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Tir khéa:

Bdi todn chap nhdn tich da
tdp, dnh xa khong gidn, diém
bat dong, phép chiéu metric,
phuwong phap lap.

Bai toan chip nhén tach da tap (MSSFP) duoc dua ra dau tién boi Censor
va Elfving dé mé hinh ho4 bai toan nguoc trong khoéi phuc anh. Cho dén
nay, c6 rit nhidu céng trinh lién quan dén phuong phap lip dé giai bai toan
MSSFP va hdu hét cac cong trinh déu su dung gradient ciia ham xép xi, do
khoang cach tir mot diém dén cac tap trong khong gian anh dé xiy dung
phuong phap lap df)ng thoti, 1ap xoay vong va cac cai bién cta ching. Trong
bai bao nay, ching ti gidi thiéu phuong phap téng quat xiy dung thuat
toan lap giai bai toan MSSFP. Ching t6i dwa ra so dd thuat toan lip co
tham s6 1dp dugc chon mot cach thich nghi va dua ra phién ban néi long
cuia luge dd bing cach sir dung phép chiéu 1én nira khong gian thay vi chiéu
1én nhirng tap 16i thong thudng. Cubi cing 14 cac vi du sb minh hoa cho cac
két qua cia ching toi.

1. Introduction

Let £" and E" be two real Euclidian spaces, n, m
}1_61 and {Q_[}‘/_EJ be two
families of closed convex subsets in E" and E”,
respectively, 1={, 2, ..,N}
J={l, 2, ...,M} with any fixed positive integers N

and M. Let 4 be an mXn -matrix of real numbers.

be positive integers, {C

i

where and

We use the symbols E, <,> and || .|| to denote the

unit matrix, an inner product and a norm in any
Euclidian space.

The MSSFP is to find a point

peC:=NC, suchthat 4, 0= QQj (1.1)

iel JE

This problem was first introduced by Censor and
Elfving in 1994 [5] for modeling inverse problems
that arise from phase retrievals and in image
reconstruction [3], [4]. Recently, the MSSFP can
also be used to model the intensity-modulated

6l

radiation therapy [7]-[10] and references therein.
Denote by I the
Throughout, this paper, we assume that T" # 0.

set of solution for (1.1).

For solving the split convex feasibility problem,
that is (1.1) with N= M = 1, Byrne [3], [4] introduced
a well-known iterative method, named CQ-method
and defined by

X =P (E-yAN(E-P)A)x' k=1, (1.2)

where

>

with a fixed real number » e(O;2/HAH2)

Pc and PQ denote the metric projections on the sets

Cand Q, respectively, and 4" is the transpose of 4.

In the case that n = m and A4 = E the MSSFP deduces
to the convex feasibility problem (CFP), that is to find a
point p € C. To solve the CFP, Censor et al. [6]

proposed a string-averaged algorithmic scheme in which
the end-points of strings of sequential projections onto
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the constraints are averaged.

Recently, Nguyen Buong [1], [2] used properties of
metric projections instead of the proximity function to
construct a general scheme,

xk”=R(E—}/AT(E_Pz)A)xk9k21’ (1.3)

where the mappings P; and P, are defined by one
of the following cases:

N M
@) B =) BP. and P, =Y B, ;
J=1

i=1

M
(i) B=F,..R, and P, = anPQj;

=1
(iii) B = PCl ...PCN and B = PQl ...PQM;
N

(iv) P = Z:Bipc, and P, ZPQ,"'PQM’

i=1

with positive real numbers 3, and 77; such that

N M
Zﬁ = 277/ =1
= jo1

In the present article, we propose a iterative
algorithmic scheme which is given with a self
adaptive step-size. We also give a relaxed variant of
this scheme by using projections onto half-spaces
instead of those onto the original convex sets.

2. Preliminaries

In this section, we introduce some definitions
and lemmas which can be used in the proof of our
main result.

Definitions 1.1. A mapping 7 from a subset K of
E"into E" is called:

(1) nonexpansive, if

T —Ty" S"x—y" forall x,y e K ;
(ii) y inverse strongly monotone if

T-T| <(1,~T,.x—y) forall x, y € K,

v

where y is a positive number, and firmly
nonexpansive if, in addition, ¥ =1;

(iii) averaged, if 7=(1—a)E+aU for some
fixed o € (0;1)and a nonexpansive mapping U, and
we say T'is - averaged.

For a closed convex subset K of E”, there exists a

mapping Px from E’ onto K such that

HPKx—stinIt;Hy—foor each xe€E". The
ye

mapping Py is called the metric projection on K. We
know that Py is firmly nonexpansive [10] (hence,
nonexpansive) and 1/2-averaged [5]. Moreover,

Hx—PKxH2 +HPKx—ZH2 <|x-z ‘xeE' zeK.

We denote by Fix(7)={x e K :Tx = x} the
set of fixed points for a mapping 7.

Lemma 2.1. [9] Let E" be any real Euclidean
space, T; be an ¢, -averaged mapping with ¢; >0
for each i€/ and let @=(®,,®,,...,0,) be a

N
positive real vector such that zwl =1. Set

i=1

N
oT and a:zwla[. Then, T is o -

i
i=1

M=

T =

i

averaged. Moreover, the mapping T=T vy I is

N
o -averaged with 07:1/(14,1/20[’_ /(1_04)} and
i=1

N
Fix (T') = Fix (T') = Fix (7).
i=1
Lemma 2.2. [13]
Euclidean spaces. Let A: E" — E™ be an mxn -

Assume E" and E” are real

matrix of real numbers such that A# 0 and let
T:E" —>E" bea nonexpansive mapping. Then,
for every fixed }/E(O;I/HAHZ)’ E-yA"(E-T)4

isy "A"2 -averaged.

3. Main result

-1

. ot -t .
Let the string ]t = (ll ,12,...,ly(11)) be a finite
nonempty subset of /, for every t=1,2, ...,
S1, where the length of the string /, denoted by

y(1,), is the number of elements in /. Put

T'=P, ..P.P, P =F.,

byr(hy) Lo it

where for

1=1,2,..,y(1), t=1,2, .., S\ Given a positive

Sy
weight vector ﬁ:(ﬂnﬁza---aﬂs) with Zﬁ =1, we
t=1

SI
define the algorithmic mapping P1 = Z IBZZZI . We
=1
suppose that every element of / appears in at least
one of the string /. Analogously, for the family

{Qi}ie/ , we can construct the mapping
s, ,

= 2 where = ,

fo=znd, L=y Ea by

7
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P,=F, . h=12 ... 8 g=12,.,7J,) and

77:(771,772,...,7752) is also a positive weight vector

SZ
such that Zm =1.

h=1
Algorithmic scheme 1:
Step 0: Let x' and &, be any point in £” and any

positive real number, respectively, and set k:=1;

Step 1: Assume that the " iterate x* has been
constructed. If

(E - R =(E - B)Ax" =0

then stop and x* is a solution of (1.1). Otherwise,

compute
XM =RE-yA(E - P)AHx" (3.1)
whete , = p,q(x*) /[ 4'(E - P)A [
if (E - B)Ax" #0 and
_ pké(xk)
* 22
(\A (E - Pz)Ax"H+gk)
= LS SN 32
G0 =2 2 m|(E-T) A, (3.2)
h=1

if (E - ,D;)Axk =0.
Step 2: Set k&: =k + 1 and go to Step 1.

where, the parameter o, and &, for all k > 1,
satisfy,
0<p<p, <p<2and (g):{&‘k} is a bounded

respectively,  the conditions  (p):

sequence of positive real numbers such that

liminf, &, >0.

For the sake of simplicity in programming, the next
iterate x*"' can be calculated by (3.1) and (3.2)

without verifying the zero value for (E —P, )Ax".
First, we have the following lemmas.
Lemma 3.1. zel if

(E - P)z=A"(E - P)Az=0. Moreover, the

last equality holds if and only if (E - P,)Az=0.

and

Lemma 3.2. There holds the following

inequality
1 79 ~ y 2 ,
2[00 <|E-10)
h=1

b

for some positive constant R and any yeE",

where {7/ :13'/_;_”1';_1'1Z and (70 = g

only if

We have the following main results.

Theorem 3.1. Let E" and E" be two real
Euclidean spaces, A be an MXMN -matrix of real
numbers such that A=#0. Let T =@, C; and Q, for
each i€l and jeJ be closed convex subsets in E"
and E", respectively.  Assume that there hold
conditions (p) and (g). Then, the sequence {xk},

defined by algorithmic scheme 1, converges to a

solution of (1.1) as k —» oc .

Proof. We consider only the case when the
algorithm does not terminate in a finite number of

iterations. First, we prove that {x*} is bounded.

Take a point p € I'. Then, since A, is nonexpansive
and E—T; is 1/2-inverse strongly monotone [17],

we have that
134 -pP =I1R, (E- 7, A'E - Py~ Pyl

<||x-p- y ANE- PYAX |
(- plP -2V - Pyt - (- Poyap, axt -

2
apy+ Th | ATE - Pyt P (33)

k 2
=[x -pll

(3.2)
Sy

27,3, ((E -T2 Ax* —(E~T) Ap, Ax* ~ 4p)
=1

2
+ Vi I1ATE - P)HAX |
k 2 S 1 ) R
<I-pl =27, 3, BT x|
h=1

+ Ve (| ATE - P)Ax || + &)

=12 pIP = a2 (") (1 4TE - P)ax]
+&)’,

from which and condition (p) it implies that ||
X2 pll < || x* - p||. Consequently, {x*} is bounded

and there exists liminf, ||xk — p" > (. Therefore,

k—o0
by virtue of (3.3) with conditions (p) and (&), we get
that liminf, _ g(x,)=0.From this and

2
I(E - P)AX| =

h=1

S,
(e e

2, 2
<> n|(E-1))4x|
h=1

S,
>, (E-T)Ax"
h=1

=2§(x")
it follows that
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lim I(E - P =0. (3.4)

Let {xk’} be a subsequence of {x*} such that

x" >x' €E"as [ —>w. As the mapping (E —
P4 is from (34) we get that

(E - P)Ax"=0. In order to prove that x' is a solution

continuous,

of (1.1), by Lemma 3.1, we have to show that x'=
PA x'. Indeed, from (3.1) we can write that

= Pl(x](_i_yk)

where yk = -7kAT(E - Pz)Axk — 0 as k—ow,
that is followed from (3.4) again, (3.2) and the
property of &£,. So, x"=2,x', and hence, x" € T.
Then,
=0,

lime/‘ —x’H =lim||x" —x'

k—o0 >0

ie., all the sequence {x*} converges to X' as

k — oo . The proof is completed.
Remark 1
In the case that S, = M and y(/,)=1 for ¢=1,

2, ..., M, since E—F, is firmly nonexpansive,
7

(E— P)Ax', ax* - apy =

M=

0, ((E~Py)Ax* ~(E~F, ) Ap, 4x" ~ 4p)

1

M
= Z’]/

J=1

~.
1]

(E-P,)dx' “2 =2(x"), (35

that is the proximity function, introduced by Xu
[15]. By taking

V= P (1 4TE - A +5,
we obtain that the upper bound for ¥, equal to 4.

In algorithmic schemes 1, we assume that all the
projections P and PQ‘ can be easily calculated, but in

practice they are sometime difficult to compute or even
impossible. In this case, one can turn to relaxed
method, proposed by Yang [16] and studied in [11],
[14] with the proximity function g(x) defined in the
previous section.

Now, we give a relaxed variant for algorithmic
scheme 1. First, we assume that the convex subsets
C; and Q; in this part satisfy the following
assumptions:

(al) The subset C; for all

C ={xeE":c(x)<0},where ¢, :E" — (—o0,+0)

i € I is given by

is a convex function. The subset Q; for all j € Jis
given by

O, ={yek":q,(»)<0},

where g, : E" — (—oo0,+00) is a convex function.

(a2) For any xe E" and yeE™, at least one of
subdifferetial & € dc,(x) and 6, €0q,;(y) can be

computed, where Oc,(x) and dg,(y) are the
subdifferentials of c/(x) and g,(y) at the points x and y,

respectively,
eE":c(x=c(x)+(E,x —x),
e
vx' e E"
0.€¢E":q.(0"N=q.(»)+(0.,y' —y),
aqj(y):{’ 7,0 24,(0)+(0,.y'-) }
vy' e E"

We define the following half-spaces:
C! ={er" :ci(x")+<§.",xk —x>£ 0},

i

Eeoc(xh), iel,

and
O ={yeE":q,(")+(0).5" —x) <0},
0 €dq,(»"), jel,
Put 7" =p' . P‘P, where for all

by Lo

ko _
P=P.,

i
1

I=1,2,.,y()and ¢=1,2,.,S. We define the

SI . ..
algorithmic mapping Pt :z BT with the positive
=1

weight vector g as in the previous section. We
suppose also that every element of 7 appears in at

least one of the string /. Let pr :zimﬂlk where

t=1

By Lemma 2.1, if
(E-P")z=A"E-p)Az=0

k
then we have only that Z emﬁlq and

Az € ﬁj/\./[:l Qf . It is difficult to confirm that z is a

solution of (1.1). So, we consider the following
relaxed algorithmic scheme.

Algorithmic scheme 2

Step 0: Let x’' and &, be any point in E” and

any positive real number, respectively, and set
k=1,
Step 1: The kth iterate x* is constructed by
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o Plk (E - ]’kAT(E* sz YA, (3.6)

where 7, = £,q(x") /|| 4"(E ~ P
if (E— P} )4x*#0 and

Ve = Peq, (X)) (1 AE— PO +a),
if (E- pH)Ax* =0,

1 & :
where ¢, (x)= EZ:‘U/ “(E —Pj" )Ax“ and the
Jj=

parameter ©,, for all k>1, satisfies a new
condition (p'):0< p< p, <p<4.
The following Lemma is essential in proving

convergence.

Lemma 3.3 [12] Suppose h is a convex function
on E", then it is subdifferentiable everywhere and its
subdifferentials are uniformly bounded subsets of E".

Lemma 3.3 shows that the subdifferentials are
bounded on bounded sets.

Theorem 3.2 Let E", E", A and T" be as in
Theorem 3.1. Let C; and Q;, foreach i € /and j € J, be
closed convex subsets in E" and E", that be defined
by (al) and (a2). Assume that there hold conditions

(©') and (£). Then, the sequence {x"}, defined by
(3.6)-(3.7), converges to a solution of (1.1) as

k—ow.
Proof. Take a point pel. Since C cCf,
Q/' = Q;( B we

Ap=PAp=P'p foralli e I,j € Jand k>1.By the

have p=Pp=P'p and

similar argument as the above for (3.3), we have that
[

[y
=|| B* (- y, ANE-POHAX B pl
<\ -p- y ANE- Pt
=[x - pIf

=2 ¥, ((E— PHax - (E- P} yap, ax* - 4p)

Y ANE = PO
S| -plP -4y, g (x")
+ 7 (| ATE - PO ||+ a)

= |- p?
-l -p) @i (X)) (1 ATE — P +e)’.

10|

3.7)

Therefore, {x*} is bounded, there exists

lim“xk —p” and llilqu(xk). Clearly, from the

k—o
last limit and (3.5) with F, replaced ij, it
follows that

lim|(E - P Ax* | =0, (3.8)

for all j € J. Moreover, we have also that

}LrElo||(E -Pyax* " =0, because

2
2

M=

|&-PHax|

n,(E—P")Ax'
1

~.
I

<

M=

n,|E-pHa |
1

~
I

and (3.8). Put z* :=x" —y, A" (E—P") Ax".

Then, we can write that

kel 2 k k 2
X - plP =1 B 2 - pl
Sl
W
t=1
Sl 7(11)

<ol -2

t=1 =1

2
1Lk _k
Iz —pH

2

Ui;Zk _ Ui;,lzk

=||x*-plP -2y, (AT E - P, 5 - p)

2
+ 7 1 ANE - PP

D] ;)

282

t=1 I=1

2

Ui; Zk _ Ui,',lzk

where Ulllf = P;‘P; P{k and U,Z =E  Using the

last inequality with the properties of {x} and

{47 (E-P)axt}, we obtain that
lim||U*z* —U* z*|| = 0, this implies that
k—o b -1

ll{im"(E—Ek)xk":O, Viel. (3.9)

Next, from the definitions of Cl.k and Qk , it

follows that
e, <z -2
oyl -]

(3.10)

Since {x'} is bounded, {4x"} is bounded in E".
Therefore, {fik}, {Bj‘} are bounded and there exists

a subsequence { xk’} of {x'} such that {xkl } converges
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toapoint X € £”. Thus, from (3.8)-(3.10) it follows that
¢,(%)<0 and ¢, (AX)<Oforall i € [and j e J. It
xel. Then,

. ~| . k, ~ : k
hmek —x“ = hm”x 1 _xll =0,ie., {x"} converges to

k—o0 >0

means that

X €' . This completes the proof.

Remark 2. Theorem 3.1 has value, when

S,

sz = Znh];lz’k with the positive weight vector 77 as
h=1

in the previous section, but under condition ( © ) instead

of (p"). Here, instead of ¢ B (x), we use the function

1& 2
G ()= 2 m (BT ax]
h=1

Indeed, as in the proof of Theorem 3.1, we get
that fim |(E—-T,")4x|=0 forall  h=12, ...,
k—o

Further, by Lemma 3.2, we obtain PLEH(E—P;{)A)C"H =0.

4. Numerical examples

In this section, we present some preliminary
numerical results, calculated by several methods of
algorithmic schemes 1 and 2. The methods, used in
computations, are (1.3) and new ones with a self-
adaptive step size. In the first example, the sets C;
and Q; are defined by

‘< 1}

112
0, ={yeE3:Hy—a’H Sl}

where ¢’ = (1-0.25i; 0) with N =4 and a =(-
1+0.1(j-1); 0; 0) with M = 21. Elements of matrix 4
has values: a) = ap = 1, ay = app = 0 and as;= az =

C, :{erZ :Hx—ai

and

1 2t
Table 1. Method (3.1) - (3.2) with P, = liP_ and P=—73 P..
40" 212 7
k x]k+1 x;cﬂ k xlk+1 xf”
10 0.1322489018 -0.1096046955 100 0.0134375293 -0.0118695275
20 0.0590133866 -0.0531213074 200 0.0081669713 -0.0072623184
30 0.0385431816 -0.333061823 300 0.0062576955 -0.0055807045
40 0.0291680112 -0.0253854829 400 0.0052250300 -0.0046678939
50 0.0237943020 -0.0208028142 500 0.0045615413 -0.0040800764
Table 2. Method (3.1) - (3.2) with /C{ =P,...F and P, = L% P
21 =
k xlk+1 xé”l k x]k+1 xé‘“
10 0.6665662985 -0.4624660997 100 0.3084168689 -0.3570661143
20 0.5499195599 -0.4292417888 200 0.2383683602 -0.3352044020
30 0.4803304781 -0.4089281741 300 0.2052435826 -0.3247198937
40 04333536237 -0.3949881167 400 0.1842047953 -0.3179917898
50 0.3994798577 -0.3848417711 500 0.1695279308 -0.1312747211
Table 3. Method (3.1) - (3.2) with P1 =P,..B and Pz =P,.B.R

k xlk+1 x§+l k x]/c+1 xé{+l

10 0.1619563184 -0.3211904319 100 0.0347113740 -0.1986689830

20 0.0930360637 -0.2684585047 200 0.0256552010 -0.1791816768

30 0.0694629971 -0.2456850724 300 0.0219830960 -0.1691445434

40 0.0574979870 -0.2321570358 400 0.0198472169 -0.1624730780

50 0.0501837307 -0.2228438437 500 0.0183962369 -0.1575184514
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methods, defined by algorithmic schem 2 with

21
1/2. Clearly, ™ 0, = {(0,0,0)} . Therefore, C = {xl,x2 eE’:x +x] < 0};
p+=(0, 0) is the unique solution. Put 7> = P;...P, P, _ 2. .2 _1<ol-
andT2’2=P14...P9.P8andT2’3=P21...P16.P15. Cz_{x1’x2€E i +x1 1_0}’
The numerical results computed by several C,={x,x,eE*:x,+x,-2< 0};

C,={x.x, € E*:x'/4+x;/9-3<0};

0, =04+1/(k+2), &, =0.141/(k+2),an

initial point x' =(3;-2.5) and different forms of

F{k and sz, are given in the following tables.

Table 4. Method (3.1) - (3.2) with F{ = liP_ and P,=P,..B.P
4 1

i=1

i xlk+1 x£c+l i xlk+1 xf”

10 0.1693965225 -0.3615422314 100 0.0358096772 -0.2054187867
20 0.0969110550 -0.2917779458 200 0.0263063929 -0.1829700425
30 0.0722254089 -0.2627693262 300 0.0224535356 -0.1717800444
40 0.0596950361 -0.2458839872 400 0.0202151422 -0.1644844678
50 0.0520319645 -0.2344249979 500 0.0186971106 -0.1591374628

. 1 3 3
Table 5. Method (3.1) - (3.2) with P, = Zp4 +Zp3p2pl and P, = ETZ” /3.

k xlk+1 xéﬁl k xlk+1 x;wl

10 0.4814850658 -0.5098712064 100 0.0492697719 -0.3408147049
20 0.3098246489 -0.4476210480 200 0.0237776835 -0.3183714090
30 0.2163652970 -0.4116171161 300 0.0162671169 -0.3069244773
40 0.1602679486 -0.3892344990 400 0.0125256305 -0.2990155796
50 0.1236226400 -0.3742856213 500 0.0102614291 -0.2928868336

Analyzing the numerical results, we see that
method (2.2)-(2.3) with Pl and P2 defined by convex

combinations of F. and PQ‘ respectively, gives a
i J

better result than those with other cases of Pl and Pz .

In the second example, we consider the sets

o

YisVas V3 €E’:

o ={y1,y2,y3 €E’ 1y +yi+2y, SO};
0, ={yl,y2,y3 €E’ 1y +y,+y, so};

2 2 2
y1+yz+y3—1s0}.

4 9 16

Since we do not know the exact solution to (1.1)

The computational results by method (3.6) with the same data as the above and new Plk and sz are

given in the following numerical table.

12|

with  C; and @, given above, we use
L3 P13
Table 6. Method (3.6) - (3.7) with P1 = Z > P* and Pz = g > P/ .
i=1 j=1
k xlk+1 x§+1 ek
20 -1.8550560864 -1.2529823091 0.0347011051
40 -1.0148022648 -0.9888362074 0.0020806016
60 -1.0022774018 -0.9941922526 0.0001488434
80 -1.0000275029 -0.9953053196 0.0000568477
100 -1.9989834883 -0.9958226816 0.0000311400
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e = ka+1 —x* “/ka “ to measure the error of the
kth step iteration. The computational results, by using
algorithmic scheme 2 with the same values of o, , &, and

new x' =(-3;-2.5) are presented in the numerical tables,

pp. 101-113, North-Holland Amstrerdam.
[7] Censor. Y., Elfving. T., Knop. N., Bortfeld.
T. (2005), The multiple-sets split feasibility problem

and its applications for inverse problems, Inverse
Problems, vol. 21, pp. 2071-2084.

Tables 6 and 7. [8] Censor. Y., Bortfeld. T., Martin. B,
1 3 1 2
Table 7. Method (3.6) - (3.7 with B* =— P} +=P}P'P" ana P} =—P' +=P'P".

4 4 3 3
k X X o

20 -1.0013989719 -0.9931580146 0.0004878143

40 -0.9970955125 -0.9952845740 0.0000716891

60 -0.9959607340 -0.9958465143 0.0000298011

80 -0.9954071353 -0.9961214866 0.0000167111

100 -0.9950714116 -0.9962880729 0.0000108605

Clearly, the numerical results in Table 7 show
that new method (3.6)-(3.7) with

1 3 - 1+ 2 4
Plk:ZB‘k_,’_ngPZAPIAand F)Zkzglgk+§132k131k
is a little faster than the first one, that is usually

called the relaxed simultaneous method.
5. Conclusion

In this paper, we proposed a general approach to
construct iterative methods for solving the multiple-
sets split feasibility problem (MSSFP), that is string-
averaged algorithmic schemes.
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