
TẠ
P C

H
Í K

H
O

A
 H

Ọ
C

 Đ
Ạ

I H
Ọ

C
 TÂ

N
 TR

À
O

TẠP CHÍ

SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY
SỐ ĐẶC BIỆT

SPECIAL ISSUE

ISSN: 2354 - 1431
Tập 9, Số 1 (Tháng 01/2023)

Vol 9. No 1 (January 2023)

Tập 9, Số 1 (Tháng 01/2023)

TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO

ISSN: 2354 - 1431
http://tckh.daihoctantrao.edu.vn/  

Vol 9. No 1_January 2023

210|

No.?_......|p......

TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO
ISSN: 2354 - 1431

http://tckh.daihoctantrao.edu.vn/

PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR
STRONGLY DEGENERATE PARABOLIC EQUATION

Nguyen Xuan Tu1,∗, Ha Thi Huyen Diep2, Khong Chi Nguyen3

1 Faculty of Natural Sciences, Hung Vuong university, Nguyen Tat Thanh, Viet Tri, Phu Tho, Vietnam 
2 Faculty of Preschool and Primary Education, Hung Vuong university, Nguyen Tat Thanh, Viet Tri, 
Phu Tho, Vietnam
3 Office of Science Management and International Relations, Tan Trao University, Yen Son, Tuyen 
Quang, Vietnam
*Email address: nguyenxuantu1982@gmail.com
https://doi.org/10.51453/2354-1431/2022/840

Article info

Received: 25/9/2022 
Revised: 22/10/2022 
Accepted: 30/12/2022

Keywords:
Degenerate parabolic equation · ∆λ-
Laplace operator · Pullback attractor.

Abstract:

In this paper, using the asymptotic a priori estimate method,
we prove the existence of pullback attractors for a non-
autonomous semilinear strongly degenerate parabolic equa-
tion, without restriction on the growth order of the poly-
nomial type non-linearity and with a suitable exponential
growth of the external force. The obtained results improve
some recent ones for the non-autonomous reaction–diffusion
equations.

154

https://doi.org/10.51453/2354-1431/2021/523


TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO

ISSN: 2354 - 1431
http://tckh.daihoctantrao.edu.vn/  

Vol 9. No 1_January 2023

|211

TẠ
P C

H
Í K

H
O

A
 H

Ọ
C

 Đ
Ạ

I H
Ọ

C
 TÂ

N
 TR

À
O

TẠP CHÍ

SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY
SỐ ĐẶC BIỆT

SPECIAL ISSUE

ISSN: 2354 - 1431
Tập 9, Số 1 (Tháng 01/2023)

Vol 9. No 1 (January 2023)

Tập 9, Số 1 (Tháng 01/2023)

No.?_......|p......

TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO
ISSN: 2354 - 1431

http://tckh.daihoctantrao.edu.vn/

PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR
STRONGLY DEGENERATE PARABOLIC EQUATION

Nguyen Xuan Tu1,∗, Ha Thi Huyen Diep2, Khong Chi Nguyen3

1 Faculty of Natural Sciences, Hung Vuong university, Nguyen Tat Thanh, Viet Tri, Phu Tho, Vietnam 
2 Faculty of Preschool and Primary Education, Hung Vuong university, Nguyen Tat Thanh, Viet Tri, 
Phu Tho, Vietnam
3 Office of Science Management and International Relations, Tan Trao University, Yen Son, Tuyen 
Quang, Vietnam
*Email address: nguyenxuantu1982@gmail.com
https://doi.org/10.51453/2354-1431/2021/523

Article info

Received: 25/9/2022 
Revised: 22/10/2022 
Accepted: 30/12/2022

Keywords:
Degenerate parabolic equation · ∆λ-
Laplace operator · Pullback attractor.

Abstract:

In this paper, using the asymptotic a priori estimate method,
we prove the existence of pullback attractors for a non-
autonomous semilinear strongly degenerate parabolic equa-
tion, without restriction on the growth order of the poly-
nomial type non-linearity and with a suitable exponential
growth of the external force. The obtained results improve
some recent ones for the non-autonomous reaction–diffusion
equations.

154

No.?_......|p.....

TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO
ISSN: 2354 - 1431

http://tckh.daihoctantrao.edu.vn/

TẬP HÚT LÙI CHO LỚP PHƯƠNG TRÌNH PARABOLIC NỬA TUYẾN

TÍNH SUY BIẾN MẠNH KHÔNG ÔTÔNÔM

Nguyễn Xuân Tú1,∗, Hà Thị Huyền Diệp2, Khổng Chí Nguyện3

1 Khoa Khoa học Tự nhiên, Trường Đại học Hùng Vương, Nguyễn Tất Thành, Việt Trì, Phú Thọ, Việt
Nam
2 Khoa Giáo dục Tiểu học và Mầm Non, Trường Đại học Hùng Vương, Nguyễn Tất Thành, Việt Trì,
Phú Thọ, Việt Nam
3 Phòng Khoa học và Quan hệ Quốc tế, Trường Đại học Tân Trào, Yên Sơn, Tuyên Quang, Việt Nam
*Email address: nguyenxuantu1982@gmail.com
https://doi.org/10.51453/2354-1431/2022/840

Thông tin bài viết

Ngày nhận bài: 25/9/2022
Ngày sửa bài: 22/10/2022
Ngày duyệt đăng: 30/12/2022

Từ khóa:
Phương trình parabolic suy biến, Toán tử
∆λ, Tập hút lùi.

Tóm tắt:

Trong bài báo này, chúng tôi đã sử dụng phương pháp đánh
giá tiệm cận để chứng minh sự tồn tại tập hút lùi cho lớp
phương trình parabolic nửa tuyến tính suy biến mạnh không
ôtônôm, với số hạng phi tuyến loại đa thức không hạn chế về
bậc tăng trưởng và ngoại lực với mức tăng trưởng hàm mũ.
Các kết quả thu được là sự mở rộng các kết quả gần đây cho
lớp phương trình phản ứng khuếch tán không ôtônôm.

1 INTRODUCTION

In this paper, we consider the following non-
autonamous semilinear strongly degenerate
parabolic equation





ut −∆λu+ f(u) = g(x, t), x ∈ Ω, t > τ,

u(x, t) = 0, x ∈ ∂Ω,

u |t=τ = uτ (x), x ∈ Ω,

(1.1)
where Ω is a bounded domain in RN (N ≥ 2) with
smooth boundary ∂Ω, uτ ∈ L2(Ω), the nonlinear
term f(u) and the external fore g satisfy some con-
ditions specified later, and ∆λ is a strongly degen-

erate operator of the form

∆λ :=

N∑
i=1

∂xi(λi
2(x)∂xi),

where λ = (λ1, . . . , λN ) : RN → RN satisfies cer-
tain conditions specified below. This operator was
introduced by Franchi and Lanconelli in [2] and
recently reconsidered in [5] under an additional as-
sumption that the operator is homogeneous of de-
gree two with respect to a group dilation in RN .

Here the functions λi : RN → R are continuous,
strictly positive and of class C1 outside the coor-
dinate hyperplanes, i.e., λi > 0, i = 1, . . . , N in

RN \
∏
, where

∏
= {(x1, . . . , xN ) ∈ RN |

N∏
i=1

xi =
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0}. As in [5] we assume that λi satisfy the following
properties:

1. λ1(x) ≡ 1, λi(x) = λi(x1, . . . , xi−1), i =

2, . . . , N ;

2. For every x ∈ RN , λi(x) = λi(x
∗), i =

1, . . . , N , where

x∗ = (|x1|, . . . , |xN |) if x = (x1, . . . , xN );

3. There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xk
λi(x) ≤ ρλi(x) ∀k ∈ {1, . . . , i− 1},

i = 2, . . . , N,

and for every x ∈ RN
+ := {(x1, . . . , xN ) ∈

RN | xi ≥ 0 ∀i = 1, . . . , N};

4. There exists a group of dilations {δt}t>0

δt : RN → RN , δt(x) = δt(x1, . . . , xN )

= (tε1x1, . . . , t
εNxN ),

where 1 ≤ ε1 ≤ ε2 ≤ · · · ≤ εN , such that λi

is δt-homogeneous of degree εi − 1, i.e.,

λi(δt(x)) = tεi−1λi(x), ∀x ∈ RN , t > 0,

i = 1, . . . , N.

This implies that the operator ∆λ is δt-
homogeneous of degree two, i.e.,

∆λ(u(δt(x))) = t2(∆λu)(δt(x)), ∀u ∈ C∞(RN ).

We denote by Q the homogeneous dimension of RN

with respect to the group of dilations {δt}t>0, i.e.,

Q := ε1 + · · ·+ εN .

The homogeneous dimension Q plays a crucial role,
both in the geometry and the functional associated
to the operator ∆λ.

The ∆λ-Laplace operator contains many degener-
ate elliptic operators such as the Grushin type op-
erator

Gα = ∆x + |x|2α∆y, α > 0,

where (x, y) denotes the point of RN1 × RN2 , and
the strongly degenerate operator of the form

Pα,β = ∆x +∆y + |x|2x|y|2y∆z,

where (x, y, z) ∈ RN1 × RN2 × RN3 (Ni ≥ 1, i =

1, 2, 3), α, β are real positive constants, see [17]. We

refer the interested reader to [6, Section 2.3] for
other examples of ∆λ-Laplacians. See also [13] for
recent results related to elliptic equations involving
this operator.

In the last years, the existence and long-time be-
havior in terms of existence of global attractors of
solutions to semilinear parabolic equations involv-
ing the above strongly degenerate operators have
been studied extensively by a number of authors.
Up to now, there are two main kinds of nonlineari-
ties that have been considered. The first one is the
class of nonlinearities that is locally Lipschitzian
continuous and satisfies a Sobolev growth condi-
tion

|f(u)− f(v)|

≤C(1 + |u|ρ + |v|ρ)|u− v|, 0 ≤ ρ ≤ 4

Q− 2
,

and some suitable dissipative conditions; see [6, 7,
8, 17]. The second one is the class of nonlinearities
that satisfies a polynomial growth

C1|u|p − C0 ≤ f(u)u ≤ C2|u|p + C0, for some p ≥ 2,

f ′(u) ≥ −�,

see [16, 17]. See also some related results in the case
of bounded domains with stongly degeneracy oper-
ator ∆λ (see [14]) and in the case of unbounded do-
mains with stongly degeneracy operator Pα,β (see
[18]), the more delicated case due to the lack of
compactness of the Sobolev type embeddings.

Non-autonomous parabolic equations appear in
many applications in natural sciences, so they are
of great importance and interest. One way to study
the long-time behavior of solutions of such equa-
tions is using the theory of pullback attractors. In
the last few years, the existence of pullback attrac-
tors has been proved for many classes of parabolic
equations [9, 10, 11, 12, 19, 20]. However, little
seems to be known for non-autonomous semilinear
strongly degenerate parabolic equations. This is the
main motivation of the present paper. In this pa-
per, using the asymptotic a priori estimate method,
we prove the existence of pullback attractors for
a non-autonomous semi-linear strongly degenerate
parabolic equation involving the strongly degener-
acy operator ∆λ on the bounded domain Ω ⊂ RN .

To study problem (1.1), we assume that the initial
datum uτ ∈ L2(Ω) is given, the nonlinearity f and
the external force g satisfy the following conditions:
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(F) f : R → R is a continuously differentiable
function satisfying

f ′(u) ≥ −�, (1.2)

C1|u|p − C0 ≤ f(u)u ≤ C2|u|p + C0, p ≥ 2

(1.3)

where C0, C1, C2, � are positive constants and
F (u) =

∫ u

0
f(s)ds is a primitive of f and

therefore by integrating by parts, we obtain

C3|u|p − C4 ≤ F (u) ≤ C5|u|p + C6

for all u ∈ R, (1.4)

where C3, C4, C5, C6 are positive constants.

(G) g ∈ L2
loc(R;L2(Ω)) satisfies

‖g(t)‖2L2(Ω) ≤ Ceγt (1.5)

where C is positive constant, γ < γ1 with
γ1 > 0 is the first eigenvalue of the operator
−∆λ in Ω with the homogeneous Dirichlet
boundary condition.

The paper is organized as follows. In Section 2, for
convenience of the reader, we recall some concepts
and results on function spaces and pullback attrac-
tors which we will use. In Section 3, we prove the
existence and uniqueness of weak solutions by uti-
lizing the compactness method and weak conver-
gence techniques in Orlicz spaces [4]. In Section
4, we construct the process associated to problem
(1.1) and prove the existence of pullback attractor
in space L2(Ω).

2 PRELIMINARIES

2.1 Function space

To study problem (1.1), we use the weighted

Sobolev space
◦
W 1,2

λ (Ω) defined as the completion
of C1

0 (Ω) in the norm

‖u‖ ◦
W 1,2

λ (Ω)
:=

(∫

Ω

|∇λu|2dx
)1/2

= ‖∇λu‖L2(Ω).

This is a Hilbert space with respect to the following
scalar product

((u, v)) ◦
W 1,2

λ (Ω)
=

∫

Ω

∇λu · ∇λv dx = (−∆λu, v) ,

for all u, v ∈
◦
W 1,2

λ (Ω).

By the result in [5], we know that the embedding
◦
W 1,2

λ (Ω) ↪→ L2(Ω) is compact.

Let γ1 > 0 be the first eigenvalue of the opera-
tor ∆λ in Ω with homogeneous Dirichlet boundary
conditions. Then

γ1 = inf




‖u‖2◦
W 1,2

λ (Ω)

‖u‖2L2(Ω)

| u ∈
◦
W 1,2

λ (Ω)\{0}



 .

Therefore,

‖u‖2◦
W 1,2

λ (Ω)
≥ γ1‖u‖2L2(Ω), (2.1)

for all u ∈
◦
W 1,2

λ (Ω).

2.2 Pullback attractors

Let X be a Banach space. Denote by B(X) the
set of all bounded subsets of X and ‖ · ‖ is the
corresponding norm. For A,B ⊂ X, the Hausdorff
semi-distance between A and B is defined by

dist(A,B) = sup
x∈A

inf
y∈B

‖x− y‖.

Let {U(t, τ) : t ≥ τ, τ ∈ R} be a process in X, i.e.,
a two-parameter family of mappings U(t, τ) : X →
X such that U(τ, τ) = Id and U(t, s)U(s, τ) =

U(t, τ) for all t ≥ s ≥ τ, τ ∈ R. The process
{U(t, τ)} is said to be norm-to-weak continuous
if U(t, τ)xn ⇀ U(t, τ)x, as xn → x in X, for all
t ≥ τ, τ ∈ R. The following result is useful for veri-
fying that a process is norm-to-weak continuous.

Proposition 2.1. [9] Let X,Y be two Banach
spaces, X∗, Y ∗ be respectively their dual spaces.
Assume that X is dense in Y , the injection i : X →
Y is continuous, its adjoint i∗ : Y ∗ → X∗ is dense,
and {U(t, τ)} is a continuous or weakly continuous
process on Y . Then {U(t, τ)} is norm-to-weak con-
tinuous on X if and only if for t ≥ τ , τ ∈ R, U(t, τ)

maps compact sets of X to be bounded sets of X.

Definition 2.1. [9] The process {U(t, τ)} is said
to be pullback asymptotically compact if for any
t ∈ R, any D ∈ B(X), any sequence τn → −∞, and
any sequence xn ∈ D, the sequence {U(t, τn)xn} is
relatively compact in X.

Definition 2.2. A process {U(t, τ)} is called pull-
back ω-limit compact if for any ε > 0, any t ∈ R,
and D ∈ B(X), there exists a τ0(D, ε, t) ≤ t such
that

α

( ⋃
τ≤τ0

U(t, τ)D

)
≤ ε,
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where α is the Kuratowski measure of noncompact-
ness of B ∈ B(X),

α(B) = inf{δ > 0 | B has a finite open cover of

sets of diameter ≤ δ}.

Lemma 2.1. [9] A process {U(t, τ)} is pullback
asymptotically compact if and only if it is pullback
ω-limit compact.

Definition 2.3. A family of bounded sets B̂ =

{B(t) : t ∈ R} is called pullback absorbing for the
process {U(t, τ)} if for any t ∈ R, any D ∈ B(X),
there exists τ0 = τ0(D, t) ≤ t such that

⋃
τ≤τ0

U(t, τ)D ⊂ B(t).

Definition 2.4. A family Â = {A(t) : t ∈ R} ⊂
B(X) is said to be a pullback attractor for the pro-
cess {U(t, τ)} if the following conditions hold:

(1) A(t) is compact for all t ∈ R;

(2) Â is invariant, i.e.,

U(t, τ)A(τ) = A(t), for all t ≥ τ ;

(3) Â is pullback attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D,A(t)) = 0,

for all D ∈ B(X), and all t ∈ R;

(4) if {C(t) : t ∈ R} is another family of closed
attracting sets then A(t) ⊂ C(t), for all t ∈ R.

Theorem 2.2. [9] Let {U(t, τ)} be a norm-to-weak
continuous process such that {U(t, τ)} is pullback
asymptotically compact. If there exists a family
of pullback absorbing sets B̂ = {B(t) : t ∈ R},
then {U(t, τ)} has a unique pullback attractor Â =

{A(t) : t ∈ R} and

A(t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)B(τ).

3 EXISTENCE AND UNIQUENESS OF WEAK
SOLUTIONS

Definition 3.1. A function u is called a
weak solution of problem (1.1) on (τ, T )

if u ∈ L2(τ, T ;
◦
W 1,2

λ (Ω)) ∩ Lp(τ, T ;Lp(Ω)),
f(u) ∈ Lp′

(τ, T ;Lp′
(Ω)), u |t=τ = uτ , du

dt ∈

L2(τ, T ; (
◦
W 1,2

λ (Ω))∗) + Lp′
(τ, T ;Lp′

(Ω)) and

∫ T

τ

∫

Ω

(
∂u

∂t
w −∆λuw + f(u)w

)
dxdt

=

∫ T

τ

∫

Ω

gwdxdt,

for all test functions w ∈ W :=
◦
W 1,2

λ (Ω) ∩

Lp(τ, T ;Lp(Ω)). Here, (
◦
W 1,2

λ (Ω))∗ is the dual space

of
◦
W 1,2

λ (Ω) and Lp′
(τ, T ;Lp′

(Ω)) is the dual space
of Lp(τ, T ;Lp(Ω)).

Theorem 3.1. Assume (F)-(G) hold. Then for
any uτ ∈ L2(Ω) and T > τ given, problem (1.1)
has a unique weak solution u on the interval (τ, T ).
Moreover, the mapping uτ �→ u(t) is continuous on
L2(Ω), that is, the solutions depend continuously
on the initial data uτ at time τ .

Chứng minh. i) Existence. We will prove the exis-
tence of a weak solution by using the compactness
method. Let {un} be the Galerkin appropriate so-
lutions un(t) in the form.

un(t) =

n∑
k=1

unk(t)ek,

where {ej}∞j=1 are eigenvectors of the operator
−∆λ. We get un from solving the problem


〈
∂un

∂t , ek
〉
− 〈∆λun, ek〉+ 〈f(un), ek〉 = 〈g(x, t), ek〉 ,(

un(τ), ek
)
=

(
uτ , ek

)
, k = 1, ..., n.

Using the Peano theorem, we get the local existence
of un. We now establish some a priori estimates for
un. We have

1

2

d

dt
‖un‖2L2(Ω) + ‖un‖2◦

W 1,2
λ (Ω)

+

∫

Ω

f(un)undx

=

∫

Ω

g(x, t)undx. (3.1)

By (1.3) and the Cauchy inequality, we get

1

2

d

dt
‖un(t)‖2L2(Ω) + ‖un(t)‖2◦

W 1,2
λ (Ω)

+C1‖un(t)‖pLp(Ω) − C0|Ω|

≤ 1

2γ1
‖g(x, t)‖2L2(Ω) +

γ1
2
‖un(t)‖2L2(Ω).

Using the inequality (2.1), we get

d

dt
‖un(t)‖2L2(Ω) + ‖un(t)‖2◦

W 1,2
λ (Ω)

+ 2C1‖un(t)‖pLp(Ω)

≤ 1

γ1
‖g(x, t)‖2L2(Ω) + 2C0|Ω|,
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where α is the Kuratowski measure of noncompact-
ness of B ∈ B(X),

α(B) = inf{δ > 0 | B has a finite open cover of

sets of diameter ≤ δ}.

Lemma 2.1. [9] A process {U(t, τ)} is pullback
asymptotically compact if and only if it is pullback
ω-limit compact.

Definition 2.3. A family of bounded sets B̂ =

{B(t) : t ∈ R} is called pullback absorbing for the
process {U(t, τ)} if for any t ∈ R, any D ∈ B(X),
there exists τ0 = τ0(D, t) ≤ t such that

⋃
τ≤τ0

U(t, τ)D ⊂ B(t).

Definition 2.4. A family Â = {A(t) : t ∈ R} ⊂
B(X) is said to be a pullback attractor for the pro-
cess {U(t, τ)} if the following conditions hold:

(1) A(t) is compact for all t ∈ R;

(2) Â is invariant, i.e.,

U(t, τ)A(τ) = A(t), for all t ≥ τ ;

(3) Â is pullback attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D,A(t)) = 0,

for all D ∈ B(X), and all t ∈ R;

(4) if {C(t) : t ∈ R} is another family of closed
attracting sets then A(t) ⊂ C(t), for all t ∈ R.

Theorem 2.2. [9] Let {U(t, τ)} be a norm-to-weak
continuous process such that {U(t, τ)} is pullback
asymptotically compact. If there exists a family
of pullback absorbing sets B̂ = {B(t) : t ∈ R},
then {U(t, τ)} has a unique pullback attractor Â =

{A(t) : t ∈ R} and

A(t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)B(τ).

3 EXISTENCE AND UNIQUENESS OF WEAK
SOLUTIONS

Definition 3.1. A function u is called a
weak solution of problem (1.1) on (τ, T )

if u ∈ L2(τ, T ;
◦
W 1,2

λ (Ω)) ∩ Lp(τ, T ;Lp(Ω)),
f(u) ∈ Lp′

(τ, T ;Lp′
(Ω)), u |t=τ = uτ , du

dt ∈

L2(τ, T ; (
◦
W 1,2

λ (Ω))∗) + Lp′
(τ, T ;Lp′

(Ω)) and

∫ T

τ

∫

Ω

(
∂u

∂t
w −∆λuw + f(u)w

)
dxdt

=

∫ T

τ

∫

Ω

gwdxdt,

for all test functions w ∈ W :=
◦
W 1,2

λ (Ω) ∩

Lp(τ, T ;Lp(Ω)). Here, (
◦
W 1,2

λ (Ω))∗ is the dual space

of
◦
W 1,2

λ (Ω) and Lp′
(τ, T ;Lp′

(Ω)) is the dual space
of Lp(τ, T ;Lp(Ω)).

Theorem 3.1. Assume (F)-(G) hold. Then for
any uτ ∈ L2(Ω) and T > τ given, problem (1.1)
has a unique weak solution u on the interval (τ, T ).
Moreover, the mapping uτ �→ u(t) is continuous on
L2(Ω), that is, the solutions depend continuously
on the initial data uτ at time τ .

Chứng minh. i) Existence. We will prove the exis-
tence of a weak solution by using the compactness
method. Let {un} be the Galerkin appropriate so-
lutions un(t) in the form.

un(t) =

n∑
k=1

unk(t)ek,

where {ej}∞j=1 are eigenvectors of the operator
−∆λ. We get un from solving the problem


〈
∂un

∂t , ek
〉
− 〈∆λun, ek〉+ 〈f(un), ek〉 = 〈g(x, t), ek〉 ,(

un(τ), ek
)
=

(
uτ , ek

)
, k = 1, ..., n.

Using the Peano theorem, we get the local existence
of un. We now establish some a priori estimates for
un. We have

1

2

d

dt
‖un‖2L2(Ω) + ‖un‖2◦

W 1,2
λ (Ω)

+

∫

Ω

f(un)undx

=

∫

Ω

g(x, t)undx. (3.1)

By (1.3) and the Cauchy inequality, we get

1

2

d

dt
‖un(t)‖2L2(Ω) + ‖un(t)‖2◦

W 1,2
λ (Ω)

+C1‖un(t)‖pLp(Ω) − C0|Ω|

≤ 1

2γ1
‖g(x, t)‖2L2(Ω) +

γ1
2
‖un(t)‖2L2(Ω).

Using the inequality (2.1), we get

d

dt
‖un(t)‖2L2(Ω) + ‖un(t)‖2◦

W 1,2
λ (Ω)

+ 2C1‖un(t)‖pLp(Ω)

≤ 1

γ1
‖g(x, t)‖2L2(Ω) + 2C0|Ω|,
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Integrating from τ to t, 0 ≤ t ≤ T , we get

‖un(t)‖2L2(Ω) +

∫ t

τ

‖un(s)‖2◦
W 1,2

λ (Ω)
ds

+2C1

∫ t

τ

‖un(s)‖pLp(Ω)ds

≤ 1

γ

∫ t

τ

‖g(x, s)‖2L2(Ω)ds+ 2C0|Ω|(t− τ) + ‖un(τ)‖2L2(Ω).

This inequality yields

{un} is bounded in L∞(τ, T ;L2(Ω)),

{un} is bounded in Lp(τ, T ;Lp(Ω)),

{un} is bounded in L2(τ, T ;
◦
W 1,2

λ (Ω)).

Due to the boundedness of {un} in

L2(τ, T ;
◦
W 1,2

λ (Ω)), it is easy to check that {∆λun}

is bounded in L2(τ, T ; (
◦
W 1,2

λ (Ω))∗). From the above
results, we can assume that (up to a subsequence)

un ⇀ u in L2(τ, T ;
◦
W 1,2

λ (Ω)),

un ⇀∗ u in L∞(τ, T ;L2(Ω)),

∆λun ⇀ ∆λu in L2(τ, T ; (
◦
W 1,2

λ (Ω))∗).

up to a subsequence. By rewriting the equation as

dun

dt
= ∆λun − f(un) + g(x, t),

we deduce that {dun

dt } is bounded in

L2(τ, T ; (
◦
W 1,2

λ (Ω))∗)+Lp′
(τ, T ;Lp′

(Ω)), and there-

fore in Lp′
(τ, T ; (

◦
W 1,2

λ (Ω))∗ + Lp′
(Ω)). Because

◦
W 1,2

λ (Ω) ⊂⊂ L2(Ω) ⊂

(
◦
W 1,2

λ (Ω))∗ + Lp′
(Ω), by the Aubin-Lions-Simon

compactness lemma (see [1]), we have that {un}
is compact in L2(τ, T ;L2(Ω)). Hence, we may as-
sume, up to a subsequence, that un → u a.e. in
Ω × [τ, T ]. Since f is continuous it follows that
f(un) → f(u) a.e. in Ω × [τ, T ]. Applying Lemma
6.1 in [3], we obtain

f(un) ⇀ f(u) in Lp′
(τ, T ;Lp′

(Ω)).

Thus, u satisfies (3.1). It remains to show that
u(τ) = uτ . Choosing some test function ϕ ∈
C∞

0 ([τ, T ];
◦
W 1,2

λ (Ω) ∩ Lp(Ω) with ϕ(T ) = 0, so in
the ‘limiting equation’ one can integrate by parts
in the t variable to give

∫ T

τ

−(u, ϕ′)dt+

∫ T

τ

∫

Ω

∇λu∇λϕdxdt

+

∫ T

τ

∫

Ω

(
f(u)− g(x, t)

)
ϕdxdt =

(
u(τ), ϕ(τ)

)
.

By applying the same procedure to the Galerkin
approximations, we get that

∫ T

τ

−(un, ϕ
′)dt+

∫ T

τ

∫

Ω

∇λun∇λϕdxdt

+

∫ T

τ

∫

Ω

(
f(un)− g(x, t)

)
ϕdxdt

=
(
un(τ), ϕ(τ)

)
.

Taking limits as n → ∞ we conclude that
∫ T

τ

−(u, ϕ′)dt+

∫ T

τ

∫

Ω

∇λu∇λϕdxdt

+

∫ T

τ

∫

Ω

(
f(u)− g(x, t)

)
ϕdxdt =

(
uτ , ϕ(τ)

)
.

since un(τ) → uτ . Thus, u(τ) = uτ and this implies
that u is a weak solution to problem (1.1).

ii) Uniqueness and continuous dependence on the
initial data. Let u and v be two weak solutions
of (1.1) with initial data uτ , vτ ∈ L2(Ω). Putting
w = u− v, we have



wt −∆λw + f̃(u)− f̃(v)− �w = 0,

w(0) = u0 − v0,
(3.2)

where f̃(s) = f(s) + �s. We choose w(t) as a test
function as in [4]. Consequently, the proof will be
more involved.

We use some ideas in [4]. Let Bk : R → R be the
truncated function

Bk(s) =




k if s > k,

s if |s| ≤ k,

−k if s < −k.

Consider the corresponding Nemytskii mapping
B̂k : W → W defined as follows

B̂k(w)(x) = Bk(w(x)) for all x ∈ Ω.

By Lemma 2.3 in [4], we have that ‖B̂k(w) −
w‖W → 0 as k → ∞. Now multiplying the first
equation in (3.2) by B̂k(w), then integrating over
Ω× (ε, t), where t ∈ (τ, T ), we get

∫ t

ε

∫

Ω

d

ds

(
w(s)B̂k(w)(s)

)
dxds

−
∫ t

ε

∫

Ω

w
d

ds

(
B̂k(w)(s)

)
dxds

+
1

2

∫ t

ε

∫

x∈Ω:|w(x,s)|≤k

|∇λw|2dxds

+

∫ t

ε

∫

Ω

(
f̃(u)− f̃(v)

)
B̂k(w)dxds

−�

∫ t

ε

∫

Ω

wB̂k(w)dxds = 0.
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Noting that w d
dt

(
B̂k(w)

)
= 1

2
d
dt

(
(B̂k(w))

2
)
, we

have
∫

Ω

w(t)B̂k(w)(t)dx− 1

2
‖B̂k(w)(t)‖2L2(Ω)

+
1

2

∫ t

ε

∫

x∈Ω:|w(x,s)|≤k

|∇λw|2dxds

+

∫ t

ε

∫

Ω

f̃ ′(ξ)wB̂k(w)dxds

=

∫

Ω

w(ε)B̂k(w)(ε)dx− 1

2
‖B̂k(w)(ε)‖2L2(Ω)

+�

∫ t

ε

∫

Ω

wB̂k(w)dxds.

Note that f̂ ′(s) ≥ 0 and sBk(s) ≥ 0 for all s ∈ R,
by letting ε → τ and k → ∞ in the above equality,
we obtain

‖w(t)‖2L2(Ω) ≤ ‖w(τ)‖2L2(Ω) + 2�

∫ t

τ

‖w(s)‖2L2(Ω)ds.

Hence, by the Gronwall inequality of integral form,
we get

‖w(t)‖2L2(Ω) ≤ ‖w(τ)‖2L2(Ω)e
2�t ≤ ‖w(τ)‖2L2(Ω)e

2�T ,

for all t ∈ [τ, T ]. Note that w ∈ C([τ, T ];L2(Ω)), in
particular, we get the uniqueness if w(τ) = 0.

4 EXISTENCE OF FULLBACK ATTRACTOR

Due to the results of Theorem 3.1, we can define a
process

U(t, τ) : L2(Ω) →
◦
W 1,2

λ (Ω) ∩ Lp(Ω)

where U(t, τ)uτ = u(t) is the unique weak solution
of (1.1) with the initial data uτ at time τ . We will
prove that the process {U(t, τ)}t>τ has a pullback
attractor A in the space L2(Ω).

For brevity, in the following lemmas, we give some
formal calculation, the rigorous proof is done by
use of Galerkin approximations and Lemma 11.2
in [15].

Lemma 4.1. The process {U(t, τ)}t≥τ has a fam-
ily of bounded pullback absorbing sets in L2(Ω).

Chứng minh. Multiplying the first equation in
(1.1) by u, we have

1

2

d

dt
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+

∫

Ω

f(u)udx

=

∫

Ω

g(x, t)udx. (4.1)

Using inequalities (1.3), (2.1), and the Cauchy in-
equality, we arrive at

d

dt
‖u‖2L2(Ω) + γ1‖u‖2L2(Ω) ≤ 2C0|Ω|

+
1

γ1
‖g(x, t)‖2L2(Ω).

Hence, thanks to the Gronwall inequality, we ob-
tain

‖u(t)‖2L2(Ω) ≤‖uτ‖2L2(Ω)e
−γ1(t−τ) +

2C0

γ1
|Ω|

+
e−γ1t

γ1

∫ t

−∞
eγ1s‖g(s)‖2L2(Ω)ds. (4.2)

This completes the proof.

Lemma 4.2. The process {U(t, τ)}t≥τ has a fam-

ily of bounded pullback absorbing sets in
◦
W 1,2

λ (Ω).

Chứng minh. Multiplying the first equation in
(1.1) by ut and integrating by parts, we obtain

‖u‖2L2(Ω) +
1

2

d

dt

(
‖u‖2◦

W 1,2
λ (Ω)

+ 2

∫

Ω

F (u)dx

)

=

∫

Ω

g(x, t)utdx

≤1

2
‖g(x, t)‖2L2(Ω) +

1

2
‖u‖2L2(Ω),

thus

d

dt

(
‖u‖2◦

W 1,2
λ (Ω)

+ 2

∫

Ω

F (u)dx

)
≤ ‖g(x, t)‖2L2(Ω).

(4.3)

On the other hand, using (4.1) and inequalities
(1.3), (2.1), we have

d

dt
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+ 2C1‖u‖pLp(Ω)

≤2C0|Ω|+
1

γ1
‖g(x, t)‖2L2(Ω). (4.4)

Using (1.4), we obtain

d

dt
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+ C7

∫

Ω

F (u)dx

≤ 1

γ1
‖g(x, t)‖2L2(Ω) + C8. (4.5)

Combining (4.3) and (4.5), we have

d

dt

(
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+ 2

∫

Ω

F (u)dx

)

+C9

(
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+ 2

∫

Ω

F (u)dx

)

≤C10‖g(x, t)‖2L2(Ω) + C11. (4.6)
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Noting that w d
dt

(
B̂k(w)

)
= 1

2
d
dt

(
(B̂k(w))

2
)
, we

have
∫

Ω

w(t)B̂k(w)(t)dx− 1

2
‖B̂k(w)(t)‖2L2(Ω)

+
1

2

∫ t

ε

∫

x∈Ω:|w(x,s)|≤k

|∇λw|2dxds

+

∫ t

ε

∫

Ω

f̃ ′(ξ)wB̂k(w)dxds

=

∫

Ω

w(ε)B̂k(w)(ε)dx− 1

2
‖B̂k(w)(ε)‖2L2(Ω)

+�

∫ t

ε

∫

Ω

wB̂k(w)dxds.

Note that f̂ ′(s) ≥ 0 and sBk(s) ≥ 0 for all s ∈ R,
by letting ε → τ and k → ∞ in the above equality,
we obtain

‖w(t)‖2L2(Ω) ≤ ‖w(τ)‖2L2(Ω) + 2�

∫ t

τ

‖w(s)‖2L2(Ω)ds.

Hence, by the Gronwall inequality of integral form,
we get

‖w(t)‖2L2(Ω) ≤ ‖w(τ)‖2L2(Ω)e
2�t ≤ ‖w(τ)‖2L2(Ω)e

2�T ,

for all t ∈ [τ, T ]. Note that w ∈ C([τ, T ];L2(Ω)), in
particular, we get the uniqueness if w(τ) = 0.

4 EXISTENCE OF FULLBACK ATTRACTOR

Due to the results of Theorem 3.1, we can define a
process

U(t, τ) : L2(Ω) →
◦
W 1,2

λ (Ω) ∩ Lp(Ω)

where U(t, τ)uτ = u(t) is the unique weak solution
of (1.1) with the initial data uτ at time τ . We will
prove that the process {U(t, τ)}t>τ has a pullback
attractor A in the space L2(Ω).

For brevity, in the following lemmas, we give some
formal calculation, the rigorous proof is done by
use of Galerkin approximations and Lemma 11.2
in [15].

Lemma 4.1. The process {U(t, τ)}t≥τ has a fam-
ily of bounded pullback absorbing sets in L2(Ω).

Chứng minh. Multiplying the first equation in
(1.1) by u, we have

1

2

d

dt
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+

∫

Ω

f(u)udx

=

∫

Ω

g(x, t)udx. (4.1)

Using inequalities (1.3), (2.1), and the Cauchy in-
equality, we arrive at

d

dt
‖u‖2L2(Ω) + γ1‖u‖2L2(Ω) ≤ 2C0|Ω|

+
1

γ1
‖g(x, t)‖2L2(Ω).

Hence, thanks to the Gronwall inequality, we ob-
tain

‖u(t)‖2L2(Ω) ≤‖uτ‖2L2(Ω)e
−γ1(t−τ) +

2C0

γ1
|Ω|

+
e−γ1t

γ1

∫ t

−∞
eγ1s‖g(s)‖2L2(Ω)ds. (4.2)

This completes the proof.

Lemma 4.2. The process {U(t, τ)}t≥τ has a fam-

ily of bounded pullback absorbing sets in
◦
W 1,2

λ (Ω).

Chứng minh. Multiplying the first equation in
(1.1) by ut and integrating by parts, we obtain

‖u‖2L2(Ω) +
1

2

d

dt

(
‖u‖2◦

W 1,2
λ (Ω)

+ 2

∫

Ω

F (u)dx

)

=

∫

Ω

g(x, t)utdx

≤1

2
‖g(x, t)‖2L2(Ω) +

1

2
‖u‖2L2(Ω),

thus

d

dt

(
‖u‖2◦

W 1,2
λ (Ω)

+ 2

∫

Ω

F (u)dx

)
≤ ‖g(x, t)‖2L2(Ω).

(4.3)

On the other hand, using (4.1) and inequalities
(1.3), (2.1), we have

d

dt
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+ 2C1‖u‖pLp(Ω)

≤2C0|Ω|+
1

γ1
‖g(x, t)‖2L2(Ω). (4.4)

Using (1.4), we obtain

d

dt
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+ C7

∫

Ω

F (u)dx

≤ 1

γ1
‖g(x, t)‖2L2(Ω) + C8. (4.5)

Combining (4.3) and (4.5), we have

d

dt

(
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+ 2

∫

Ω

F (u)dx

)

+C9

(
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+ 2

∫

Ω

F (u)dx

)

≤C10‖g(x, t)‖2L2(Ω) + C11. (4.6)
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Multiplying (4.6)) by (t− τ)eγ1t, we get

d

dt

[
(t− τ)eγ1t

(
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+2

∫

Ω

F (u)dx

)]

≤
(
1 + (γ1 − C9)(t− τ)

)(
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+2

∫

Ω

F (u)dx

)

+
(
C11 + C10‖g(x, t)‖2L2(Ω)

)
(t− τ)eγ1t.

Integrating from τ to t, we get

(t− τ)eγ1t

(
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+ 2

∫

Ω

F (u)dx

)

≤
(
1 + C12(t− τ)

) ∫ t

τ

eγ1s

(
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+2

∫

Ω

F (u)dx

)
ds+ C13(t− τ)eγ1t

+C10(t− τ)

∫ t

τ

eγ1s‖g(x, s)‖2L2(Ω)ds. (4.7)

On the other hand, multiplying (4.2) by eγ1t and
integrating from τ to t, we get

∫ t

τ

eγ1s‖u(t)‖2L2(Ω)ds ≤ (t− τ)eγ1τ‖uτ‖2L2(Ω)

+
2C0

γ2
1

|Ω|eγ1t +
1

γ1

∫ t

−∞

∫ s

−∞
eγ1r‖g(r)‖2L2(Ω)drds.

(4.8)

Multiplying (4.4)) by eγ1t , we have

d

dt

(
eγ1t‖u‖2L2(Ω)

)
+ eγ1t

(
‖u‖2◦

W 1,2
λ (Ω)

+ 2C1‖u‖pLp(Ω)

)

≤γ1e
γ1t‖u‖2L2(Ω) + 2C0|Ω|eγ1t +

eγ1t

γ1
‖g(x, t)‖2L2(Ω).

Integrating from τ to t and using (4.8), we get
∫ t

τ

eγ1s
(
‖u‖2◦

W 1,2
λ (Ω)

+ 2C1‖u‖pLp(Ω)

)
ds

≤
(
1 + γ1(t− τ)

)
eγ1τ‖uτ‖2L2(Ω) +

4C0

γ1
|Ω|eγ1t

+
1

γ1

∫ t

−∞
eγ1s‖g(x, s)‖2L2(Ω)ds

+

∫ t

−∞

∫ s

−∞
eγ1r‖g(x, r)‖2L2(Ω)drds. (4.9)

Combining (4.8) and (4.9), we get
∫ t

τ

eγ1s
(
‖u‖2L2(Ω) + ‖u‖2◦

W 1,2
λ (Ω)

+ 2C1‖u‖pLp(Ω)

)
ds

≤
(
1 + (γ1 + 1)(t− τ)

)
eγ1τ‖uτ‖2L2(Ω)

+
2C0(2γ1 + 1)

γ2
1

|Ω|eγ1t +
1

γ1

∫ t

−∞
eγ1s‖g(x, s)‖2L2(Ω)ds

+
(
1 +

1

γ1

) ∫ t

−∞

∫ s

−∞
eγ1r‖g(x, r)‖2L2(Ω)drds.

(4.10)

Combining (4.7), (4.10) and using (1.4), we obtain

‖u‖2L2(Ω) + ‖u‖2◦
W 1,2

λ (Ω)
+ 2

∫

Ω

F (u)dx

≤C

[(
1 + (t− τ) +

1

t− τ

)
e−γ1(t−τ)‖uτ‖2L2(Ω)

+
(
1 +

1

t− τ

)
e−γ1t

∫ t

−∞
eγ1s‖g(x, s)‖2L2(Ω)ds

+
(
1 +

1

t− τ

)
e−γ1t

∫ t

−∞

∫ s

−∞
eγ1r‖g(x, r)‖2L2(Ω)drds

]
.

By (1.5), we have
∫ t

−∞
eγ1s‖g(x, s)‖2L2(Ω)ds < ∞

and
∫ t

−∞

∫ s

−∞
eγ1r‖g(x, r)‖2L2(Ω)drds < ∞,

for all t ∈ R. Hence, for every t ∈ R and bounded
subset B in L2(Ω), there exists a number r0 =

r0(t) > 0 and τ0 = τ0(t,B) < t such that for all
τ ≤ τ0, uτ ∈ B, we have

‖u‖2◦
W 1,2

λ (Ω)
≤ r0(t) for all τ ≤ τ0,

with

r0(t) =2C
(
1 + e−γ1t

∫ t

−∞
eγ1s‖g(x, s)‖2L2(Ω)ds

+ e−γ1t

∫ t

−∞

∫ s

−∞
eγ1r‖g(x, r)‖2L2(Ω)drds

)
.

This completes the proof.

As a direct consequence of Lemma 4.2 and the com-

pactness of the embedding
◦
W 1,2

λ (Ω) ↪→ L2(Ω), we
get the main result of this section.

Theorem 4.1. Suppose (F)–(G) hold. Then the 
process {U(t, τ)}t≥τ generated by problem (1.1) 
has a pullback attractor in the space L2(Ω).
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