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Théng tin bai viét Tém tit
Ngay nhdn bai: 25/9/2022 Hé théng cac phuong trinhg vi phan phi tuyén Duffing thudong duoc su
Ngay sika bai: 20/10/2022 dung trong dong luc hoc, né duoc biét dén dé mo ta nhiéu hién twong dao

Ngay duyét dang: 30/12/2022  dong quan trong trong hé thong ky thuat phi tuyén. Bai bao nay trinh bay
phuong phap gia phd dé tinh toan cic nghiém sé cho phuong trinh vi phan

phi tuyén Duffing trén khoang [-1, 1]. Phuong phap nay dya trén ma tran vi
Tir khéa: phan sir dung cac diém Chebyshev Gauss - Lobatto. Dé tim nghiém sb cua
cac phuong trinh vi phan phi tuyén Duffing, chung t6i di xay dung mot thu
Dao dong Duffing, phwong . N N , 2, , A
tuc 1dp. Phan mém dugc st dung dé tinh toan trong nghién cru nay la
trinh Duffing, phuwong phap gia

phé, hé thong Duffing, diém
Chebyshev.

Mathematica 10.4. Két qua sé thu dugc cho thiy phuong phap nay c6 do
chinh xéc cao va sai s6 rat nho.

have been studied, expanded and developed the
1. Introduction Duffing equation [2-6]. Simultaneously, many
The Duffing equation was known in 1918 in the ~ numerical methods also were studied to solve that
article with the title “Forced oscillations with ~ equation force [4-7].
variable natural frequency and their technical Consider the most general forced form of the
significance” of George Duffing [1]. Since the Duffing nonlinear differential equation (or Duffing
appearance of the paper, there are many authors oscillator)

2
dar’
here, the numbers &,5,¥.F,w are given Depending on the choice of the ¥ and f, we had

x(t)+ é‘%x(z)+7/x(t)+ﬁx(t)3 =Fcos(a)t), a<t<b, (D)

constants, in which: § = 0 is controls the amount of  some the following special cases:

damping; f — controls the amount of non-linearity in (i) The hard spring Duffing oscillator
the restoring force; ¥ — controls the linear stiffness;  (H.S.D.0.)with ¥ > 0, B = 0;

F — is the amplitude of the periodic driving force; w
— is the angular frequency of the periodic driving
force [4-6].

(i) The soft spring Duffing oscillator (S.S.D.O.)
withy = 0,8 < 0;
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(iii) The inverted Duffing oscillator (I.D.O.) with
¥<0p8 >0

(iv) The nonharmonic Duffing oscillator (N.D.O.)
withy = 0,8 > 0;

these special cases had been studied in the
literature of Richard [5, Chapter 8].

Besides, depending on the parametric values
8,B.v.F and @, the problem (1) may be become
other problems, for example:

If § =0 and F = 0 then (1) becomes the cubic
free undamped Duffing oscillator [2-3]

d’ 3
?x(t)jL }/x(t)+ﬂx(t) =0, a<t<b;
If y=0 and p=w=1 then the equation (1)
becomes the simplified Duffing oscillator
d2
d*
this equation was studied by Ueda and so-called
Ueda oscillator [4];

x(t)+5%x(t)+x(t)3:Fcos(t), a<i<b,

it 7 =1 and p=1 then the equation (1) calls

the Duffing-Holmes nonautonomous oscillator has
form [8-10]

d’ d 3

—zx(z)+5—x(t)—x(t)+x(t) =Fcos(a)t), a<t<bh.

dt dt

Several numerical solutions have been studied so

far dealing with the Duffing differential equation
such as the modified differential transform method
to obtain the approximate solutions of the nonlinear
Duffing oscillator [11]; the collocation method is
based on the radial basis functions to approximate
the solution of the nonlinear controlled Duffing
oscillator [12]; M. A. Al-Jawary proposed the
Daftardar-Jafari method to the Duffing
equations and to find the exact solution and
numerical solutions [13]; M. Gorji-Bandpy applied
Modified Homotopy Perturbation Method and the
Max-Min approach to study the generalized Duffing
equation [14]; in [15], the authors employed the new
perturbation technique to solve strongly nonlinear
Duffing oscillators; in [16], the authors used the
Taylor Expansion to find approximate solution of
Nonlinear Duffing Oscillator; to find numerical
solution of the Duffing oscillator, the authors in [17-
18] used the Legendre pseudospectral method, the
authors in [19] used the spectral method, the authors
in [20] used the Taylor matrix method; in [21], the
authors proposed the post-verification method for

solve

solving the forced Duffing oscillator problems
without  prescribed periods; the analytical
approximation technique basing on the energy
balance method was used to determine approximate
solutions for highly nonlinear Duffing oscillator [22-
23]; the block multistep method is integrated with a
variable order step size algorithm to find numerical
solutions of the nonlinear Duffing oscillator [24].

This article uses the pseudospectral method
based on Chebyshev differential matrix [25] to
determine approximate solutions with the boundary

conditions on the interval [—1,1] take the form
x(-D=a, x(1)=p.

2. Chebyshev differentiation matrix for
Chebyshev Gauss — Lobatto points

fixed  integer N>0, set
J ={0,1,2,..., N}, suppose that a grid function
v(x)is defined on the N +1 points Chebyshev

For a

Gauss — Lobatto. Choose the points {x, ,k € J} such
that x, =cos(kz/N), keJ. They are the
Nlh

polynomial 7}, (x) = cos(Ncos™ x).

extrema of the order in the Chebyshev

The function v(x) is interpolated by

constructing the N ™ order interpolation polynomial
g;(x) suchthat g,(x,)=0;,,

p(x)=Y pg,(x)
Jj=0

where p(x) is the unique polynomial of degree
N and p;=v(x;), je€J . The following can be

shown:
DM A-xHT (%) .
g/(x)z( ) (2 ) N( ), JEJ,
;N (x—x;)
where
2, jeJ,,
C. =
L jed,

with J, ={1,2,..,N —1} and J, ={0, N} .

As we know the values of p(x) at N+1
points, we would like to find approximately the

values of the derivative of p(x) at those points,
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p'(x):%p(x), in the matrix form p'=D.p.

The matrix D, :{dl.(jj)} is called the Chebyshev
differentiation matrix.

Evidently, the derivative of p(x;) is

N
p'(xj)ZZ(DC)j,kp(xk)7 JeJ.
k=0

We has the entries dl.(}]? =g"(x;), which are
[25-29]

2N? +1
afy =2,
(1) = ——xi l e J
2(1-x7) ‘
¢ (=)
dl)=—L——

Cj xl.—xj

, i# ), 1,jeJ,

where €, is determined by the formula (8).

Similarly, p'(x) is a polynomial of degree

N —1 and the second-order differentiation matrix
d2

Dé. We have p"(X):F p(x)or in the matrix

Ix

form p"zDé p, the second-order derivative of

p(x;) becomes

p'(x)=>.(D2), i p(x). jeJ
k=0

with the entries di(i) are determined by the

formula Dé =(DC )2, or they are identified as
follows [30-31]:

4_

aiy = d =
di§§>:_w, ieJ,

3(1-x2)
N R
v ¢ (l—xf)(xi—xf)z’ e
d@:g(—l)f (2N2+1)(1_xj)_6 jeJ
Ve ()
d(z)_ :E(—l)‘HN <2N2+1)<1+xj)—6 jeJ
N,j 3 C‘/ (l-{-sz) 5 .

184|

The entries of the second-order differentiation

N

matrix satisfy the identity dj(z,z = Zdj(ll)d i(,lk) .

i=0

3. Chebyshev pseudospectral method Suppose
that

2

d
Wx(t) =g(t), (-D=a,, tl)=a,,

and the collocation points {} so that
-l=t, <t <...<t,=1.

We know that

d2 N
ﬁx]vai):Z(Dc)ikxN(tk).
k=0

Therefore, problem (13) becomes

N
D DDxyt)=gt), i, xy(ty)=a, xy(t)=a
k=0

Alternately, we partition the matrix Dc into

matrices.

Consider the matrix D., we cut off the first-row
déli) and last-row d](\})[ with ie€J,, then we
partition that matrix into three matrices:

1) )] )
dig dy; di;
) 1) )
dap dy d3,

0
dl,Nfl

)
dZ,N—l

1)
dl,N

O]
dZ,N

) 1)
dN—l,N—l dN—l,N

(0] ~(1)
eN

() ©] (©)
dN—l,O dN—l,l dN—1,2
—
~(1)
eo E

in the matrix form

-1 ) -1
eo ={d{}. B ={d)} and ex ={d}} with

i,jeJ, [32-33].

And we can rewrite

Similarly, we partition matrix Dé and can
~(2)
€0 z{di(,%)},

P ={d?} and eN ={d)} with i, jeJ,.

rewrite in the matrix form:

Thus the problem (13) can be written in the
matrix form
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Using the Chebyshev pseudospectral method
to solve number problems (13), the simple
where x and g denote the vectors second-order differential equation (13) can rewrite
in the matrix form (17). Thence, we find

~(2) (2 ~(2)
ae0 +E x+oen =g,

xy () g() numerical solution x. Section 4 and 5 will
_| .(IZ) , _| & (.tZ) ) present its application for the Duffing nonlinear
: : differential equations.
xy(tyy) gltyy)
4. Applications
Consider the Duffing nonlinear differential equation
d? d 3
?x(t)+5zx(z‘)+)/x(t)+ﬁx(t) =Fcos(a)t), 1< <1, (18)
t t

with the boundary conditions x(—1)=¢; and x(1) =, .

d .
We apply the Section 3 to the equation (18), d—x(t) can be written in the matrix form
t

d ~(1) m ~(1)
zx(t)zazeo +E x+aen.
t

So, we can rewrite the equation (18) in the matrix form as follows:

(E(Z) +E" + P)x +a, (éf)z) +5ey ) +a (;(15) +5e ) =0, (19)

where P denotes the diagonal matrice with elements {7/+ ﬂx(ti)z} and O denotes the vector with

elements {F cos(a)tl.)} with ieJ,:

¥+ Bx(1)’ 0 0 F cos(at,)
0 [ 0 F t
P : 7+ﬂ:X(2) 3 ( . Q- COS:(wz)
0 0 v+ Bx(ty,) Fcos(wty )

Similarly, the cubic free undamped Duffing oscillator (2) can rewrite in the matrix form as follows:

(2) ~(2) ~(2)
(E +Pl)x+azeo +aen =0, (20)

where P; denotes the diagonal matrice with elements { v+ ﬂx(ti)z} withieJ,.
The Ueda oscillator (3) in the matrix form:

(E(” +sE" +132)x+a2 (282’ + 523))+ o (255) +5é§5))= 0,, @1

where P, denotes the diagonal matrice with elements {x(ll.)z} and Q, denotes the vector with elements
{Fcos(a)t,.)} with ieJ,.
The matrix form of the Duffing — Holmes nonautonomous oscillator (4) as follows:

(E(Z) +sEV + B )x +a, (2%2) + 50y ) +a (5(13) +oeN ) =0, (22)
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where P; denotes the diagonal matrice with

elements {—1+x(tl.)2} and Q; denotes the vector
with elements {F Cos(a)ti)} with ieJ,.

To find the solution x,(#) of equations (19),

(20), (21) and (22) we may be able to approach it
with an iterative procedure has the following:

Procedure FindSolution;
Begin
set u®V=1T. g:=1; er=107%;
Q= Fcos(wt,);
while & >er do
Begin
P=y+ Bu?;
T=E? +5E" +P;
Z/l(new) — T—IQ :
e ‘Mm {ul(new) _ul(ou)’ u;new) _ugold)’ . u;’i‘iw) —Mf,[ilfl)}‘ ;

u(old) = u(new) .

b
end;

1d
return 27 ;

End;

here [ is the unit vector, er is the error that might
change.

5. Numerical results

To calculate numerical results of Duffing
differential equations by Chebyshev
pseudospectral  method (CPSM), we use
Mathematica version 10.4. We compare numerical

results computed by CPSM and the numerical results

nonlinear

computed by Mathematica's NDSolve.

Fig. 1. The Duffing nonlinear differential
equation (1)

186

In the numerical samples, for convenience, we
shall restrict ourselves to the case N =100, with
N >100 causes no difficulties in calculation. In
equations (1), (3) and (4) we use the Dirichlet
boundary conditions Xx(—=1)=0 and x(1)=0.
With the (2), we
inhomogeneous boundary conditions, which mean
that x(—1)#0 and x(1)#0.

equation utilize  the

In figures, dots illustrate numerical solutions of
CPSM and solid lines illustrate numerical results of
Mathematica's NDSolve. The Fig. 1 and 2 illustrate
numerical solutions of equations (1) and (2) in cases
H.S.D.O., S.S$.D.O., I.D.O. and N.D.O. With the

equation (1), weput 0 =12 F=2 @=27 4pq
(7.8)={(0.7;0.5),(2:-3),(~0.7:0.5),(0;0.6)}

The equation (2), we put boundary conditions

x(-1)=x(1)=0.1
{r.8}=1{(0.7,0.5);(2,-3);(~0.7,0.5);(0,0.6)}

and

Table 1 is the biggest odds between two numerical
solutions calculated by CPSM and Mathematica's
NDSolve.

Table 1. The biggest odds between two
numerical solutions calculated
by CPSM and Mathematica's NDSolve of
equations (1) and (2).

Case Equation (1) Equation (2)
H.S.D.O . 298171 x 107 . 1.99901 x 10
S.S.D.O. . 1.25345 x 107 . 4.41022 x 10
I.D.O. . 2.98753 x 10 . 2.70486 x 10
N.D.O. 2.9722 x 10°® . 1.56076 x 10

Fig. 2. The cubic free undamped Duffing
oscillator (2)
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Fig. 3 and 4. illustrate numerical solutions of the equations (3) and (4) with the Dirichlet boundary
conditions. With the equation (3), we put 6 =10 and F ={—4;—2;2;4}. The equation (4), we put

F=2w=2r and 6= {1.2;3;5.7;9.5}. The biggest odds between two numerical solutions calculated by

CPSM and Mathematica's NDSolve shown in Table 2.

Table 2. The biggest odds between two numerical solutions calculated
by CPSM and Mathematica’s NDSolve of equations (3) and (4)

Cas Equation (3) Case Equation (4)

es s

F= 2.74712 % 5= 1.48026 x 10
-4 10°® 1.2 7

F= 1.56173 x 6=3 6.10488 x 10
2 108 8

F= 1.56194 x 5= 3.18598 x 10
2 10" 5.7 ’

F= 2.75009 x 8= 3.45512 x 10
4 10°® 9.5 §

=10F=4 06

Fig. 3. The Ueda oscillator (3)

Fig. 3 and 4. illustrate numerical solutions of the
equations (3) and (4) with the Dirichlet boundary
conditions. With the equation (3), we put 6 =10

and F :{_4;_2;2;4}_ The equation (4), we put
F=2,0=27r and &={1.2;3;57,9.5}. The

biggest odds between two numerical solutions
calculated by CPSM and Mathematica's NDSolve
shown in Table 2.

The obtained results of the equations (1), (2), (3)
and (4) shown in Table 1 and 2 show that this
method has high accuracy with very small errors.

6. Conclusion

We present the pseudospectral method basing on
the differentiation matrix using the Chebyshev
Gauss — Lobatto points to calculate numerical

0.02

Fig. 4. The Duffing—Holmes nonautonomous
oscillator (4)

solutions for nonlinear Duffing differential equations
We use the iterative
procedure to find numerical solutions of the Duffing

on the interval [-1, 1].

nonlinear differential equations and consider four
special cases of the Duffing differential equations
system. The numerical results demonstrate the
efficiency and of the reliable method for solving this
problem.
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