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T khoa:

trong d6 mot non cho trude co phan trong bang rong. Van dung 1y thuyét
d6i ngdu Langrange cho mdt 16p cac ham tach dugc yéu chinh quy trong
khong gian anh (twong ung khong gian anh ma ¢ d6 cac ham muc tiéu va
rang budc chuyén dong), mot diéu kién tdi wu da cho mét diém cuc tiéu

toan cuc cua bai toan lién quan dugc cung cap. Bén canh, chung t6i cung

cdp mot didu kién twong dwong cho mét 16p cua cac ham tach yéu chinh

Bai toan cwec tri co rang bugc
tong quat, Diem cuc tiéu toan
cuc, Dieu kién toi wu du, Poi

ngau Langrange, Tdp danh.

quy. Két qua dat duoc trong bai bao 1a méi va dugc mo ta bang mot vi du

cu thé nham mo ta cac két qua tim dugc.

1. Introduction

Some notations of regular weak seperation
mappings for real-valued functions and several basic
calculus rules of which were introduced in the
literature, see, e.g., Giannessi [4], Moldovan and
Pellegrini [5, 6], Borrwein and Lewis [7],
Rockarfellar [2,8], Clarke [3], Tan and Minh [1] and
the cited REFERENCES therein. There are a lot of
papers on all aspects of primal sufficient optimality
conditions for global minimum points for a class of
general constrained extremum problems in terms of
regular weak seperation mappings in most of the
aforementioned literatures.

In recent years, Lagrange duality theory plays an
important role in the theory of optimization and
espescially, it plays a cructial role in the theory of
extremum problems, see [1,2,3,4,5,6,7,8] and the
cited REFERENCES therein.

Note that the general Lagrange duality theory
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can be drawn from a seperation scheme.
Furthermore, the class of regular weak seperation
mappings is the natural ground for obtaining
sufficient efficiency for global minimum points. Our
main aim in this paper is to provide a sufficient
optimality condition for a global minimum point for
the general constrained extremum problem and then,
we also introduce an equivalent condition for the
class of regular weak seperation mappings. An
example is also proposed to illustrate the main result

of the paper.

2. Lagrangian duality

2.1. Preliminaries

Let us call R"

(where
R" = {x =(X,.0oX,) X, €R, P :l,_n} ) be the
n-dimensional Euclidean space equipped with the

usual Euclidean norm ||| . ||| and further for any
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natural number n, we denote by 1:={1,2,..., n}. The
non-negative orthant cone of R" is given by the

following set
R! :{x: (x,-.,x,)€R" :x, 20, izl,_n}.

The topological interior of the non-negative

orthant cone of R" is expressed as
noo__: n
R, =intR;
= {x =(x,,...,x,)€R":x,>0,i= l,n}.

For each C CX,

symbols intC and clC instead of the interior and the

we denote as usual the

closure C, respectively.  Given a real-valued

function @ : RxR" — R.

The positive and non-positive level sets are
defined respectively by

lev_,p = {(u,v) eRxR": p(u,v)> 0}
and lev_,p = {(u,v) €RxR": p(u,v)< O}.

The negative and non-negative level sets are
defined respectively by

lev_,p = {(u,v) €RxR":p(u,v)< 0}
and lev,,p = {(u,v) e RxR": ¢(u,v)= 0}.

For the let us consider the

mappings

investigation,

f:C—>R, g:C>R", h:C—>R’
Until now, we

D=R"x0,, a

always accept a cone

Zero element

0p = (0, 0,...,0) € Rp, and then, we define the

vector-valued mapping

¢:C—>R"", E(x)z(g(x),h(x)), xeC.

Let us now consider a general constrained
extremum problem in the following format:

ft= min £ (x),
xeK:z{xeC: g(x)eRr!, h(x)zO}.
2.1)
Then the feasible region for the problem (2.1)
has form: K = {x eC: g(x) € D}.

The polar cone of D is D', is given by
D" :={5eR"":(5,d)20 Vd e Dj.

The dual problem of problem (2.1) is defined
by the following format:

supinf £ (x)=(%. §(x))]. 22

By symmetry, the problem (2.1) is associated
with the following problem

inf sup /(x)—(4. (x)) @3
(;I:jiously, we always have

supinfl /() (2 (x))

st r(9-(1 k)]

The difference among the right-hand and left-
hand sides of (2.4) is said to be duality gap. The dual
problem for the problem (2.2) may be reached by
putting condition (2.2) in the format (2.3), namely:

~inf sup[ ~/ (=) (2. ()]

In this case, the dual problem of (2.2) coincides with
(2.3)

~supinf [—f(x) +</L E(x)ﬂ
=inf sup [f(x)—</1= g(x)ﬂ

xeC 2eDt

the problem because:

Definition 2.1:
x € K. The set

K :={(u,v)eR><R”’ : u=f(;)—f(x), v=§(x), xeC}

Let us arbitrarily consider

is called the image of C through the mapping
A; :C—>R"xR, given by
A (x) = (f(;)—f(x), E(x)), xeC.

Definition 2.2 [3]: Xét mot tap cac tham sé I” va

16p cac ham w: RxX R™ xI' — R, cho boi
w(u,v;y)=u+w(v;y), yel, (2.5

adiy w:R" xT — R, cho boi

1173



Tran Mau Vinh/Vol 8. No 4_October 2022| p.171-176

VveR" Vyel' Va=03y,el:
aw (viy)=w(v7,)-

The functions of (2.5) is called the regular weak
separation functions, iff:

(lev.ow(..;7)=R., xD.

yel

2.2. New results of the paper

Our main purpose of this section is to provide
a sufficient optimality condition for a global
minimum point of problem (2.1) based on a

separation scheme.

A sufficent optimality condition under a
suitable assumption on the regular weak separation
functions is presented in the following theorem:

Theorem 3.1: (Sufficent optimality condition

for a global minimum) Let us consider a point

x € K . If the following equality holds
i - = f(x 3.1
max inf| /(x)~(% €(0))]=/(x) @D
then x€ K is a global minimum for the
extremum problem (2.1).
Proof: We define the real-valued function

w:RxR"xD" —> R, given by

w(u,viy)=u+w(viy), yeD", (3.2)
where  w:R"XD" —> R,
w(v;y)=(r.v), yeD".

VYveR" VyeD'

defined by

It is evident that

Va =03y,

=ayeD": aw(v;y)=w(v7,).

(3.2%)

Under the hypothese (2.6), the elements as

constructed above is regular weak seperation
because

ﬂ lev,,w(.,.;y)=R,, xD.

yeD*

It is not difficult to see that condition (3.1) is
equivalent to

max inf| £ (x)- £ (¥)-(2 &(x))]=0.

AeD* xeC

or equivalently, if:
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min sup |u+w(v;y)|=0. (3.3)
(2 6)7’€D4r uveK |: ( ):|
Therefore, the exists » D such that

sup [u +E<V; }/ﬂ = (0. By viture of the notion
(u,v)ek
of supremum, one can see achieve that

u+ﬂ(v; ;)SO, V(u,v)eK;, means that

there exists » € D" such that

u +E(v; ;) <0, V(u,v) ek-.
(3.4

Thanks to the concept of the class of regular
weak seperation funtions, we deduce that

M lev.ow(.,:7)=R,, xD,

yeD"

which ensures that
R xDc lev,,w (,,;) (3.5)

Taking arbitrary (u,v)e K., which implies

that w (1, v;7)=u+w (v;»)<0, means that

(u,v) €lev_w (,,;)
Thus,
K- c lev_,w (,,;)

(3.6)
Now noting that

lev_,w (.,.; 7/) Nlev_w (.,.; ;/) =¢. (3.7
Combining (3.5), (3.6) and (3.7) yields that
K-NR, xD= @,

and this leads to the impossibility of the system:
f(;)—f(x)>0, g(x)ZO, h(x)zO, xeC.

Consequently, the point X € K is a global
minimum point for the extremum problem (2.1) and
we arrive at the desired conclusion.

Theorem 3.1 is illustrate by the following

example:
Example 3.3: Let us consider the extremum

problem (2.1) for which C:[l,+oo)><R+,

D= Rf, the mapping
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f: C—>R,f((x,y))
=X+ =3x"+6x+2y-3
mapping

for every (x,y)eC, the

They mean that X 2(1,0) a global minimum

point for the extremum problem (2.1), as required.

To the end of this section, we derive a necessary

g:C> RZ, g((x,y)) = (x3 -1, y3 +y—x+1)condition for the class of regular weak seperation

for every (x,y) e C.

Then the feasible region of the extremum
problem (2.1) is K=C, where

K={(x,y)eC: g((x,y))ZO}.

Directly calculating gives that

D" :{(l,y)eR2 CAX+uy >0 V(x,y)eRf}

= R?

For the investigation, let wus consider a point

x=(L0)eK, it holds that f(})=1. In the
sequel, for any element (x, y) e C and for any

Lagrange multiplier (ﬂ,, ,u) e D", one can obtain

the following result

£(x3)=(2 2(x.7))

:(x—l)3 +3(x—1)+y +2y+1
+ﬂ,(x3 —1)+,u(y3+y—(x—1))

>1+ p(1-x).

Therefore,

(x.7)
and the equality holds at x=1, y =0. Consequently,

max inf (f(x,y)—<(/1,,u)a E(X,J’)»

(A,u)eD* (X,y)eC

= max (1+,u(1—x)):1

(A.u)eD”

achieved at U = 0, 4120 arbitrarily. Thus, the
condition (3.1) in Theorem 2.1 is fulfilled. From

her, we assert that X = (1,0) is a global minimum

point for the extremum problem (2.1).
In fact, in this setting, in view of the definition

one has for any feasible poin (x, y) e K,

f((x,9))=x"+y"=3x +6x+2y-3
=(x=1) +3(x=1)+y* +2y+12>1
=/(x).

funtions.

Theorem 3.2 (An equivalent condition for the
class of regular weak seperation funtions): Let us
consider a parameters set I and a class of elements

w:RxR" xI" = R, given by (2.5) in which the

condition (2.6) is valid. Then, the elements of (2.5)
are regular weak seperation funtions if and only if

(lev.ow(;7)=D.

yel
Proof: "=":

We set A= ﬂleV>OW(.,.;7/) and for each
yel

veR", A = ﬂlevzow(.;}/).

yer
We need to show that (*) R, xD c A.
Indeed, forevery (u,v) € R,, x D itresults in
u+w(v;y)>0, Vyel.
Forall y eT, it holds that
levow(.,.;7)
={(u,v)eRxR’”:w(u,v;y)=u+y(v;7/)>0}

inec(f(x,y)—</1, Q(x,y)>):1+,u(l—x)él,

and hence (u,v)e 4. We mean that condition
(*) is satisfied. Now, we suppose to the contrary,
that there exists (;, 13) € A\ (R++ x D) satisfying
(**) W(ﬁ,;;y) =u +y(;;7/) >0 for all
yel.

In other words, by definition there exists

Vo €I'such that w (v; ;/0) =0. We consider
two cases can occur as follows:

Case 1: If veD, it follows from the

hypotheses that (1;,\:) ¢(R,,xD) and hence

u < 0. In addition, E(\A/;y) >-—u>0 forany

y e I, thisis a contradiciton!.
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Case 2: If vgD, it yields from the

assumption 4 = D that the exists ;,; eI such that

E(\A/,;/) < 0. Note that in the case when u <0

A A A

then w (u,v; 7/) =u +y(;; };) < 0, this inequality
conflicts with the inequality (**). In the case when

u > 0, according to the condition (2.6) where

~

_u
w(7)

which leads to the existence of y, €I such

v:{}’ 7/:7’;)0{:@:— >0,

that the condition (3.2*) is wvalid. This is a
with  (*%)

&+y(;;ya)=;t+gey({/;};)=0.

contradiction because

AL

=
Suppose to the contrary, that 4 # D which

follows that, either 4 \D#¢ or D\ A #¢.

For the first case, there would exists an element

AS AV \D, ve AV which implies that

E(‘A’J’;) >0 ‘v’;A/ e I'. Taking arbitrary u >0,
one can be achieve the following result
W(u,;;;)=u+ﬂ(;;;§)>0 V;A/el”,

we mean that

(u,\;) € ﬂlev>0w (.,.;;/) =A, A=R,, xD.

yel

This is a contradiction. For the later case, there
exists VED\ A, v A which yields that

3;/61": E(\Az;;;)<0.

Taking u such that U E(O, —E(V;ﬂ/))a we

obtain that (u,;) € A and furthermore

A A

W(u,v;y) =u+y(v;7/) <0, yerl,
we arrive at a contradiction!

The propositon is proved completely.
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3. Conclusion

Based on the concept of the elements of the
format (2.5) are regular weak seperation funtions
and the notion of image sets, we have obtained a
sufficient optimality condition for a global minimum
point for the extremum problem (2.1) via the
Lagrangian dual model. Besides, we also gave a
necessary and sufficient condition for the class of

regular weak seperation funtions.
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