounded on [0,∞), then
the trivial solution of the corresponding ho-
mogeneous equation ẋ(t) = A(t)x(t), t ≥ 0 is
uniformly asymptotically stable. Later, one
continues to study this problem for delay
equation of the form x′(t) =

∑m
k=1 Ak(t)x(t−

τk) + f(t) or ẋ(t) = Lxt + f(t), t ≥ 0 where
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L is an operator acting on C([−r, 0],Rn) (see
[12] and therein). Discrete versions of Bohl-
Perron Theorem can be found in [6, 7, 8].

In this paper, we extend the Bohl-Perron
Theorem to a class of Volterra equations on
time scales. However, the most difficulty that
we face here is that the semi-group property
of the Cauchy operator is no longer valid,
which implies we have to find a suitable tech-
nique to solve the problem. We follow this
idea by considering the exponent stability to
the Volterra equations via weighted spaces
Lγ(Tt0) and Cγ(Tt0) defined below. We con-
struct an operator L, similar to ρ in [15], and
show that the exponential stability of (3.2)
is equivalent the fact that L is surjective.

The paper is organized as follows. In the next
section we recall some notion and basic prop-
erties of time scale. Section 3 present some
weighted spaces and consider the solutions
of Volterra equations as elements of these
spaces. Finally, in section 4 we show that the
exponential stability is equivalent to the sur-
jectivity of certain operators.

2 Preliminary

A time scale is an arbitrary, nonempty, closed
subset of the set of real numbers R, denoted
by T, enclosed with the topology inherited
from the standard topology on R.

Consider a time scale T, let σ(t) = inf{s ∈
T : s > t} be the forward operator, and
then µ(t) = σ(t)− t be called the graininess;
ρ(t) = sup{s ∈ T : s < t} be the backward
operator, and ν(t) = t−ρ(t). We supplement
sup ∅ = inf T, inf ∅ = supT.

For all x, y ∈ T, we define some basic calcu-
lations:

the circle plus ⊕: x⊕ y := x+ y + µ(t)xy;

for all x ∈ T, �x :=
−x

1 + µ(t)x
;

the circle minus �: x� y :=
x− y

1 + µ(t)y
.

A point t ∈ T is said to be right-dense if
σ(t) = t, right-scattered if σ(t) > t, left-
dense if ρ(t) = t, left-scattered if ρ(t) < t and
isolated if t is simultaneously right-scattered
and left-scattered.

A function f : T → R is regulated if there
exist the left-sided limit at every left-dense
point and right-sided limit at every right-
dense point.

A regulated function f is called rd-
continuous if it is continuous at every right-
dense point, and ld-continuous if it is contin-
uous at every left-dense point. It is easy to
see that a function is continuous if and only
if it is both rd-continuous and ld-continuous.
The set of rd-continuous functions defined on
the interval J valued in X will be denoted by
Crd(J,X).

A function f : T → Rf from T to R is
regressive (resp., positively regressive) if for
every t ∈ T, then 1 + µ(t)f(t) �= 0 (resp.,
1 + µ(t)f(t) > 0). We denote by R =
R(T,R) (resp., R+ = R+(T,R)) the set of
(resp., positively regressive) regressive func-
tions, and CrdR(T,R) (resp., CrdR+(T,R))
the set of rd-continuous (resp., positively re-
gressive) regressive functions from T to R.

Definition 2.1 (Delta Derivative). A func-
tion f : T → Rd is called delta differentiable
at t if there exists a vector f∆(t) such that
for all ε > 0,

‖f(σ(t))−f(s)−f∆(t)(σ(t)−s)‖ ≤ ε|σ(t)−s|

for all s ∈ (t − δ, t + δ) ∩ T and for some
δ > 0. The vector f∆(t) is called the delta
derivative of f at t.

Theorem 2.2 (see [3]). If p is regressive and
t0 ∈ T, then the only solution of the initial
value problem

y∆(t) = p(t), y(t0) = 1
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on T is defined by ep(t, t0), say an exponen-
tial function on the time scales T.

Let T be a time scale. For any a, b ∈ R,
the notation [a, b] or (a, b) means the seg-
ment on T, that is [a, b] = {t ∈ T : a ≤
t ≤ b} or (a, b) = {t ∈ T : a < t < b}
and Ta = {t ≥ a : t ∈ T}. We can de-
fine a measure ∆T on T by considering the
Caratheodory construction of measures when
we put ∆T[a, b) = b − a. The Lebesgue inte-
gral of a measurable function f with respect
to ∆T is denoted by

∫ b

a
f(s)∆Ts (see [4]).

The Gronwall-Bellman’s inequality will be
introduced and applied in this paper.

Lemma 2.3 (see [13]). Let the functions
u(t), γ(t), v(t), w(t, r) be nonnegative and
continuous for a ≤ τ ≤ r ≤ t, and let c1
and c2 be nonnegative. If for t ∈ Ta

u(t) ≤γ(t)

{
c1 + c2

∫ t

τ

[v(s)u(s)

+

∫ s

τ

w(s, r)u(r)dr

]
∆s

}
,

then for t ≥ τ ,

u(t) ≤ c1γ(t)ep(·)(t, τ),

where p(·) = c2
[
v(·)γ(·) +

∫ ·
τ
w(·, r)γ(r)∆r

]
.

3 The solution of linear

Volterra equations

Let T be a time scale unbounded above.
Suppose that the graininess function µ(t) is
bounded by q constant µ∗, 0 ∈ T. Let X be a
Banach space and L(X) be the space of the
continuous linear transformations on X. De-
note Ta = {t ≥ a : t ∈ T}. For any γ ≥ 0 we
define

Lγ(Tt0) =
{
f : Tt0 → X, f is measurable

and

∫ ∞

t0

eγ(t, t0)‖f(t)‖∆t < ∞
}
,

Crd
γ(Tt0) =

{
x : Tt0 → X is rd-continuous,

x(t0) = 0 and sup
t≥t0

eγ(t, t0)‖x(t)‖ < ∞
}
,

with the norms defined respectively as fol-
lows

‖f‖Lγ(Tt0 )
=

∫ ∞

t0

eγ(t, t0)‖f(t)‖∆t, and

‖x‖Cγ(Tt0 )
= sup

Tt0

eγ(t, t0)‖x(t)‖.

It is noted that when γ = 0 we have

L0(Tt0) =

{
f : Tt0 → X, f is measurable

and

∫ ∞

t0

‖f(t)‖∆t < ∞
}
,

C0
rd(Tt0) =

{
x : Tt0 → X, x(t0) = 0, x is

rd-continuous and bounded
}
.

For seeking the simplification of notations,
we write Lγ(T) and Cγ(T) for Lγ(T0), C

γ(T0)
if there is no confusion.

For any f ∈ Lγ(T), consider the linear
Volterra equation

x∆(t) = A(t)x(t) +

∫ t

t0

K(t, s)x(s)∆s+ f(t),

(3.1)
t ≥ t0, where A(·) : Ta → L(X) is a
continuous function; K(·, ·) is a two vari-
able continuous function defined on the set
{(t, s) : t, s ∈ Ta and t0 ≤ s ≤ t < ∞},
valued in L(X). The existence and unique-
ness of solutions to (3.1) with initial condi-
tion x(t0) = 0, can be proved by similar way
as in [5].

The homogeneous equation corresponding
with (3.1) is

y∆(t) = A(t)y(t) +

∫ t

t0

K(t, s)y(s)∆s. (3.2)

Since f may not be continuous, the equation
(3.1) perhaps does not have the classical so-
lution whose derivative exists every where.
Therefore, we come to the concept of mild
solutions as the following definition.
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Definition 3.1. The function x(t), t ≥ t0 is
said to be a (mild) solution of (3.1) if

x(t) =

∫ t

t0

(
A(τ)x(τ)+

∫ τ

t0

K(τ, s)x(s)∆s+f(τ)
)
∆τ,

(3.3)

It is easy to see that if x(t) is a mild solution
of (3.1) then x(t) is m∆–a.e differentiable in t
and its derivative satisfies the equation (3.1),
where a.e means “almost every where".

Assume that Φ(t, s), t ≥ s ≥ t0 is the Cauchy
operator generated by the system (3.2), then
for t ≥ s ≥ t0, we have

Φ∆(t, s) = A(t)Φ(t, s)+

∫ t

s

K(t, τ)Φ(τ, s)∆τ,

(3.4)
with Φ(s, s) = I. It follows that the solu-
tion x(t) of (3.1) with the initial condition
x(t0) = 0 is given by

x(t) =

∫ t

t0

Φ(t, σ(s))f(s)∆s, t > t0. (3.5)

It is easy to show that in general the Volterra
equation (3.2), the Cauchy operator has no
property of semi-group

Φ(t, s) = Φ(t, u)Φ(u, s), (3.6)

for all 0 ≤ s ≤ u ≤ t. That causes some
difficulties in the study of Bohl-Perron theo-
rem. To overcome, we have to find a suitable
technique to solve the problem.

Lemma 3.2. The solution y(t, s, y0) of the
homogeneous equation (3.2) with initial con-
dition y(s) = y0 is continuous in (t, s, y0).

Chứng minh. It is easy to show that the so-
lution y(t, s, y0), t ≥ s is continuous in t.
Thus we prove that it is continuous in (s, y0).
Let y(t, s0, y0); y(t, s1, y1) be two solutions of
(3.2) with initial conditions y(s0) = y0 and

y(s1) = y1 respectively, where s0 ≤ s1 ∈
T; y0, y1 ∈ Y . First, we have

y(t, s0, y0) = y0 +

∫ t

s0

A(τ)y(τ, s0, y0)∆τ

+

∫ t

s0

∫ τ

s0

K(τ, u)y(u, s0, y0)∆u∆τ

for all t ∈ [0, T ]. Therefore,

‖y(t, s0, y0)‖ ≤ ‖y0‖+
∫ t

s0

‖A(τ)y(τ, s0, y0)‖∆τ

+

∫ t

s0

∫ τ

s0

‖K(τ, u)‖ ‖y(u, s0, y0)‖∆u

which implies that

‖y(t, s0, y0)‖ ≤ y0ep(·)(t, s0), (3.7)

where p(·) = ‖A(·)‖ +
∫ ·
s0
‖K(·, u)‖∆u.

Put ϕ(t, s0, s1) = ‖y(t, s0, y0)− y(t, s1, y1)‖.
Hence,

ϕ(t, s0, s1) ≤ ‖y0 − y1‖

+

∫ s1

s0

‖A(τ)‖ ‖y(τ, s0, y0)‖∆τ

+

∫ s1

s0

∫ t

u

‖K(τ, u)‖ ‖y(u, s0, x0)‖∆τ∆u

+

∫ t

s1

‖A(τ)‖ϕ(u, s0, s1)∆τ

+

∫ t

s1

∫ τ

s1

‖K(τ, u)‖ϕ(u, s0, s1)∆u∆τ.

Using (3.7) we see that then there exists
number c > 0

‖
∫ s1

s0

A(τ)y(τ, s0, y0)∆τ

+

∫ s1

s0

∫ t

u

K(τ, u)y(u, s0, y0)∆τ∆u‖

≤ c‖s0 − s1‖.
By using generalized Gronwall-Bellman in-
equality in Lemma 2.3 with γ = 1, c1 =
c|s0−s1|, v = ‖A‖, w = ‖K(τ, u)‖ and c2 = 1

ϕ(t, s0, s1) ≤ (‖y0 − y1‖+ c|s0 − s1|)ep(·)(t, τ),
where p(·) =

[
v(·) +

∫ ·
τ
w(·, r)∆r

]
. We have

the proof.
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Definition 3.3.

i) The Volterra equation (3.2) is uniformly
bounded if there exists a positive number M0

such that

‖Φ(t, s)‖ ≤ M0, t ≥ s ≥ a. (3.8)

ii) Let ω is positive. The Volterra equation
(3.2) is ω-exponentially stable if there exists
a positive number M such that

‖Φ(t, s)‖ ≤ Me�ω(t, s), t ≥ s ≥ a. (3.9)

4 Bohl-Perron Theorem

with unbounded mem-

ory

Based on the formula (3.5) we consider the
operator Lt0 defined on Lγ(t0) associated
with the equation (3.1) as follows:

(Lt0f)(t) =

∫ t

t0

Φ(t, σ(s))f(s)∆s, (4.1)

for t > t0, f ∈ Lγ(t0). We write simply L for
L0.

Theorem 4.1. For any γ > 0, if L maps
Lγ(T) to Cγ

rd(T), then there exists a positive
constant K such that for all t0 ≥ 0,

‖Lt0‖ ≤ K. (4.2)

Chứng minh. First, we prove (4.2) when t0 =
0. For every t > 0, we define an operator
Ft : L

γ(T) → X by

Ft(f(·)) =eγ(t, 0)

∫ t

0

Φ(t, σ(s))f(s)∆s

=eγ(t, 0)Lf(t).

Since L maps Lγ(T) to Cγ
rd(T),

sup
t≥0

‖Ft(f)‖ = sup
t≥0

eγ(t, 0) ‖Lf(t)‖ < ∞.

Therefore, by the Uniform Boundedness
Principle

sup
t≥0

‖Ft‖ = K < ∞.

It is noted that,

‖L‖ = sup
f∈Lγ(T)

‖Lf‖Cγ
rd(T)

‖f‖

= sup
f∈Lγ(T)

supt≥0 ‖Ft(f)‖
‖f‖

= sup
t∈T0

‖Ft‖ = K.

We now prove (4.2) with arbitrary t0 > 0.
Let f(t) be an arbitrary function in Lγ(t0).
We define the function f as follows: f(t) = 0
if t < t0, else f(t) = f(t). It is seen that

Lf(t) =
∫ t

0

Φ(t, σ(s))f(s)∆s

=

∫ t

t0

Φ(t, σ(s))f(s)∆s = Lt0f(t), t ≥ t0.

Therefore, from (4) we get

‖Lt0f‖Cγ
rd(Tt0 )

= sup
t≥t0

eγ(t, t0) ‖Lt0f(t)‖

= sup
t≥0

eγ(t, 0)
∥∥Lf(t)∥∥ =

∥∥Lf∥∥
Cγ

rd(T)

≤ K‖f‖Lγ(T) = K‖f‖Lγ(Tt0 )
.

The proof is complete.

Theorem 4.2. Let γ > 0. The operator L
maps Lγ(T) to Cγ

rd(T) if and only if (3.2) is
γ-exponentially stable.

Chứng minh. The proof contains two parts.

Necessity. First, we prove that if L maps
Lγ(T) to Cγ(T) then (3.2) is γ-exponentially
stable.

By virtue of Theorem 4.1, L is a bounded op-
erator from Lγ(T) to Cγ

rd(T) with ‖L‖ = K.
For all f ∈ Lγ(T) and 0 ≤ s ≤ t, we have

eγ(t, 0)

∥∥∥∥
∫ t

0

Φ(t, σ(u))f(u)∆u

∥∥∥∥ (4.3)

≤ ‖Lf‖Cγ
rd(T) ≤ K ‖f‖Lγ(T) .
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For any α > 0 and v ∈ X, we consider the
function

fα(u) =

{
1
α
e�γ(u, 0)v, if u ∈ [s, s+ α]

0 if u /∈ [s, s+ α].

It is seen that∫ ∞

0

eγ(u, 0)‖fα(u)‖∆u

=
1

α

∫ s+α

s

eγ(u, 0)e�γ(u, 0)‖v‖∆u = ‖v‖.

This means that fα ∈ Lγ(T) and ‖fα‖Lγ(T) =
‖v‖. Furthermore,

lim
α→0

∫ t

0

Φ(t, σ(u))fα(u)∆u

=
1

α
lim
α→0

∫ s+α

s

Φ(t, σ(u))e�γ(u, 0)v∆u

= e�γ(s, 0)Φ(t, σ(s))v.

Combining with (4.3) obtains the desired es-
timate

‖Φ(t, σ(s))‖ ≤ Ke�γ(t, s) ≤ Ke�γ(t, σ(s)),

for t ≥ s ≥ 0. Let {sn} ∈ T such that
σ(sn) → s(n → ∞),

‖Φ(t, σ(sn))‖ ≤ Ke�γ(t, σ(sn)), t ≥ s ≥ 0.

Letting n → ∞ and using the continuity of
solution, we obtain

‖Φ(t, σ(s))‖ ≤ Ke�γ(t, s), t ≥ s ≥ 0.

Thus, (3.2) is uniformly asymptotically sta-
ble.

Sufficiency. We will show that if (3.2) is γ-
exponentially stable then L maps Lγ(T) to
Cγ

rd(T). Let f ∈ Lγ(T), from (4.1) we see
that

eγ(t, 0)‖Lf(t)‖

≤ Meγ(t, 0)

∫ t

0

e�γ (t, σ(s)) ‖f(s)‖∆s

= M

∫ t

0

(1 + γµ(s))eγ(s, 0)‖f(s)‖∆s

≤ M(1 + γµ∗) ‖f‖Lγ(T) < ∞.

Thus, Lf ∈ Cγ
rd(T). The proof is com-

plete.

Remark 4.3. The argument dealt with in the
proof of Theorem 4.2 is still valid for γ = 0.
Thus, if L maps L1 to Cb then the solution
of (3.2) with the initial condition x(0) = 0 is
bounded.

Corollary 4.4. The equation (3.2) is γ-
exponentially stable if and only if the solution
of

y∆(t) = A(t)[1 + µ(t)γ]y(t) + γy(t) (4.4)

+

∫ t

0

K(t, s)eγ(σ(t), s)y(s)∆s+ f(t),

is bounded for all f ∈ Lγ.

Chứng minh. Denote by Ψ(t, s) the Cauchy
operator of the homogeneous equation corre-
sponding to (4.4), i.e., Ψ(s, s) = I and

Ψ∆(t, s) = A(t)[1 + µ(t)γ]Ψ(t, s) + γΨ(t, s)

+

∫ t

s

K(t, τ)eγ(σ(t), τ)Ψ(τ, s)∆τ.

From (3.4) we get
(
eγ(t, 0)Φ(t, s)

)∆
= eγ(σ(t), 0)Φ

∆(t, s)

+ e∆γ (t, 0)Φ(t, s)

= A(t)[1 + µ(t)γ]eγ(t, 0)Φ(t, s)

+ γeγ(t, 0)Φ(t, s)

+

∫ t

s

K(t, τ)eγ(σ(t), τ)eγ(τ, 0)Φ(τ, s)∆τ

The uniqueness of solutions says that

Ψ(t, s) = eγ(t, 0)Φ(t, s). (4.5)

Hence, the γ-exponential stability of (3.2)
implies that the solution of (4.4) is bounded.

Let y(t) be the solution of (4.4) with the ini-
tial condition y(0) = 0. By (4.1), this solu-
tion can be expressed as

y(t) =

∫ t

0

Ψ(t, σ(τ))f(τ)∆τ = eγ(t, 0)Lf(t).
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The boundedness of y(t) says that L maps Lγ

to Cγ. Therefore, by Theorem 4.2, the equa-
tion (3.2) is exponentially stable. The proof
is complete.

5 Bohl-Perron Theorem

with damped memory

We consider the equation (3.1) with the as-
sumption

Assumption 5.1. A(t) is bounded on T by
a constant A and K(t, s) is bounded on the
set 0 ≤ t − s ≤ 1 by N1. Further, there is a
β > 0 such that

H =sup
s>0

∫ ∞

s

eβ(t, s)‖K(t, s)‖
(
σ(t)− s

)
∆t<∞.

It follows from this assumption that

H1 = sup
s≥0

∫ ∞

s

‖K(t, s)‖∆t < ∞.

Denote

C1,1(T;X) =
{
x : T → X; x(0) = 0;

x is a.e differentiable and ẋ, x ∈ L1(T;X)
}
.

We endow C1,1(T;X) with the norm of
L1(T;X). Then, it becomes an (incomplete)
normed vector space. Consider the operator
N associated to (3.1) given by

Nx(t) = x∆(t)− A(t)x(t) (5.1)

−
∫ t

0

K(t, s)x(s)∆s, x ∈ L1(T, X).

For any x ∈ L1 we have
∥∥∥∥
∫ ·

0

K(·, s)x(s)∆s

∥∥∥∥
L1

(5.2)

≤
∫ ∞

0

∫ t

0

‖K(t, s)‖ ‖x(s)‖∆s∆t

≤
∫ ∞

0

‖x(s)‖
∫ ∞

s

‖K(t, s)‖∆t∆s

≤ H1 ‖x‖L1
.

Thus, N maps from C1,1 to L1(T;X). By
uniqueness of solution of (3.2), it is clear that
N is an injective map.

Theorem 5.2. Let Assumption 5.1 holds.
Then, the equation (3.2) is ω-exponentially
stable for an ω > 0 if and only if N is sur-
jective.

Chứng minh. Suppose that the system (3.2)
is ω-exponentially stable for a certain ω > 0.
This means that there is a positive constant
M such that ‖Φ(t, s)‖ ≤ Me�ω(t, s) for any
t ≥ s ≥ 0. For any f ∈ L1(T, X) we put

x(t) = Lf(t) =
∫ t

0

Φ(t, σ(s))f(s)∆s.

It is seen that x(t) is a.e differentiable and
Nx = f . Further,

∫ ∞

0

‖x(t)‖∆t

=

∫ ∞

σ(0)

∥∥∥∥
∫ t

0

Φ(t, σ(s))f(s)∆s

∥∥∥∥∆t

≤ M

∫ ∞

σ(0)

(∫ t

0

e�ω(t, σ(s)) ‖f(s)‖∆s

)
∆t

= M

∫ ∞

σ(0)

‖f(s)‖
(∫ ∞

σ(s)

e�ω(t, σ(s))∆t
)
∆s.

Moreover,

∫ ∞

σ(s)

e�ω(t, σ(s))∆t

=

∫ ∞

σ(s)

1 + µ(t)ω

−ω
� ωe�ω(t, σ(s))∆t

≤ 1 + µ∗ω

ω
e�ω(t, σ(s))

∣∣∣
σ(s)

∞
=

1 + µ∗ω

ω
.

Thus,

∫ ∞

0

‖x(t)‖∆t ≤ M(1 + µ∗ω)

ω
‖f(·)‖L1

.
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Therefore, x ∈ L1(T, X), which implies
A(·)x(·) ∈ L1(T, X) by virtue of bounded-
ness of A(·) and

∫ ·

0

H(·, s)x(s)∆s ∈ L1(T, X)

by (5.2). These relations say that x∆ ∈
L1(T, X). Thus, x ∈ C1,1(T;X). This means
that N is surjective.

Conversely, assume that N is surjective, we
will show that (3.2) is ω-exponentially stable,
where

0 < ω < min

{
β,

1

2(1 + µ∗A+H) ‖L‖

}
,

and β,H defined in Assumption 5.1. Indeed,
since N is injective, we can define N−1 acting
L1(T, X) to C1,1(T, X). It is clear N−1 = L.
Moreover, by a similar way as in the proof of
Theorem 4.1, we imply the boundedness of
L.

Putting x(t) = e�ω(t, 0)y(t), since

Nx(t) = x∆(t)−A(t)x(t)−
∫ t

0

K(t, s)x(s)∆s,

we gets

Nx(t) = e�ω(σ(t), 0)y
∆(t) +�ωe�ω(t, 0)y(t)

− A(t)e�ω(t, 0)y(t)−
∫ t

0

K(t, s)e�ω(s, 0)y(s)∆s

= e�ω(σ(t), 0) (N y(t) +Gy(t)) .

Let

G = −ω
[
I + µ(t)A(t)

]
y(t)−∫ t

0

K(t, s)
[
eω(σ(t), s)− 1

]
y(s)∆s.

Therefore,

Nx(t) = e�ω(σ(t), 0)My(t), (5.3)

where M = N +G.

Further, for any f ∈ L1(T, X) we have
∫ ∞

0

‖G(Lf)(t)‖∆t ≤ ω
(
1 + µ∗A

)
‖Lf‖L1

+

∫ ∞

0

∫ t

0

‖X(t, s)‖∆s∆t.

with X(t, s) = K(t, s)
[(
eω(t, s) − 1

)
+

µ(t)ωeω(t, s)
]
(Lf)(s). Since

eω(t, s)− 1 = ω

∫ t

s

eω(τ, s)∆τ

≤ ω

∫ t

s

eω(t, s)∆τ = ωeω(t, s)(t− s).

We have∫ ∞

0

∥∥∥
∫ t

0

X(t, s)∆s
∥∥∥∆t

= ω

∫ ∞

0

∫ t

0

eω(t, s)
[
(t− s) + µ(t)

]

×
∥∥K(t, s)Lf(s)

∥∥∆s∆t

= ω

∫ ∞

0

∫ t

0

eω (t, s)
(
σ(t)− s

)

×
∥∥K(t, s)Lf(s)

∥∥∆s∆t

= ω

∫ ∞

0

‖Lf(s)‖
∫ ∞

s

eβ(t, s)
(
σ(t)− s

)

× ‖K(t, s)‖∆t∆s

= ωK

∫ ∞

0

‖Lf(s)‖∆s.

Thus, we have∫ ∞

0

‖G(Lf)(t)‖∆t ≤ ω
(
1 + µ∗A+K

)
‖Lf‖L1

Therefore, GLf ∈ L1(T, X) and with cho-
sen ω as above, we obtain

‖GLf‖L1
≤ ‖f‖

2
,

which implies that ML = I + GL is invert-
ible.

Thus, M is a surjective, i.e., for any f ∈
L1(T, X), the equation

My = f (5.4)
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has a solution in C1,1(T, X). Using the same
argument as in the proof of Theorem 4.2 we
can prove that M−1 is bounded. Let Ψ(t, s)
be the Cauchy operator of the equation
My = 0 with the initial condition Ψ(s, s) =
I. Then, the solution y(t) = M−1f(t) with
the initial condition y(0) = 0 of the equation
(5.4) has the expression

y(t) =

∫ t

0

Ψ(t, σ(s))f(s)∆s, t > 0.

The bounedness of M−1 says that there is a
K1 > 0 such that ‖M−1f‖L1 ≤ K1 ‖f‖L1

for
all f ∈ L1, or

‖y(·)‖L1 = ‖M−1f‖L1

=

∫ ∞

0

∥∥
∫ t

0

Ψ(t, σ(s))f(s)∆s
∥∥∆t ≤ K1 ‖f‖L1

.

For any v ∈ X and α > 0, put fα(s) =
1[0,α](s)

α
v, we have ‖f‖L1

= ‖v‖. From above

inequality, we have∫ ∞

0

∥∥∥∥
1

α

∫ α

0

Ψ(t, σ(s))v∆s

∥∥∥∥∆t ≤ K1 ‖v‖ .

Letting α → 0 obtains∫ ∞

0

‖Ψ(t, σ(0))v‖∆t ≤ K1 ‖v‖ .

On the other hand, since Ψ(t, s) be the
Cauchy operator of the equation My = 0,

y∆(t)−
[
ω + (1 + µ(t)ω)A(t)

]
y(t)

−
∫ t

0

K(t, s)eω(σ(t), s)y(s)∆s = 0.

We have

Ψ(τ, 0)∆(τ)=−
[
ω + (1 + µ(t)ω)A(t)

]
Ψ(τ, 0)

+

∫ τ

0

K(τ, s)eω(σ(τ), s)Ψ(s, 0)∆s.

Then, for all t > 0

‖Ψ(t, 0)v‖−‖v‖

≤
∫ t

0

[
ω + (1 + µ∗ω)A

]
‖Ψ(τ, 0)v‖∆τ

+

∫ t

0

∫ τ

0

eω(σ(τ), s) ‖K(τ, s)Ψ(s, 0)v‖∆s∆τ.

Since

∫ t

0

∫ τ

0

‖eω(σ(τ), s)K(τ, s)Ψ(s, 0)v‖∆s∆τ

≤
∫ ∞

0

‖Ψ(s, 0)v‖
∫ ∞

s

eω(σ(τ), s) ‖K(τ, s)‖∆τ∆s

≤
∫ ∞

0

‖Ψ(s, 0)v‖
∫ ∞

s

eβ(σ(τ), s) ‖K(τ, s)‖∆τ∆s,

and from Assumption 5.1, we have

∫ ∞

s

eβ(σ(τ), s) ‖K(τ, s)‖∆τ

≤ (1 + µ∗β)

∫ ∞

s

eβ(τ, s) ‖K(τ, s)‖∆τ

= (1 + µ∗β)
(∫ s+1

s

eβ(τ, s) ‖K(τ, s)‖ dτ

+

∫ ∞

s+1

eβ(τ, s) ‖K(τ, s)‖∆τ
)

≤ (1 + µ∗β)
(
N1e

β +H
)
.

Therefore,

‖Ψ(t, 0)v‖ ≤ H2 ‖v‖ ,

for any v ∈ X, with H2 = 1 +
[(
ω + (1 +

µ∗ω)A
)
+(1+µ∗β)(N1e

β+H)
]
K1, which im-

plies ‖Ψ(t, 0)‖ ≤ H2, for all t ≥ 0. Combining
this inequality with (4.5), we get

‖Φ(t, 0)‖ ≤ H2e�ω(t, 0), t ≥ 0.

By a similar argument we see that

‖Φ(t, s)‖ ≤ H2e�ω(t, s), t ≥ s ≥ 0.

The proof is complete.
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