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Trong bai bao nay chung t6i phan tich mot phuong phap méi
giai bai toan can bang véi song ham gia don di¢u va thoa
mén diéu kién kiéu Lipschitz. Dinh 1y hgi tu manh dugc trinh

bay khong cin biét truéc thong tin hiang sé Lipschitz cia

song ham. Cuoi cung, mét vai vi du s6 dugc dua ra dé minh

Tur khoa:

Chirc nang nhi phén kiéu Pseudomomotone
va Lipchitz; bai todn cdn bang; phuong
phdp siéu cap subgradient; thudt todn qudn
tinh; hoi tu manh mé; ty 1¢ hoi tu

Lop AMS: 47H09,47J20,47J05,47J25

hoa hiéu sudt cta thuit toan dé nghi.

1 Introduction

Let C be a nonempty closed convex subset of a
real Hilbert space H and f:H X H - Rbe a
bifunction with f(x,x) = 0 forall x € C. The
equilibrium problem (EP) for the bifunction f on C
is stated as follows:

Find x* € C such that f(x*,y) =0
forall y € C. (1)

Let us denote EP(f, C) by the solution set of the
problem (EP). To the best of our knowledge, the
term "equilibrium problem" introduced in 1992 by
Muu and Oettli [25] and has been further studied by
Blum and Oettli [3]. Equilibrium problem is also
called the Ky Fan inequality due to his contribution

1
Y, = arg min {Af(xn,y) —+ Ellxn - yIIZ:y € C}

1
Xnsn = argmin {2 () + 5 I, = yl%y €

where 41> 0 The
methods in [9,30] are also called the extra-gradient
method (EGM) due to the result of Korpelevich in
[15]. In recent years, the extra-gradient method has

is a suitable parameter.

improved and extended by many authors see, e.g.,
[13,20, 27, 35, 36].

to this field [8].

In fact, the problem (EP) is a generalization of
many mathematical models including variational
inequality problems, optimization problems and
fixed point problems, see, [3, 16, 17, 25]. The
problem (EP) has been considered by many authors
in recent years, see, [12,14,10,18,21,22,
24,26,27,30,31,33] and the REFERENCES therein.

By using the idea of Korpelevich extragradient
method [15], Flam et al. [9] and Quoc et al. [30]
proposed the following algorithm for solving
equilibrium problem involving pseudomonotone and
Lipschitz-type bifunction:

(EGM)

Observe that some known methods use the

constant  stepsizes which depend on the

Lipschitztype constants of the bifunctions
[23,34,35]. This fact can give some restrictions in
applications because the Lipschitz-type constants are

often unknown or difficult to estimate.
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In [11], Hieu et al. recently proposed two
algorithms [11, Algorithm 3.1, Algorithm 4.1] for
solving an equilibrium problem whose associated
bifunction is monotone and satisfies a Lipschitztype
condition in a Hilbert space. In the first algorithm in
[11], it is assumed that the value of the Lipschitz
constant of the bifunction is known while in the
second one the prior knowledge of this constant or
its estimate is not explicitly needed. The proposed
algorithms are constructed around the proximal-like
mapping and the regularized method and use some
new variable step size rules. Strong convergence
theorems are established under some mild conditions
imposed on bifunction and control parameters.
Finally several numerical results are provided to
illustrate the behavior of the new algorithms and to
compare them to well-known algorithms.

We comment here that the methods of [11]
require computing the proximal-like mapping twice
per iteration and this could be costly especially since
one needs to solve an optimization problem twice
per iteration during implementation. This defect also
occurred in [35, Algorithm 1]. Furthermore, the
bifunction is compelled to be monotone in [11,
Algorithm 3.1, Algorithm 4.1] which excludes some
other important class of the bifunctions (pseudo-
monotone bifunctions). These are setbacks in the
methods proposed in [11].

In recent years, inertial type algorithms can be
regarded as a technique to speed up the convergence
properties have received a lot of attention from
many authors for solving optimization problems,
variational inequality problems and monotone
inclusions, see, [1,2,7,19,24,29] and the

REFERENCES therein. So, a natural question
which raises is:

Is it possible to introduce a new strongly
convergent extra-gradient algorithm with inertial
effects for finding a solution of EP (1) with pseudo-
monotone bifunction which does not depend on the
Lipschitz-type constants of the bifunctions?

In this work, we give a positive answer to this
question. Motivated and inspired by the works of
Censor et al. [4] and Lyashko et al. [19], we will
propose a new extra-gradient type algorithm for
finding a solution of the EP in the setting of infinite-
dimensional real Hilbert spaces.

This paper is organized as follows: In Sect. 2, we
collect some definitions and preliminary results for
further use and then propose a new algorithm in the
more details. Sect. 3 deals with analyzing the

160

convergence of the proposed algorithm. Sect. 4 gives
several numerical results on two test problems to
illustrate the convergence of the algorithm and
compare it with studied algorithms.

2 Preliminaries
Let C be a nonempty closed convex subset of H. We
begin with some concepts of monotonicity of a
bifunction [3,25].

Definition 1.1. A bifunction f: H X H - R is
said to be:
(1) strongly monotone on C if there exists a constant
y > 0 such that

fee) +f@x)<-yllx—yl? vxy€C;
(2) monotone on C if f(x,y) + f(y,x) <0 for
allx,y € C;

(3) pseudomonotone on C if f(x,y) = 0 =
f(y,x)<O0forallx,y € C;
Definition 1.2. A bifunction f: H X H = R is said to
satisfy the Lipschitz-type condition on C if there
exist two positive constants ¢y, ¢, such that

faN+f02)=2fxz)—alx—yl*-c
ly—=zI? vx,y,z € C.

The normal cone N; to C at a point x € C is
defined by

Ne(x)={weH:(w,x—y)=0,Vy € C}.
For all x € H, the metric projection Pcx of x
onto C is defined by

Pex =argmin{ll y —x ll:y € C}.
Since C is nonempty closed and convex, P-x
exists and is unique.

Lemma 2.1. [28, Proposition 3.61] Let C be a
nonempty closed convex subset of H and g:H —
RU{+xo} be a proper, convex and lower
semicontinuous function on H. Assume either that g
is continuous at some point of C, or that there is an
interior point of C where g is finite. Then, x* is a
solution to the following convex problem
min{g(x):x € C} if and only if 0€dg(x*)+
N (x™), where dg(.) denotes the subdifferential of
g and N¢(x*) is the normal cone of C at x*.

Lemma 2.2. ([32]) Let {a,} be a sequence of
nonnegative real numbers, {a,} be a sequence of
real numbers in (0,1) with Yy-qa, = © and {b,}
be a sequence of real numbers. Assume that

A1 < (1 —ay)a, + ayb,, Vn = 1.
If limsupy,eb,, <0 for every subsequence

{an,} of {ay} satisfying
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lim inf(ankJrl - ank) =0,

k—oo

then lim,,_,a,, = 0.

Lemma 2.3. ([5]) Let H be a real Hilbert space.

Then the following result holds:
Il x+y 12<Il x 1>+ 2(y,x + y) Vx,y € H.

3 Main results Now, we introduce a new
algorithm for solving the problem (EP).

Algorithm 3.1.

We assume that {0,,} and {€,} are two positive
sequences such that {6,,} < [0,0) and €, = o(a,,),

means lim,,_, Z—" = 0, where {a,} < (0,1) satisfies
n

the following conditions:

[oe]
lima, =0, Z a, = oo,

n—oo
n=1

Iterative Steps: Calculate x,,,; as follows:

Initialization: Ler 0 > 0,7, > 0,u € (0,1) and
X0, Xy € H be arbitrary. Let {A,} be a nonnegative
real numbers sequence such that Y p—1 1, < +00.

Step 1. Given the iterates x,_, and x,(n > 1),
choose 8, such that 0 < 6,, < 8,,, where

€n } .
_ m {0, — ifx, #x,_4,
0, = { { 12, = X4 nron )

0 otherwise.

Step 2. Given the current iterates x,,_; and x,, for each n > 1, compute
Wp = (1 - an)(xn + Hn(xn - xn—l))r
1
i = argmin {z, £ (W, ) + 5 Iy = wal}.
yec 2
If y,, = wy,, then stop and y, is a solution. Otherwise, go to Step 3 .
Step 3. Select v, € f (Wy,,") (¥,) and q,, € N (yy,) satisfying
n = Wn — TpVUn — Yn 3)

and construct a half-space

Ty ={z € H: (W, — TyVp — Y, Z — ¥n) < 0},
compute

. 1 2
Xnsr = argmin {1, () + 5 ly = wl?]
YETy
And
(L {g W —yull® 4 Wns =yl }
Th+1 = { Zf(WnﬁXrHl) - f(Wn' Yn) - f(Yn'Xn+1)' " "
lf f(Wann+1) - f(Wn: YH) - f(yn'Xn+1) >0,

\tn + 2n
Set n: = n + 1 and return to setp 1.

In order to establish the strong convergence of
Algorithm 3.1, we assume that the bifunction
f:H X H - R satisfies the following conditions:

Condition 3.1.
(A1) f is pseudomonotone on C;

(A2) f satisfies the Lipschitz-type condition on
H with two constants ¢; and c;

(A3) f(-,y) is sequentially weakly upper semi-
continuous on C for each fixed pointy € C, i.e.,

if {x,, }  C is a sequence converging weakly to
x € C, then

lim sup f(xp, y) < f(x, )

n—-oo

otherwise.

(A4) f(x,) is convex, lower semi-continuous on
H for every fixed x € H.

(AS) Either intC # @ or f(x,.) is continuous at
some point in C for every x € H.

Remark 3.1. From the conditions (A1) and (A2),
we get f(x,x) =0 forall x € C.

It is easy to show that, under Condition 1, the
solution set EP(f, C) of the problem (EP) is closed
and convex (see, for instance, [30]).

In this section, we analyze the convergence of
Algorithm 3.1. We start with the following Remark
and Lemmas which play an important role in
proving the convergence of the proposed algorithm.

Remark 3.2.
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1. Thanks to Lemma 2.1, there always exists
v, € 0f (Wy,")(y,) and q,, € N:(y,,) such that (3) is
satisfied. Hence, Algorithm 3.1 is well-defined.

2. With the selection in Step 3 it is easy to show
that C c T,,.

Lemma 3.1. ([37]) Let {t,,} be a sequence generated by Algorithm 3.1. Then lim,_, T, =T €

[min {;, ‘rl} ,T1 + /1] , where A = Z An. Moreover, we obtain
2 m {Clﬁ CZ} 1
n=

f(Wn' xn+1) - f(Wn' Yn) - f(yn' xn+1) <

Let us claim the main result of this paper.

Theorem 3.1. Let C be a nonempty closed
convex subset of H and f:HXH—->R be a
bifunction satisfying Condition 3.1. In addition, we
assume that the solution set EP(f,C) is nonempty.
Then, the sequence {x,} generated by Algorithm 3.1
converges strongly to an element u € EP(f,C),
where || u ll= min{ll z |l:z € EP(f,C)}.

Proof: Claim 1. The sequence {x,} is bounded.
Indeed, first we show that, there exists n, € N such
that

141 — ull < llw, —ull ¥n = n,.
We have, since
1
Xp41 = argmin {Tnf O y) +5lly — wnllz}
YETy 2
and Lemma 2.1, it follows that
Tn(f(yn! y) - f(yn: xn+1))

2 (Wn —Xn+1Y — xn+1>: Vy
€T, (5)

Letu € EP(f,C) c C c T, and y: = u, we
obtain

Tn(f(yn' u) - f(yn' xn+1))

= (Wn — Xp+p U
- xn+1>' (6)

Since u € EP(f,C) c C and y,, € C, we have

u
2Tn+1

(IWn = Ynll? + xns1 = 3l®). ()

f(u,y,) = 0. By the pseudomonotonicity of f, we
obtain f(y,, u) < 0, which implies from (6) that

_Tnf(yn' xn+1)
2 (Wn —Xnt+ U

— Xp41)- (7
Note that, from v, € af (wy,,") (¥,), we get
fWi, ¥) = f (Wi, Y1) 2 (U, ¥ = Yu), Vy € H.
In particular, substituting y: = x4, we get
Tn(f(wnlxn+1) - f(Wn'Yn))

= Tn(”n: Xn+1
- yn)- (8)

By the definition of T,,, we have
(Wn “TnUn = Y Xn41 — Yn) <0
and so
Tn(”n: Xn+1 — yn>

= (Wn ~ Y Xn+1
- yn) (9)

Combining (8) and (9), we obtain
Tn(f(Wn' Xni1) — [ (W, yn))

= <Wn — VYo Xn+1

- yn)- (10)

Adding (7) and (10), we get

ZTn(f(an Xnt1) = f (Wi, Y) — f(Yn'xn+1)) = 2(Wy — Y Xng1 — Yn) + 2{Wy — Xy, U — X))
= (Iwn = yull® + lxns1 = Yall> = 241 — wyll?)
F(Iwy, = Xyt 1+ 2 — ull® = lwy, — ull®)
= lwp = Yull® + xnss — yall® + I — ull? = llwy, — ull®.
2(f Wy K1) = f W, ¥0) = f O Xn11))
u

n+1

+ ”xn+1 - ynllz) (12)

This implies that

241 — ull? <
2 2 2

S ”Wn - u" - ”Wn - yn” - "xn+1 - yn"

+ ZTn(f(Wn' xn+1) - f(Wn' Yn)

- f(yn' xn+1))-

(Iwy, = yull?

(11D Substituting (11) into (12), we get

From (4), we get
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T T
2 2 n 2 n 2
Pna =l < Wy =l = (1= =)l = 33l = (1= =) o = 30l
Tn+1 n+1
Tn

= llw, — ul® (1 —u )(nwn = ull? + Mg — yal?). (13)

n+1

Tn

) =1-u> 1;—”, thus there exists ny € N such that 1 — uTT“ >

n+1

We also have lim,,_, (1 —u

Tn+1

0Vn = ng, by (13) we obtain
lxpe1 — ull < llwy, — ull Vn = n,.
On the other hand, we have
”Wn - u” = ”(1 - an)(xn + en(xn - xn—l)) - u”
= "(1 - an)(xn - u) + (1 - an)en(xn - xn—l) - anu”
< (1 - an)”xn - u” + (1 - an)gn”xn - xn—l” + an ” u "

[V}
= (= @l =l + ay [(1 = @) 2y = w0 (19)

n

Moreover, since (2) we have
€
—: % = Xp_gll < a—: -0,

this implies that lim,,_, [(1 —ay) Z—” I, — xp_qlI+1l w II] =|| u |l, thus there exists M > 0 such that

6y

(1 = an) =l = 2p I+l wll< M (15)
n
Combining (14) and (15) we obtain
lw, —ull < (1 — ay)lix, —ul + a,M.
Thus
Ixner —ul < (A= a)lx, —ull + ayM
= max{llx, — ul, M} < - < max({|x,, —ul, M}.

Therefore, the sequence {x,,} is bounded.
Claim 2.

T T
(1 - ”‘[ - > lyn — Wn”2 + (1 —H - ) lxn 41 — ynllz < lix, _u”2 = llxpe1 — u”2 + a,M;.

n+1 n+1

Indeed, we have |lw, —ull < (1 — a,)llx, — ull + a, M, this implies that
lw, —ull®> <1 —ay)%lx, —ull® + 2a,(1 — a,) )Mllx,, — ull + a2M?
< llx,, — ull®* + a,[2(1 — a,)Mllx, — ull + a,M?]
< llxn, — ull® + @My, (16)
where M;: = max{2(1 — a,)Ml|lx,, — ull + a,M?: n € N}. Substituting (16) into (13) we get
Yl = wall? = (1 -

Tn Tn

2 2 2
sy — wl < llxy — ul +anM1—(1—ﬂ )len+1—ynll,

n+1 Tn+1

or equivalently

T T
(1= 1= I = il (1= =) By = 30l < o =l = oty =l + M.
Tn+1 Tn+1

Claim 3.
2 2 Gn
lxper —ull” < (A= alx, —ull® + ay, [2(1 —ap)llx, —ull - o, — x4l
n

On
+60,llx, — x4l - o, = X1 Il + 2 1 Zz | lwy, — X ll + 2{—u, xpp 1 — U)|.
n

Indeed, using Lemma 2.3 we get
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%ner —ull®> < llwy, — ull?
(1 = @) — 1) + (1 = @) 0 (%, — Xp_q) — @ull’®
< I = @)y = w) + (1 = @) 0 (= X )II” + 20—, Wy —w)
= (1= ap)?lxn —ull® + 2(1 = )0l — wllixy, — g Il + 02113, — 2,4 117
+2(—u, W, — xp41) + 2(—U, X4 — u)
< A-alx, —ul*+a, [2(1 —ap)lx, — ullz—" 2, — x4l

n

O
+0,, 1, — x4l - oy = xpoqll+ 2 1wl llwy, = g1l + 2¢=u, X541 — u)
n

Claim 4. {len - ullz} converges to zero for each n > 0. Set
_ 2
ay: = llx, —ull

and

6 6y,
bn = 2(1 - an)”xn - u” - ”xn - xn—l” + gn"xn - xn—l” - "xn - xn—l"
an an

F2 1wl Iwy, = xppq Il + 2(—u, X141 — U)-
Then, Claim 3 can be rewritten as follows:
ani < (1 — a,)a, + a, b, satisfying
li{{rl)le)lf(anrr1 - ank) > 0.
This is equivalently to that we need to show

lim sup (u, u — X, 41) < 0

k—o0

and
lim sup Wy = Xngsall <0
for every subsequence {[|x,,, — ul} of {llx, — ull} satisfying
i (g — ol = [ — ) 2 0.
Suppose that {||x,, — ul|} is a subsequence of {llx,, — ull} such that
i (g — ll = [ — ) 2 0.
Then

. . 2 2 . .
tim inf ([ger = 7 = o, = ul®) = tim inf[ (s =l = e, = wl) (s =l + 1, = )]

= 0.

By Claim 2 we obtain

T T
lim sup [(1 THT =k ) ”Wnk - ynkllz + (1 THT ne ) "xnk+1 - Ynkllz]

k—oo ng+1 ng+1

< im sup [ — 0l = [nges = ul? + ]
k—o0

< lim sup [||xnk — | - [l 41 — u||2] + lim supa,, M;
k—oo k—oo

. . 2 2
= —timinf 1 = ull* = otn, = ul’]

<0
This implies that
1im [, = Wi | = 0 and Jim 1 — v ]| = 0. a7
Since (17), we obtain
1 [y, 1 = W, || = 0. (18)
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Now, we show that
|, 41 = Xn, [l = 0 as n — oo (19)
Indeed, we have

”xn — Wn ” = en ”xn — Xn —1" =an e ”xn —Xn —1" - 0. (20)
k k k k k k a k k
ng

Combining (18) and (20), we get
||xnk+1 - xnk” < ||xnk+1 - Wnk” + ”Wnk - xnk” - 0.
Since the sequence {xnk} is bounded, without loss of generality we can assume that {xnk} converges
weakly to some z* € H, such that

lim sup(—u, Xny — u) =(—u,z" —u). (21)

k—oo
Using (20), we get

Wy, = 2" ask — oo,

Now, from limy_,e [[Wy, = ¥n, [l = 0, limy e Wy, = X1 || = 0, limyyoo |25, 41 = ¥, | = 0, we will
show that
z* € EP(f, C).
Indeed, from w,,, — z* and limy_, [[Wy, — ¥, || = 0, we obtain y,, — z* and so, since {y,} € C, we

have z* € C. Moreover, we have

2(f W 41D = F Wi ) = £ O 12)) S 2 (I =l + W = 30l?),
which follows that
2f O 1) 2 207 O Tsn) = F O, ) = 2 (I = 3ol + s = 3l7). (22)
Thus, from (10), it follows that
b 12) = F 4 32) 2 = O = i s = ) 23)
Combining (22) and (23), we get
U

1
Zf(Yn'xn+1) = _L__<Wn Y Xn+1 — yn) - (”Wn - ynllz + ”xn+1 - ynllz)- (24‘)

n Tn+1
On the other hand, it follows from (5) that

f(yn' y) = Tnf()’n' xn+1) + Tn<Wn —Xn+1Y — xn+1)' Vy €C. (25)
Subtituting (24) into (25), we obtain

1 U T
f(yn'y) = E(Wn VYo Xn+1 — yn) - E‘L’ Z (”Wn - ynllz + ”xn+1 - ynllz)
n+1
+Tn(Wn —Xn+1 Y — xn+1>: Vy eC. (26)

By Lemma 3.1, we have

. . u
lim 7,, exists and 7, = m {—, Tq ¢
n-o " " 2m {c;, ¢} °

This implies that the sequence {7,,} is bounded. From (26), we get

1 uT
f(Ynk,)’) = E(Wnk ~ Yo Xnp+1 — ynk> - ET s (”Wnk - ynk”Z + ||xn+1 - ynk"Z)
ng+1
+Tnk<Wnk - xnk+1:y - xnk+1>l Vy S C (27)

Letting k — +o0 in (27), we get
f(z",y) =0, vy eC.
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This follows that z* € EP(f, C).

Next, since (21) and the definition of u = Pgp (£ ¢)(0), we have

lim sup(—u, Xny — u) =(—u,z"—u)<0. (28)
k—oo
Combining (19) and (28), we have
lim sup(—u, Xnpt1 — u) < lim sup(—u, Xy — u)
k—oco k—o0
=(-uz" —u)
<0. (29)

Hence, by (29), lim,,_, z—" I, — x,—11l = 0, Claim 3 and Lemma 2.2, we have lim,,_, o llx, —ull = 0.

That is the desired result.
4 Numerical Examples

In this
examples to show the implementation of our

section, we give some numerical
proposed method. All computations are done in
MATLAB R2016a and run on DELL i — 5 Dual-
Core 8.00 GB (7.78 GB usable) RAM laptop.

Example 4.1. Let us consider a problem when
the bifunction f is given as follows

f,y):=Px+Qy+nr)"(y—x),

where P = (p”)NxN and Q = (qij)NxN are
N X N symmetric positive semidefinite matrices
such that P — Q is also positive semidefinite and
r € RN, The bifunction f has the form of the one
arising from a Nash-Cournot oligopolistic electricity
market equilibrium model [6] and that f is convex in

y, Lipschitz-type continuous with constants ¢; =

1 . . .
€2 =3 IP—QIl,, and the positive semidefinition

of P — Q implies that f is pseudomonotone. P and Q

are matrices of the form ATA with A = (aij)NxN

being randomly generated in the interval [—N, N].

Experiment 1

In this experiment, we consider feasible set
N
C:= H [=10,10]
i=1
and compare our Algorithm 3.1 with Algorithm
3.1 and Algorithm 4.1 proposed in Hieu et al. [11],
and Algorithm 1 of [35] with different values of
N =5,10,20,30. x;
[=N,N] except otherwise stated. The stopping

is randomly generated in

criterion used is lleyll, <€ with a tolerance
e=10"%

Table 1: Methods Parameters Choice

1
Proposed Alg. 3.1 p=0.5 7=0.01 =1 ap = —
n
1
€= xg = zeros(N, 1)  |lex]| = ||2n — ¥l
3 " ‘ l 1 - 1 5 p P
Hieu Alg. (3.1) A, = ToLL Q= G r1,y1 €C llen]| = |znt1 — x|
Hieu Alg. (4.1) A =1 0.4 =
ieu Alg. (4. = = 0.1 = ——
g 0 I n (n+1)09
21,90, y1 € C  |len|| = [|[Tnt1 — 20|
_ 1 1
Vuong Alg. (1) An = T 01~ Oy = - llen |l = len — yul
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Table 2: Comparison: Proposed Alg. 3.1 vs Hieu Alg. (3.1) vs Hieu Alg. (4.1) vs Vuong Alg.

N Proposed Alg. 3.1 Hieu Alg. (3.1) Hieu Alg. (4.1) Vuong Alg.
5 No. of Iter. 5 234 60 1202
CPU (Time) 3.4151 12.3607 3.0689 64.3597
10 No. of Tter. 3 110 269 84
CPU (Time) 1.4410 6.1681 14.8703 4.6408
20 No. of Tter. 3 12 5317 60
CPU (Time) 1.0064 0.81348 338.0696 3.57631
30 No. of Tter. 3 118 2427 26
CPU (Time) 2.1625 7.7940 163.2326 1.6397
B 10?
:
! {5 PO
101 L g i T
100 L
= 107!
Ky
— 10-2 L
—e@— Proposed Alg.
—@— Hicn et al Alg. 3.1 103k
—*- Vuong et al Alg, 3.1
107 &
10 : L . 10° . i
10° 10° 10° 10° 10° 10" 10?
Number of iterations Number of iterations

Figure 1 Comparison: Proposed Alg. 3.1 vs Hieu Alg. (3.1) vs Hieu Alg. (4.1) vs Vuong Alg.

N=5
102
102
10°
(2] 1
= ~ 10
& 10? =
— =
L
4 —— Proposed Alg.
10 —@— Hicu et al Alg. 3.1
—-— Vuong et al Alg. 3.1
l (1]
* 100
10 L . 1 i
0 1 2
10 10 10 10° 10 102 10°
Number of iterations Number of iterations

Figure 2 Comparison: Proposed Alg. 3.1 vs Hieu Alg. (3.1) vs Hieu Alg. (4.1) vs Vuong Alg.
N=10
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—p— Proposed Alg.

= Hien et al Alg. 3.1

- Vuong et al Alg. 3.1
1

10° 10’
Number of iterations

[[en]]2

1 3

10% 10
Number of iterations

10

Figure 3 Comparison: Proposed Alg. 3.1 vs Hieu Alg. (3.1) vs Hieu Alg. (4.1) vs Vuong Alg.
N=20

i Proposed Al
G [licn et al Alz. 3.1
—*- Vuong et al Alg. 3.1

leall

1078
10° 10! 102
Number of iterations

||()n|‘j

i Hien et al Alg. 4.1

107 g
10° 10 102
Number of iterations

10° 10*

Figure 4 Comparison: Proposed Alg. 3.1 vs Hieu Alg. (3.1) vs Hieu Alg. (4.1) vs Vuong Alg.
N=30

5. Conclusions

The paper has proposed a new modified
subgradient extra-gradient method [4, 19] for
approximating solutions of equilibrium problems in
Hilbert spaces. The strong convergence theorem is
established
under the

equilibrium bifunctions. This work also studied the

standard assumptions imposed on

numerical behaviour of the proposed algorithm and
compared it with the well known extra-gradient
methods.
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