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Ngay duyét dang: 15/10/2023

T khéa:

Phuong trinh vi phan ngau nhién; on dinh
ma binh phuong trung binh; nhiéu ngdu
nhién

nghia binh phuong trung binh.

1 INTRODUCTION

As is well known, stochastic differential equations
(SDEs) have come to play an important role in
many branches of science and industry, such as bi-
ology, physics, economics, engineering and financial
market. However, these applications depend heav-
ily on the stability to a great extent. Hence, the sta-
bility of SDEs has received a great deal of attention
over the past years, and many related results have
appeared in the literature, e.g. see [1, 2, 3, 9, 10],
etc. The LaSalle theorem was developed in [4], and
the Lyapunov method was applied by many au-
thors to deal with stochastic property (e.g., see [5]
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and [6]). It should be pointed out that the linear
growth condition was required in [1, 3, 4, 6]. How-
ever, the linear growth condition is sometimes too
strong to be satisfied in our real lives. Therefore,
it is interesting and challenging to study the sta-
bility of stochastic systems when they do not sat-
isfy the linear growth condition. In this paper, we
consider a class of nonlinear differential delay equa-
tions (DDEs) with Poisson jump:

da(t) =f(z(t),z(t — 7(t)), t)dt
+g(x(t), z(t — 7(1)), t)dw(t) (1)

+/ h(x(t),x(t — 7(t)), t,v)N(dt,dv),t >0
z
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Under the nonlinear growth condition, we prove
that there exists a unique global solution of DDEs
with poisson jumps (1) by using Itd6 formula,
Grownwall’s inequality and nonnegative semi-
martingales convergence theorem. Furthermore, we
establish the stability in mean square of system (1).
Moreover, we prove the existence and the stability
of the global solution without using the uniform

continuous.

The rest of the paper is organized as follows: In
Section 2, we give some necessary notations and
lemmas. In Section 3, we discuss the existence-and-
uniqueness of the global solution as well as the

mean square exponential stability.

2 RESEARCH METHODS

In this work, we introduce the local Lipschitz and
new nonlinear growth conditions on coefficients to
prove the existence of a unique global solution.
Then by applying Lyapunov function method, we
prove that the stochastic system under considera-
tion has a unique global solution and investigate
the exponential stability in the mean square of the

solution.

3 PRELIMINARIES

In this paper, unless otherwise specified, we will
employ the following notations. Let (Q,F,F;, P)
be a complete probability space with a filtration
{Fi},;>o satisfying the usual condition (i.e., it is
increa_sing and right continuous while contains all
P-null sets). Let |z| denote the Euclidean norm
If A is a matrix, its trace
norm is denoted by |A4| Vtrace (AT A). Let
w(t) = (i(t),w2(t), ..., wm(®)" (t > 0) be an m-

dimensional Brownian motion defined on the prob-

of a vector in R™.

ability space. a V b denotes the maximum value be-
tween a and b, while a A b denotes the minimum
value. C ([—7,0];R™) is the family of continuous
functions from [—7,0] to R™, and B (R") denotes
the Borel algebra in R™.

Let p = {p(t),t > 0} be a stationary F;-adapted
and R"-valued Poisson point process. For A €
B(R™ — {0}), here 0 ¢ the closure of A, we define

the Poisson counting measure N associated with p

by

N((0,t] x A) : = #{0 < s < t,p(s) € A}

S L)

to<s<t

where # denotes the cardinality of set {-}. For sim-
N(t,A) := N((0,t] x A). It is
known that there exists a o-finite measure 7 such
that

plicity, we denote

E[N(t A)] = m(A), P(N(t A) = n)
_ exp(—tm(A))(x(A)t)"
n! '

This measure 7 is called the Lévy measure. Denote
by N(t,z) a Fi-adapted Poisson random martin-

gale measure N(t, A) satisfies

N(t,A) = N(t, A) + N(t, A),t > 0.
Here N (t, A) denotes the compensated Poisson ran-
dom measure and N(t,A) = m(A)t denotes the

compensator.

In this paper, we assume that Poisson random mea-
sure N is independent of Brownian motion w. For
Z € B(R"™ — {0}), consider the following nonlinear
SDDEs with Poisson jump:

do(t) =f(x(t), z(t — (1)), t)dt

+ g(x(t), 2(t — (1)), t)dw(t) (2)

/ ha(t), 3(t — 7(8)), £, 0) N(dt, dv),
where initial value z(0) = 29y = ¢ €
C([-7,0;R™),7(:) : [0,4+00) — [0,7],f : R™ x

R" xRy —» R" g : R" x R” x Ry — R™ "™ and
h:R"xR"xR; x Z — R™. For the purpose of the
stability, we assume that f(0,0,t) = 0,¢(0,0,t) =
0.

Definition 3.1. The trivial solution of (2) is said
to be asymptotically stable in the p th moment if

j y
lim Efz(t)]” =0

for all zg € R™. We remark that asymptotically
stable in the p-th moment is often called asymp-
totically stable in the mean square when p = 2.

The aim of this section is to discuss the existence
and uniqueness of solution to system (2). To this
end, we first impose some necessary conditions on

two functions f and g.

1177



Nguyen Nhu Quan/Vol 9. No 5_October 2023| p.175-181

Asumption 3.2. (The Local Lipschitz Condition)
For every integer k > 1, there is Cy > 0 such that

2
If (z1,91,t) — f (w2, 2,1)]
2
\ |g (xlaylvt) -9 (m27y2at)‘
< Ck (|371 — o+ |y1 — y2|2) ;

/ ‘h(xlaylatav) - h(x25y27tav)|2 7T(d’l))
Z
< Cy <|$1 — o + |y — y2|2) ) (3)

for all (xj7yj7t) € R" xR" xRy, |xj|v|yj| < k(.? =
1,2).

Obviously, it follows from Assumption 2.1 that
there exists a unique maximal local solution on
[-7,Te ) to system (2), where 7. is the explosion
time. For the convenience of the reader, we state

this fact as the following lemma.

Lemma 3.3. Let Assumption 3.2 hold. Then for
any initial value &, system (2) has a unique mazxi-

mal local solution on —17 <t < T,.

To ensure that the existence and uniqueness as well
as stability of the solution to system (2), W. Zhou
[7] used the local Lipschitz condition and linear
growth condition. However, the linear growth con-
dition is very restrict and many real models do not
satisfy it. In this paper, we will introduce a new
general nonlinear condition to replace the linear
growth condition, and under it we can also prove
the existence and uniqueness as well as stability of
the solution to the system (2). Now, let us intro-
duce the new general nonlinear growth condition

as follows.

Asumption 3.4. For all z,y € R", ¢t > 0, there
exist four nonnegative constants ay, as, a3z and ay,
such that

1
:ETf(iE,y7t) + ilg('rvyvt)ﬁ (4)
< aq|z)? — agla [T + aglz| T + auly| T,
where r1 > 0 and ro > 0 are constants.

Asumption 3.5. Forall z,y € R™ and ¢t > 0, there
exist three nonnegative constants b1, bs,bs and a
function h(v), such that

2 + h(z,y,t,v)[? (5)
< h(v) (br]x]|® + ba|z|™ 2 + bsy["32)

where r3 > 0 is a constant and the function h(v)
satisfies C, = [, h(v)7(dv) < oc.
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Asumption 3.6. 7(-) is continuously differen-
tiable and there exists a constant u such that

() <u<l.

Denote by C?%! (R, x R";R,)the family of all
non-negative continuous functions V'(t,z), which
are continuously twice differentiable in x and
once in t defined on Ry x R". Given V €
C?1 (Ry x R";Ry), we define an operator LV :
R, x R® = R by

ﬁV(x,y,t) = V;f(xvt) + Vw(x,t)f(x,y,t)

1
+gtr (97 (2, y,t)Vau (2, 1) g(2,y,1)]

+/Z[V(x+h(x,y,t,v),t)—V(ac,t)}ﬂ(dv), (6)

where  Vi(x,t) = 7‘9"(5)?“ , Va(w,t) =
OV (x,t OV (z,t 02V (x,t
( 3501 )a..., ain )),sz(l‘,t): ( Bmit(%oj))an'

Lemma 3.7. (The semi-martingale convergence
theorem [8]). Let A(t) and U(t) be two continuous
adapted increasing processes on t > 0 with A(0) =
U(0) a.s.. Let M(t) be a real-valued continuous lo-
cal martingale with M(0) = 0 a.s., and let & be
a nonnegative Fy-measurable random variable such
that E{ < 0o. Define X (t) = £+ A(t)—U(t)+M (%)
fort > 0. If X(t) is nonnegative, then

{ lim A(t) < oo} C

t—o0

{ lim X(¢) < oo} N {tlggo U(t) < oo} a.s.,

t—o0

where C C D a.s., means P(CND) = 0, In
particular, if limy_,o A(t) < 00 a.s., then with
probability one, limy;_, o X (t) < 00, limy_, U(t) <
00, —00 < M(t) < +o0.

4 MAIN RESULTS

In this section, we assume that the functions f and
g satisfy the local Lipschitz condition and new gen-
eral growth condition. Under these conditions, we
will first prove that there exists a unique global so-
lution to system (2). Furthermore, we will discuss
the mean square exponential stability of the solu-

tion.

Theorem 4.1. Suppose that Assumptions 3.2, 3.4,
3.5 and 3.6 hold. If the following conditions hold:

r1 > 1o Vrs; —2a; + 010, —7w(Z) <0

and
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a2>a3+<u+l>a4
1—u

1 1
+ 5 <b2 + 1_ub3> Ch.- (7)

Then for any initial data & € C ([—7,0];R™), there
exists a global unique solution x(t) to equation (2)
on t € [—7,00). Moreover, the trivial solution of
(2) is mean square asymptotically exponential sta-
bility.

Proof. Since the functions f and g satisfy the local
Lipschitz condition, we see that for any given initial
value z(0) = zo = £ € R", there exists a unique
maximum local strong solution on —7 < t < 7,
where 7. is the explosion time. To prove that this
solution is global, we just need to show that 7. = oo
a.s.. Let kg > 0 be sufficiently large such that
ko > |zo|. For each integer k > kg, define the stop-

ping time

T, =inf{t € [0,7¢) : |x(t)] > k}, keN.

By the definition of the stopping time 7y, it is
obvious that 7 is increasing with k, so 7, —
Too < To(k — 00) a.s., where inf & = oo (as usual,
@ = the empty set). If we can prove 7., = 00
a.s., then 7. = oo a.s., which implies that z(t) is
the unique global solution. Hence, we only need
to prove that P (r, <t) — 0(k — oo,t > 0).
We define V(z(t),t) = |z(t)|?, it is easy to get
EV(z(tANTe),tAT) > P <)V (x (%), 7k)-
That is to say, we only need to prove that
EV (z(t A1), t ATi) < +oosince V (z (1x) , 7)) =
|z ('rk)\2 = k% — oo(k — o). By the Ito formula,
we obtain

EV (z(t A1), t A1) = V(2(0),0)

+E/0 A LV (z(s),y(s), s)ds, (8)

where

LV ((t), y(t),t) = Vi(x(t), 1)
+ Ve (2(t), 0) f (x(t), (1), )

45t g7 (@0, 9 (1), 0Veu (D (1), (1), )]
+ /Z[V(x + h(z,y,t,v),t) — V(x(t),t)]n(dv)
<2 [o (a0 (0.0 + Glafa(0),0(0. )

+/[W+M&%t@ﬁ*@@ﬂﬂ@@~ (9)
Z

According to Assumptions 3.2 and 3.4, we have

— az|z ()" + agla(t) "+

+aaly(t) 4]

+/ [\1’+h(x,y,t,v)|2 — |m(t)|2] m(dv). (10)
z

[’V(l‘(t)v y(t)v t) < [al |I(t) |2

By the inequality |+ 8+7v| < (o + |B] + |7]), we
obtain
|z + h(z,y,t,v)]* = (Jz + h(z, y, t,0)[?)
< (A(v) (balz()* + balz(6)]"2 + ba|y ()| *2))
= h(v) (bl ()] + bala ()2 + ba|y (1) +2)
< h(v) (bil(t)[? + bola(t)[F2

hly(Bl ). (1)
Thus, we get
[l byt o) = a0 m(ao)
<by Gyl (t)[* + baC ()] 2
FRCOI — (D, (12)

where C;, = [, 2(h(v))m(dv).
Substituting (11) and (12) into (10) yields

LV (z(t),y(t),t) < 2a1|z(t)|* — 2az|z(t)[* 2
+ 2a3|2(t)[2 2 + 2a4ly(t)|>
+ b1.C5|2(t)]? + bo O ()72 T2

+bsCrly(O)]* 2 — w(2) | (1) (13)

e . . . 2 2 1 4
By utilizing the Young inequality a“3< < sa® +
%/3’4(04,5 > 0), we have

()22 < ()2 + (jy)2 = (b)) .

(14)

Similarly, we get

baC |2 ()] + b3 Cy ly(1)|" 2
= (b2C5, + bsCy) |x(t)|* 7

+b3Cy (ly@®) 2 — Ja()]**?) . (15)

Substituting (14)-(15) into (13) yields

LV (x(t),y(t),t) < (2a1 + b1Cf, — 7(2)) Ja(t)?

+ag (lyOFP T = [a@®))

+b3Cy, (ly(0)F2 = [a()]7*+2) — 2az]a(t)|
+ (2a3 + 2a4) |2(t)|"2 12

+ (b2 + b3) Gyl (t)[ 2. (16)
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Substituting this fact into (8) yields

( (t/\Tk) t/\Tk) <V({E(0) O)

t/\‘l’]C
+ (2a1 + 10, — 7(2)) E/ z(s)|*ds

tATE
w200 [ () = a0 ds

t/\‘l’k

+ 53205, F / ()73 +2 —

j(s)|"™*?) ds
tATE
- 2a2E/ lz(s)|* T ds
t/\T}c
+ (2a3 + 2a4) E / x(s)|*T"2ds

tATE
+ (b2 + bg)c,;/ E|x(t)|™2ds. (17)
0

According to the integral property, we have

tATE
/ ly(s)[F+2ds <
0

—1—u

tATE—T(t)
/ () 272 ds

—7(0)

1 tATE .
< ()| "2 ds,

1—u

then we can easily get

tATE
[ (R = jao)p=) ds
0
1 tATE
< / lz(s)|* T2 ds

~—1—-u
tATE
[ e
0
Ly o (s)|>+ 2 ds
—1—u

—T

U tATE
+ 1—u /0 lz(s)|*T"2ds.

Similarly, we obtain

/0 Y ()P — [a(s)PH) ds

1 O
< -
U

<1 2(s) 77

—T

U tATE
/ lz(s)|*T "2 ds.
L—uJo

u

+
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Substituting the above inequalities into (17) yields

EV (x(tATk),t A7) < V(2(0),0)

tATE
+ (2a1 + 01C;, — 7(2)) E/ lz(s)|ds
0

2 0
E 2t
bl [ e s

—T
0
|z (s)|"+2ds

L1
1—u

t/\‘l’]C
— QCLQE/
+ (2a3 + (1 + ) 2a4)
1—u

25/\‘1')C
x E / (8)[*T"2ds

)ChE /m
= (x(O),O)

tATE
+ (2a1 + 01C;, — w(2)) E/ lz(s)|ds
0

b3C E

-7

\2+”ds

|2+T‘d5

2 0
E 2t
+1_ua4 /_T|x(s)\ s

1 O
b ataGE [ Jalo)l s + I(ale). o)

—T

(18)

where

AT
[(2(t),8) = —2a,F / (o (s)[2 7 ds
0

U tATE
+ (2a3 + (1 + ) 2a4) E/ lz(s)|**"2ds
1—u 0
1

tATE
+ < bg) C’;LE/ |z (s)[* T2 ds.
0

Recalling that r1 > 7‘2 V ryg and as > ag +
(1 + —) as+ 3 (b2 + b3) Cy,, the boundness
of the polynomlal functlon implies that there eixsts
Hj such that I(x(t),t) < Hp. Then we can deduce
from (18) that

N———

EV (z(t A7), t Am) < B||€||* + Hot

t
+ (201 + b Cj, — 7(2)) E/ o (t A )| ds
0

+

2 0 5
=) a4E/ |z(s)|"22ds
0

lz(s)|™ 2 ds.

—T

1

bsC; E 19
— 3t (19)
Applying the Grownwall inequality to (19), we get

EV (z (t A1y)) < Hyel 72t Crmm(2)t
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where

H, = Hot+E||¢||* + asTE||g]2 T

2
(1—u)
1
+ mb?)CETEHfH ot

tATE
Hyt = sup {—2&2E/ lz(s) [>T ds
x>0 0

U tATE
+ <2a3 + <1 + > 2&4) E/ |1‘(S)|2+T2d5
1—u 0

1 tATE
+ (bz + b3) CEE/ |x(5)|2+r3ds} .
1—u 0
(20)

Obviously, H; is dependent of ¢, but independent
of k. Letting kK — 0o, we obtain

Elz(t)|]> < Hyel-20+0:1Crm(2))t,

Since ¢t > 0 is arbitrary, which implies that for
any initial data £ € C ([—7,0];R"™), there exists a
unique global solution z(t) on [—7, 00) and the triv-
ial solution of (2) is mean square asymptotically
exponential stability.

5 CONCLUSION

In this paper, we have introduced a new general
nonlinear growth condition and under it we have
established the existence-uniqueness and stability
of the global solution.
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