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otonom, véi sd hang phi tuyén loai da thic khong han ché vé
bac tang trudng va ngoai lyc v6i miic tang trudng ham mi.

Tu khoéa: Cac két qua thu duge 13 sy mé rong cac két qua gan day cho
Phaong trinh parabolic suy bién, Todn t¢ 16p phuong trinh phan tng khuéch tan khong 6tonom.
Ay, Tap hat lui.

1 INTRODUCTION erate operator of the form

N
In this paper, we consider the following non- Ay 322395-(/\‘2(33)835-)
autonamous  semilinear  strongly  degenerate i—1 L '

arabolic equation
P 4 where A = (A,...,A\y) : RV — R satisfies cer-

tain conditions specified below. This operator was

i Franchi L 1li in [2
g — Ayt f(u) = g(aat), zEQL>T, introduced by Franchi and Lanconelli in [2] and

recently reconsidered in [5] under an additional as-
u(z,t) =0, x € 01,

sumption that the operator is homogeneous of de-

U= = ur(x), x €, gree two with respect to a group dilation in RN.

(1.1)
where 2 is a bounded domain in RY (N > 2) with
smooth boundary 9Q,u, € L*(f), the nonlinear
term f(u) and the external fore g satisfy some con-

Here the functions \; : RV — R are continuous,
strictly positive and of class C' outside the coor-
dinate hyperplanes, i.e., \; > 0,2 = 1,...,N in

RV \ [T, where [T = {(x1,...,75) € RV | IJX[ x; =

ditions specified later, and Ay is a strongly degen- i
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0}. As in [5] we assume that A; satisfy the following

properties:
1. )\1(.23) = 1, /\l($) = /\1(331, .,xi_l),i =
2,...,N;
2. For every z € RN, \(z) = \(z%),i =
1,..., N, where
' = (|z1],..., Jzn]) if = (z1,...,2N);

3. There exists a constant p > 0 such that

0 < xpdg Ai(z) < phi(x) Vke{l,...,i—1},

1=2 N

{(l‘l,...

ey 3

and for every z € Rf = ,IN) €

RN |z; >0Vi=1,...,N};
4. There exists a group of dilations {d; }+>0
5 RN 5 RN 6,(x) = 6y(21,...,7N)
= (t51$17 s 7t€N$N)7

where 1 < €1 < ey < --- < ey, such that \;

is 6;-homogeneous of degree ¢; — 1, i.e.,

Ve e RNt >0,
i=1,...,N.

i (6:(2)) =t (),

This implies that the operator A, is §;-

homogeneous of degree two, i.e.,

Ax(u(Bi(x))) = 2(Azu) (0:(2)), Yu € C(RY).

We denote by @ the homogeneous dimension of RY
with respect to the group of dilations {d;}+~0, i.e.,

Q=€+ +en.

The homogeneous dimension @ plays a crucial role,
both in the geometry and the functional associated
to the operator Ay.

The Ajx-Laplace operator contains many degener-
ate elliptic operators such as the Grushin type op-
erator

Go = A, + |2)**A,, a>0,

where (z,y) denotes the point of RVt x RM2, and

the strongly degenerate operator of the form
Pajp=8g + Ay + 27|y A,

where (z,y,2) € RM x RV2 x RN (N; > 1,i =

1,2,3), «, B are real positive constants, see [17]. We
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refer the interested reader to [6, Section 2.3] for
other examples of Ay-Laplacians. See also [13] for
recent results related to elliptic equations involving
this operator.

In the last years, the existence and long-time be-
havior in terms of existence of global attractors of
solutions to semilinear parabolic equations involv-
ing the above strongly degenerate operators have
been studied extensively by a number of authors.
Up to now, there are two main kinds of nonlineari-
ties that have been considered. The first one is the
class of nonlinearities that is locally Lipschitzian
continuous and satisfies a Sobolev growth condi-

tion

| (u) = f(v)]

4
SCA+ [ul” + o] u = v,

Q-2

0<p<

and some suitable dissipative conditions; see [6, 7,
8, 17]. The second one is the class of nonlinearities

that satisfies a polynomial growth

Cilul? — Co < f(u)u < Caful? + Co, for some p > 2,
f/(u) 2 _&

see [16, 17]. See also some related results in the case
of bounded domains with stongly degeneracy oper-
ator Ay (see [14]) and in the case of unbounded do-
mains with stongly degeneracy operator P, g (see
[18]), the more delicated case due to the lack of
compactness of the Sobolev type embeddings.

Non-autonomous parabolic equations appear in
many applications in natural sciences, so they are
of great importance and interest. One way to study
the long-time behavior of solutions of such equa-
tions is using the theory of pullback attractors. In
the last few years, the existence of pullback attrac-
tors has been proved for many classes of parabolic
equations [9, 10, 11, 12, 19, 20]. However, little
seems to be known for non-autonomous semilinear
strongly degenerate parabolic equations. This is the
main motivation of the present paper. In this pa-
per, using the asymptotic a priori estimate method,
we prove the existence of pullback attractors for
a non-autonomous semi-linear strongly degenerate
parabolic equation involving the strongly degener-
acy operator Ay on the bounded domain Q Cc RV,
To study problem (1.1), we assume that the initial
datum u, € L?(Q) is given, the nonlinearity f and

the external force g satisfy the following conditions:
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(F) f : R — R is a continuously differentiable

function satisfying

f'(u) > —¢, (1.2)
Cilul? = Cy < f(u)u < Coluf’ +Co, p>2
(1.3)

where Cy, C', Cs, £ are positive constants and
F(u) = [} f(s)ds is a primitive of f and
therefore by integrating by parts, we obtain

C’3|u|p - 04 S F(U) S C5|U|p + 06

forallu e R, (1.4)

where Cs3, Cy, C5, Cg are positive constants.

(G) ge Lf,

loc

(R; L?(Q)) satisfies

||g(t)‘|%2(§z) < Ccet (1.5)

where C' is positive constant, v < ~; with
v1 > 0 is the first eigenvalue of the operator
—A) in ©Q with the homogeneous Dirichlet

boundary condition.

The paper is organized as follows. In Section 2, for
convenience of the reader, we recall some concepts
and results on function spaces and pullback attrac-
tors which we will use. In Section 3, we prove the
existence and uniqueness of weak solutions by uti-
lizing the compactness method and weak conver-
gence techniques in Orlicz spaces [4]. In Section
4, we construct the process associated to problem
(1.1) and prove the existence of pullback attractor
in space L?(Q).

2 PRELIMINARIES

2.1 Function space

To study problem (1.1), we use the weighted

Sobolev space W?(2) defined as the completion
of C}(Q2) in the norm

1/2
- 2 —
Hu||v%/;2m) = </Q \V;{u| d$> = HV)\U||L2(Q)

This is a Hilbert space with respect to the following

scalar product

((w,0) e

= [ Vau-Vyvde = (—Axu,v),
it = [ T Vavde = (<Axu.o)

for all u,v € 12/12((2)

By the result in [5], we know that the embedding
W}\Q(Q) — L*(Q) is compact.

Let 71 > 0 be the first eigenvalue of the opera-
tor Ay in ©Q with homogeneous Dirichlet boundary

conditions. Then

%,
) Wl,Z(Q) o ’
71 = inf W | u e W*(2)\{0}
L2 ()
Therefore,
[l 0 2 Ml (2)
A

for all ue T/%/}\2(Q)

2.2 Pullback attractors

Let X be a Banach space. Denote by B(X) the
set of all bounded subsets of X and || - || is the
corresponding norm. For A, B C X, the Hausdorff
semi-distance between A and B is defined by

dist(A, B) = sup inf ||z — y||.
rcAYEB

Let {U(t,7) : t > 7,7 € R} be a process in X, i.e.,
a two-parameter family of mappings U(t,7) : X —
X such that U(r,7) = Id and U(t,s)U(s,7) =
U(t,r) for all ¢t > s > 7,7 € R. The process
{U(t,7)} is said to be norm-to-weak continuous
if U, 7)x, — Ut, 7))z, as x, — = in X, for all
t > 7,7 € R. The following result is useful for veri-

fying that a process is norm-to-weak continuous.

Proposition 2.1. [9] Let X,Y be two Banach
spaces, X*,Y* be respectively their dual spaces.
Assume that X is dense in Y, the injection i : X —
Y is continuous, its adjoint ¢* : Y* — X* is dense,
and {U(t,7)} is a continuous or weakly continuous
process on Y. Then {U(¢,7)} is norm-to-weak con-
tinuous on X if and only if for ¢t > 7, 7 € R, U(¢t, 7)
maps compact sets of X to be bounded sets of X.

Definition 2.1. [9] The process {U(¢,7)} is said
to be pullback asymptotically compact if for any
t € R, any D € B(X), any sequence 7, — —o0, and
any sequence x,, € D, the sequence {U(t, )z} is
relatively compact in X.

Definition 2.2. A process {U(t,7)} is called pull-
back w-limit compact if for any € > 0, any t € R,
and D € B(X), there exists a 79(D,¢,t) < t such
that
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where « is the Kuratowski measure of noncompact-
ness of B € B(X),

a(B) =inf{§ > 0 | B has a finite open cover of

sets of diameter < §}.

Lemma 2.1. [9] A process {U(¢,7)} is pullback
asymptotically compact if and only if it is pullback

w-limit compact.

Definition 2.3. A family of bounded sets B =
{B(t) : t € R} is called pullback absorbing for the
process {U(t,7)} if for any ¢ € R, any D € B(X),
there exists 19 = 79(D,t) < t such that

U v D c B@).

T7<To
Definition 2.4. A family A = {A(t) : t € R} C
B(X) is said to be a pullback attractor for the pro-
cess {U(¢,7)} if the following conditions hold:

(1) A(t) is compact for all t € R;
(2) A is invariant, i.e.,

U(t, T)A(T) = A(t), for all ¢t > T;

(3) A is pullback attracting, i.e.,

lim dist(U(t,7)D, A(t)) =0,

T——00

for all D € B(X), and all ¢t € R;

(4) it {C(¢) : t € R} is another family of closed
attracting sets then A(t) C C(t), forallt € R.

Theorem 2.2. [9] Let {U(¢, 7)} be a norm-to-weak
continuous process such that {U(¢,7)} is pullback
asymptotically compact. If there exists a family
of pullback absorbing sets B = {B(t) : t € R},
then {U(t, 7)} has a unique pullback attractor A =
{A(t) : t € R} and

3 EXISTENCE AND UNIQUENESS OF WEAK
SOLUTIONS

A function w is called a
(1.1) on (r,T)
it w e LAr,T;WRAQ) N LP(r,T; LP(Q)),
f(w) € LP(r,T;LP (), uler = u;, % €

t
214|

Definition 3.1.

weak solution of problem

L2(r, T; (Wh2(Q))*) + L¥ (1, T; L” () and

/T/ (?;Zw — Ayuw + f(u)w) dzdt
T Q

T
= / /gwdxdt,
T Q

for all test functions w € W := I/(I)/}\Q(Q) N
LP(7,T; LP(Q2)). Here, (I/(I)/}\Q(Q))* is the dual space
of Wh2(Q) and L¥ (v, T; L” () is the dual space
of LP(7,T; LP(QY)).

Theorem 3.1. Assume (F)-(G) hold. Then for
any u, € L?>(Q) and T > 7 given, problem (1.1)
has a unique weak solution v on the interval (,T).
Moreover, the mapping w, — u(t) is continuous on
L2(£2), that is, the solutions depend continuously
on the initial data u, at time 7.

Chitng minh. i) Ezistence. We will prove the exis-
tence of a weak solution by using the compactness
method. Let {u,} be the Galerkin appropriate so-

lutions uy, () in the form.
Un (1) =Y ik (t)ex,
k=1

where {e;}?2, are eigenvectors of the operator
—Ay. We get u,, from solving the problem

(% er) = (Dxun, ex) + (f(un), ex) = (g(x, 1), ex),
(Un(T), ek) = ('U/T, ek), k= 1, Ly N
Using the Peano theorem, we get the local existence

of u,,. We now establish some a priori estimates for

Un. We have

1d 9 9 /
el 3 nd
B dtHunHL2(Q) + Hun”W;Q(Q) + o f(up)upde

= / g(z, t)updx.
Q

By (1.3) and the Cauchy inequality, we get

(3.1)

1d 2 2
—_— n t n t o
3 gl Ol + lun 1.

+C1un ()]0 ) — Col€

1 st 2
< %2 L lun®O22,0n-
<5 ll9@ Ol + 5 lun @20

Using the inequality (2.1), we get

d
—JJun (t)||? ol
g un (D[22 (0) + lun )||W1,2(Q)

A

+ 201”“n(t)”12p(9)

1
SEHQ@J)H%%Q) +2Co |92,
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Integrating from 7 to ¢,0 <t < T, we get

t
e (8)]122 +/Hu &% ds
mEEe T )

t
4201 [ un (9

1 t
<= [ ot 9l qands +2Cal8i(t = 7) + () 0

This inequality yields
{u,} is bounded in L>(7,T; L*(Q)),
{un} is bounded in LP (7, T; LP(R)),
{u,} is bounded in L?(t, T} I/?/1 2(Q)).

Due to the boundedness of {u,} in

L3(7,T; V(E/iz(ﬂ)), it is easy to check that {Aju,}
is bounded in L?(7, T} (VT/}\Q(Q))*) From the above
results, we can assume that (up to a subsequence)
up, — win L (, T; W1(Q)),
up —* win L (7, T; L*(Q)),

Axtn — Ayuin L2(7, T; (WE2(Q))%).

up to a subsequence. By rewriting the equation as

duy,

W = Aju, — f(un) —I—g(x,t),
we deduce that {d“” is  bounded in
L2(r, T (WY2(Q))*) + LY (7, T; LP (), and there-

fore in LP (r,T; (V({/}\Z
W%(Q) cc L*(Q)
(W}\Q(Q))* + L (Q), by the Aubin-Lions-Simon

compactness lemma (see [1]), we have that {u,}

+ LP'(Q)). Because

()

is compact in L?(7,T; L?(Q2)). Hence, we may as-
sume, up to a subsequence, that u, — wu a.e. in
Q x [r,T]. Since f is continuous it follows that
flun) — f(u) ae. in Q x [1,T]. Applying Lemma
6.1 in [3], we obtain

flun) = f(u) i L (7, T5 L7 (Q)).

Thus, u satisfies (3.1). It remains to show that
u(r) =
C5* ([, T); W2(9) 1 LP(Q) with (T) = 0, so in
the ‘limiting equation’ one can integrate by parts

u,. Choosing some test function ¢ €

in the t variable to give

/T —(u, so)dt+/ /vawdxdt
/ / (u(r), (7).

g(z,t))pddt =

By applying the same procedure to the Galerkin

approximations, we get that

T
/ (un,go)dt—i—/ /V)\unVAgodxdt
of -

=(un(7), ¢(7)).

Taking limits as n — oo we conclude that

/T —(u, )dt+/ /V,\UV,\godxdt
/ / (ur, (7).

since u, (1) — u,. Thus, u(7) = w, and this implies

(z,t))pdzdt

— g(x,t))pdzdt =

that u is a weak solution to problem (1.1).

it) Uniqueness and continuous dependence on the
initial data. Let w and v be two weak solutions
of (1.1) with initial data u,,v, € L?(£2). Putting
w = u — v, we have

— Aw + f(u) — f(v) — bw =0,

3.2
w(0) = ug — vo, (32

where f(s) = f(s) + £s. We choose w(t) as a test
function as in [4]. Consequently, the proof will be

more involved.

We use some ideas in [4]. Let B : R — R be the
truncated function
k if s >k,
Bi(s) =< s if |s| < k,
-k ifs < —k.

Consider the corresponding Nemytskii mapping
Ek : W — W defined as follows

Ek(w) () = Bi(w(z))

By Lemma 2.3 in [4], we have that ||By(w) —
wllw — 0 as k — oo. Now multiplying the first

for all z € Q.

equation in (3.2) by Bj(w), then integrating over
Q x (e,t), where t € (7,T), we get

/ [ 2w
/:/ijs(ékw)(s
—% /: /zesz:|w(x,s)|gk [Vaul*deds
«f t | (-
E/:/Qwﬁk(w)dxdso.

(w)(s))dzds

))dads

v)) By (w)dads

215
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Noting that w%(ék(w)) =
have

/ w(t) Be(w) () — | Bi(w) (1) 30

// |V w|dads
ze€Q:|w(x,s)|<k
//f ka )dxds

—/ w(E) Bew)(e)dz — 3 Be(w)()lE2(0)

+€/ /ka Ydxds.

Note that f/(s) > 0 and sBy(s) > 0 for all s € R,
by letting ¢ — 7 and k — oo in the above equality,

we obtain

t
lw®)lZ20) < (D)2 +2€/ [w(s)II2 (0 ds.

Hence, by the Gronwall inequality of integral form,

we get

lw )17z () < lw(m)122@)e* < lw(m)|Z2)e*”

for all t € [, T]. Note that w € C([r,T]; L*(2)), in
particular, we get the uniqueness if w(r) =0. O

4 EXISTENCE OF FULLBACK ATTRACTOR

Due to the results of Theorem 3.1, we can define a

process
U(t,7) : L2(Q) — Wh(Q) N LP ()

where U (¢, 7)u, = u(t) is the unique weak solution
of (1.1) with the initial data u, at time 7. We will
prove that the process {U(t, 7)}+>- has a pullback
attractor A in the space L?(Q).

For brevity, in the following lemmas, we give some
formal calculation, the rigorous proof is done by

use of Galerkin approximations and Lemma 11.2
n [15].

Lemma 4.1. The process {U(t,7)}+> has a fam-
ily of bounded pullback absorbing sets in L?(€2).

Ching minh. Multiplying the first equation in

/f Yudx

(4.1)

(1.1) by u, we have

1d
2.dt

:/ g(z, t)udz.
Q
216

—lullZe) + IIuH2

Using inequalities (1.3), (2.1), and the Cauchy in-

equality, we arrive at
d 9 )
g lelzai@) +mllullze(e) < 2Co|
1
+%H9(1‘>t)||2m(9)

Hence, thanks to the Gronwall inequality, we ob-
tain
200

7

Hu(t)”%ﬁ(g) SHUTHZLQ(Q e~ (= 'r)+

e~ Vit [t s 5
+ [l ds. (42

This completes the proof. O

Lemma 4.2. The process {U(t,7)}¢>, has a fam-
ily of bounded pullback absorbing sets in W}\’z (Q).

Ching minh. Multiplying the first equation in
(1.1) by u; and integrating by parts, we obtain

1d
2 2
Jullsio + 535 (1010 gy +2 [ )0

:/g(x,t)utd:c
Q

1 2 1 2
§§||9($7t)||L2(Q) + §||UHL2(Q)’

thus
(II 1% 12
wi?(Q)

On the other hand, using (4.1) and inequalities
(1.3), (2.1), we have

jgpxuym) < g Hl22(c-
(4.3)

2oy + [l +2Ch |lulg,
g ) W Lr @)

(2

1
<2Co|Q| + allg(ﬂc,t)lliz(g). (4.4)

Using (1.4), we obtain

, .t C7/ F(u)dx
) Q

(4.5)

d, o 2

Zelellzae) + HU||V?/;

1 2
S%”Q(Iat)”LQ(Q) + Cs.

Combining (4.3) and (4.5), we have

d 2
2 | F(u)d
g (1l 12, 42 [ Plue)

—|—C’<u2 + [Jul|% +2/Fuda:>
o (Il + I, +2 [ FO

§Clo||g($at)||2L2(Q) + Cha. (4.6)
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Multiplying (4.6)) by (t — 7)e", we get

d
A (A

W)
+2/ F(u)dm)]
Q
<(1+ tn = =) (ol + 10l
+2/ F(u)da:)
Q

+(Cu + Cuollg(w, )72 () ) (= )™

Integrating from 7 to t, we get

t—r)ent 7 % 2/F d
(t= 71 (e + Il ) 2 [ Pl

t
e%s(mnm o+l

<1+ Cra(t—1)) /

T

()
+2/ F(u)dx) ds + Cyz(t — 7)en!
Q

t

7|9 (x, 5)l|72 () ds. (4.7)

FCo(t — 1) /

T

On the other hand, multiplying (4.2) by e"* and

integrating from 7 to t, we get

t
/ 1 () 2y ds < (¢ — 7)e" s |2

—I—TQ Qe + / / eNn|lg(r ||L2 )drds.
1
(4.8)

Multiplying (4.4)) by €t | we have

t t 2
G ) + e (Jul?,,

til,112 ¢, et 2
<vie"ul|72(q) + 2C0o|Qe™" + THQ(%””L?(Q)-
Integrating from 7 to ¢t and using (4.8), we get

t

Y18 2 p
[ U g + 28l )

400

<L+t =7))e" lurll7z q) — Qe n

1 / 7 g i, )| s

/ / 17 lg(, ) |22y drds.

Combining (4.8) and (4.9), we get
¢
s 2 2
| e Ul + Il
<(1 + ( Y1 + 1)(t - T))G’YIT”UT”%;(Q)
2Ch(2v1 +1
n o( 71 )

(4.9)

|Q‘ 'Ylt

+(1 —|— / / e\ g(x,r HLQ(Q drds.

(4.10)

2(q) + QCllluHI[),P(Q))

+ 201 ||ull], ) ds

1 t
[ late o) s

Combining (4.7), (4.10) and using (1.4), we obtain

+2/Fud:v
2(Q) Q )

2 2
[ullz2() + IIUHV?,i

1 — —T
SC[(l—i—(t—T)—i-t_T)e nt )||uT||2Lz(Q)

+(1+

1, ! .
J@ S B TE A

_'“t/ / e g(z,r ||L2(Q drds|.

By (1.5), we have

+(1+

t
| elotes) s < o0

— 00

t s
and/ / e"’”||g(x,7")H%z(Q)drds < 00,

for all t € R. Hence, for every ¢t € R and bounded
subset B in L?*(Q), there exists a number ry =
ro(t) > 0 and 70 = 70(¢,8) < t such that for all
7 < 79, u, € B, we have

2
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for all

< ro(t) 7 < 719,

with

t
rolt) =20(1 + et / €1l g(, 5)|[2e (s

t s
+ 6*7115/ / 671T||g(x,r)||2L2(Q)d7“dS).

This completes the proof. O

As a direct consequence of Lemma 4.2 and the com-
pactness of the embedding I/(I)/}\Q(Q) — L2(Q), we
get the main result of this section.

Theorem 4.1. Suppose (F)—(G) hold. Then the
process {U(t,7)}i>- generated by problem (1.1)
has a pullback attractor in the space L%((2).
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