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T khoéa:

Bai béo dé xuit mot thuat toan mdi giai bai toan bat déng
thttc bién phan tach trong khong gian Hilbert. Dé giai bai
toan nay, ching toi dé xuat mot thuat toan mdi va thiét lap
st hoi tu manh. So sanh véi thuat toan ciia Censor va cac
cong sy (Numer. Algor., 59:301-323, 2012), thuét toan mdi
nay cho sit hoi tu manh. So véi mot s6 két qua gan day, thuat
toan clia chiing t6i cho sy hoi tu manh duéi cac diéu kien yéu
hon. Mot s6 vi du ciing duge dua ra dé minh hoa cho sy hoi

Bai todn bat dang thic bién phan tach, bai
todan chap nhan tach, khong gian Hilbert,

phép chiéu me-tric.

tu giai tich clia thuat todn dé xuét.

1 INTRODUCTION

The split variational inequality problem (SVIP),
which was introduced first by Censor et al. [1]

find u* € Q := S(A,C) ﬂF_l(S(B’Q)), (SVIP)

where C' C H; and Q C Ho are nonempty closed
convex subsets, F': H1 — Ho is a bounded linear
mapping. A : H1 — Hi and B : Hy — Hg are
single—valued operators, S 4 ¢y and S(p,q) denote
as the set of all solutions of the variational inequality

problems
(Au,u—u*) >0 YueC (VIP(A,C))

and (Bu*,u —u*) >0, Yu € Q, respectively.

240

In this paper, using the viscosity approximation
method [2], as well as a modification of the CQ
method [3] we propose a new convergence strongly
algorithm for solving the (SVIP).

2 PRELIMINARIES

In this section, we introduce some mathematical
symbols, definitions, and lemmas which can be used

in the proof of our main result.

Let H be a real Hilbert space with inner product
(.,.) and norm |.|| and C' be a nonempty, closed,
and convex subset of H. In what follows, we write

zF — 1z to indicate that the sequence {z*} con-
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verges weakly to « while zF — z indicates that the
sequence {z*} converges strongly to z. It is known
that in a Hilbert space H,

2(z,y) = o +ylI* = ll=]* - lly))*

= llz)® + lyll* = [l= — yII%, (2.1)
and
Az 4+ (1= NylI? = Azl + (1 = N)[|y|I?
A1 =Nz -yl (2:2)

for all z,y € H and A € [0,1] (see, for example
[4, Lemma 2.13], [5]). For every point z € H there
exists a unique nearest point in C, denoted by Pox.
This point satisfies ||z — Poz| < ||z — u] for all

u € C. The mapping Po : H — C is called the
metric projection of H onto C.

Lemma 2.1 (see, [6]). For givenx € H and y € C,
y = Pox if and only if (x —y,z —y) <0 for all
zeC.

Definition 2.1. An operator T : H — H is called a
contraction operator with the contraction coefficient
T€0,1)if | Tz —Ty|| < 7|z —y| for all z,y € H.

It is easy to see that, if T' is a contraction operator,
then PoT is a contraction operator too. If 7 > 0 we

have 7-Lipschitz continuous operator.

Definition 2.2. An operator A : H — H is called
an 7-inverse strongly monotone operator with con-
stant n > 0 if (Az— Ay, x—y) > n||Az— Ay||* for all
z,y €H.

It is easy to see that, if A is an n-inverse strongly
monotone operator, then I — A\ A is a nonexpansive
mapping for A € (0, 2], where I is the identity
operator on H.

Lemma 2.2 (see [1]). Let A : C — H be n-
inverse strongly monotone on C and A > 0 be a
constant satisfying 0 < X < 2n. Define the mapping
T:C — C by taking

Ty =Pc(I™" —MNA)z forall z€C. (2.3)

Then T is nonexpansive on C, and Fix(T) = S(a,c),
where Fix(T) := {z € C | Tx = x} is the set of
fized points of T .

Lemma 2.3 (see, [6]). Assume that T be a nonex-
pansive mapping of a closed and convex subset C' of
a Hilbert space H into H. Then the mapping I —T

is demiclosed on C; that is, whenever {x*} is a se-
quence in C which weakly converges to some point
u* € C and the sequence {(I" —T)z*} strongly con-
verges to some vy, it follows that (It — T)u* = y.

From Lemma 2.3, if ¥ — u* and
(I" —T)z* — 0, then u* € Fix(T).

Lemma 2.4 (Maingé, [7]). Let {sx} be a real se-
quence which does not decrease at infinity in the
sense that there exists a subsequence {sy,, } such that
Sk, < Sk,+1 for all n > 0. Define an integer se-
quence by v(k) := max {kzo <n<kl|s, < sn+1},

k > ko. Then v(k) — oo as k — oo and for all
k > ko, we have max{s, k), 5k} < Sy(k)+1-

Lemma 2.5 (see, [8]).
of monmegative numbers satisfying the condition
Sk+1 < (1 — bg)sk + breg, k > 0, where {b;} and

{ck} are sequences of real numbers such that

Let {sx} be a sequence

(i) {bx} C (0,1) for allk >0 and Y ,-, by = oo,
(#4) limsupy,_, . cx < 0.

Then, limy_, o s = 0.

3 MAIN RESULTS

We consider the (SVIP) under the following condi-
tions.

Assumption 3.1.

(A1) A:H; — H;is an na-inverse strongly mono-

tone on H;.

(A2) B:Hs — Hs is an np-inverse strongly mono-

tone on Hs.
(A3) F: My — Ho is a bounded linear operator.

(A4) T :Hy — H; is a contraction mapping with

the contraction coefficient 7 € [0, 1).
(A4) The solution set  of the (SVIP) is nonempty.

We also consider some conditions.

{ar} € (0,1) for all k& >0,

(oo}
lim ap =0, g Qp = 00;
k—o0

k=0

0 <A< 2n; n=min{na,ne}; (\)

1
0 i
<7< TGE (7)

We present a algorithm for solving the (SVIP). This

is our new algorithm.
Algorithm 3
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Step 0. Select the initial point 2 € #H; and
the sequence {8;} C [¢,d] C (0,1) Vk > 0,
the sequences {ay}, A, and « such that the
conditions (), (\), and () are satisfied. Set
k:=0.

Step 1. Compute
ub = Bk 4 (1 — By) P (aF — NAzh).

Step 2. Compute v* = PZ;2 (Fu* — AB(Fu*)).

Step 3. Compute w* = u* +yF*(v* — Fu*).

Step 4. Compute 2"t = o T(zF) + (1 —

ag)w”.

Step 5. Set k:=k + 1 and go to Step 1.

Theorem 3.1. Suppose that all conditions in As-
sumption 3.1 are satisfied. Then the sequence {x*}
generated by Algorithm 3 converges strongly to the
unique solution u* € Q of the VIP(I"1 —T,Q).

Proof. Since T is a contraction mapping, PoT is a
contraction too. By Banach contraction mapping
principle, there exists a unique point u* € ) such
that PoTu* = u*. By Lemma 2.1, we obtain u* is
the unique solution to the VIP(I** — T, ).

1. Claim the sequence {x*} is well defined.

Indeed, let u € €. Since u € Q, u € S(4,¢)- It follows
from (\) and Lemma 2.2 that u = P} (I —XA)u.
From Step 1 in Algorithm 3, the nonexpansive prop-
erty of Pgl (IHl — )\A),

{Br} C [e,d] C (0,1) Vk > 0, and (2.2), we have
that

= ull? = ||Be(a® = w) + (1 - By)

[Pgl (x"”' — MMa®) — u] H2

= |[Bea* —w+ (1= By

[ngl (:L'k - /\Axk) - Pgl (u— )\Au)} H2

= Bella* = ull? + (1 = B 2" — ul® = Bu(1 — i)
o — P2 (2 — raat) |

= [l2" = ul® = B(1 = Br) | 2*
— P} (b — A |

< fla® —ul®.

It follows from Step 3 in Algorithm 3, the property
242

of adjoint operator F*, and (2.1) that

[k = ul|? = ||Ju* + yF* (o* — Fuk) - ul|?
= |lu* — u)? + || F* (vF — Fu¥) H2
+ 2y(u¥ —u, F* (v% — FuF))
= [[u* =l + 7| FIP (" = Fu®||?
+ 2y(Fuk — Fu,v® — Fu®). (3.3)

Using the convexity of ||-||? and Step 2 in Algorithm

3, we have

2
[oF — Fuk|? = Hp;h (Fuk — AB(Fu*)) — FukH .
(3.4)

Since u € €2, Fu € S(p ). It follows from Lemma
2.2 that Fu = P}?(I"= — AB)Fu. From Step
2 in Algorithm 3, the nonexpansive property of
sz (IH2 - /\B)7 we have

(Fu® — Fu,v* — Fu*) = (Fu* — Fu,
Pl (Fu* — AB(Fu*)) — FuF)

= %(Hpgz (Fu — AB(Fu*)) — FuH2 ~ ||t - Fqu
~ ||Pg (Put = AB(PUb)) - FukHQ)

= %(HPS? (Fu* = AB(Fu*)) — PX2(Fu— AB(Fu)) H2
~||Fut - FuH2 — || Pa (Put = AB(PUY)) - Fu’fH2)

< —%Hpgf (Fub — AB(Fu")) — FukH2 (3.5)

It folows from (3.3)—(3.5) and () that

lw —ul® < flu* —ul® =5 (1 = ~[F]?)

2
| P (Puk = AB(Fub)) — Pu|

< ||u]c —u||2. (3.7)

It follows from the convexity of the norm function
||l.]l on H1, the contraction property of T' with the
contraction coefficient 7 € [0,1), (3.2), (3.7), the
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condition («), and Step 4 in Algorithm 3 that

2Ftt — || = (| (Tz* —u) + (1 — o) (" — u)|
< au(|Ta* ~ Tl + [T —ul)
+ (1 — a)l[w® —u
< Takak —ul| + akHTu — uH
+ (1= ag)llz" — |
=[1- 1 —7)ag][|z" —ul
|7 — ul]

1—7

< max{”xk _u||7||T1u_Tu||}

+(1—7)ayg

< maX{HJ:O —ul, M}
1—7
This implies that the sequence {z*} is bounded.
Since Pc and Pg are nonexpansive mappings and
F' is the bounded linear operator, we also have the
sequences {u*}, {v*}, and {w*} are bounded.

2. For any u € 2, the following inequality holds:

i1 < [1— (1 — 7)o sk + arer,  (3.8)

where sp := [|2* — u||? and

er := 2(Tu — u, "1 —u).

Indeed, from the convexity of [|.|[?, Step 4 in Al-
gorithm 3, (3.1), (3.6), and the condition («), we
get

||;10’“Jrl — uH2 = ||ak(Txk —u)+ (1 - ozk)(w”c — u)”2

< akHTxk - uH2 + (1 — ag)|Jw® — ul?
< o ||Ta* — uH2 4 Jlu® — ul?
2
(L= IF2) | P (Put = AB(Fu*)) - Fu|
2
< || Ta* = ul|” + [l2* — ul|* =~ (1 = 4| F||*)
2
Hpgz(Fuk ~ AB(Fu")) — FukH
2
— B(L = B[ — P2 (a* — aa@h) |
Hence,
2
V(1= FI2)|| P (Put = AB(Pub)) - Fut|
2
+ Br(l— Bk)ka S (2% — NA(2")) H

< (Ila* = ul® = 2+ = wll?) + x| 72" — ]

(3.9)

Next, from Step 4 in Algorithm 3 and the contrac-

tion property of T" with the contraction coefficient

T € [0,1), we have that

| =) = {an (T2 —w) + (1= o) (w* — ),
k41

T — )

= (1 — ag)(w” — u, 2"+ —w)

+ o (Txh — w, 2P — )
11—«
S (= w2 4 241 = ul?)

+ o (Ta® — Tu, 2" — )

+ o (Tu — u, 2 — u)
1—
< 5 (l” = lf? + = ull?)
«
+ 5 (7lle® =l + 2t — uf?)
+ o (Tu — u, ¥ — ).

This implies that

Iz —u]* < (1 = ) [w® — ul]?

R ).

(3.10)

+ ag7||2® — u|? + 200, (Tu — u, x

From (3.2), (3.7), and (3.10), we obtain

=l < [1 = (1= Pan] " — ul?

+ 200, (T — u, 2 — ). (3.11)

k+1

Put s := ||z¥ —u||? and ey, := 2(Tu — u, 25+ —u),

then the inequality (3.11) can be rewritten as (3.8).

3. We will show lim, o ||zF — w*|| = 0, where
u* = PoTu*.

We consider two possible cases.

Case 1. There exists an integer ky > 0 such that
|zF L — w*|| < ||a* — u*|| for all k& > ko. Then,
limy, o [|2% — u*|| exists. Since the sequence {z*}
is bounded, the sequence {T'z*} is also bounded.
From the boundedness of the sequence {Tz*}, (),
(M), and (7), it follows from (3.9) that

lim ||[I* — PZ (1

k—o0

—M)]zF||=0 (3.12)

and
lim ||[1%2 — P22 (12 — AB)|Fu*|| = 0. (3.1
Jim | o (I = AB)| Fut|| = 0. (3.13)
From the fact that (3.13) and (3.4), we get
lim [[v* — Fuf|| = 0. (3.14)
k— o0
From Step 3 in Algorithm 3, the property of adjoint
operator F*, and (3.14), we obtain
lim [Jw® —uf|| = vklim | F*(v* — Fuk)| = 0.
— 00

k—o0
(3.15)
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From Step 1 in Algorithm 3 and (3.13), we get
lim [lz% — "

= lim (1= Bp)ja" — PE* (" = AA)a*|| = 0.

(3.16)
It follows from (3.16) and (3.15) that
lim ||z — w®|| = 0. (3.17)
k—o00

Using the boundedness of {w*} and {Tz*}, Step 4
in Algorithm 3, and the condition (&), we also have
k+1

limk_mo H.Z‘ wk|| = limg_ 00 akHTxk_wkH =0.

When combined with (3.17), this implies that

lim [lz**! — 2| = 0. (3.18)
k—o0
Now we show that

lim sup,,_, o (Tu* —u*, 2%+ —4*) < 0. Indeed, sup-

pose that {z¥~} is a subsequence of {z*} such that

limsup(Tu* — u*, 2% — u*)

k—o0
= lim (Tw* —u*, 2" —u*). (3.19)
k,,—00
Since {z*»} is bounded, there exists a subsequence

{xFn1} of {2*»} which converges weakly to some
points «. Without loss of generality, we may as-
sume that z*» — uf. We will prove that uf € Q.
Indeed, from (3.12), Lemma 2.2 and Lemma 2.3, we
obtain uf € S(a,c)- Moreover, since F' is a bounded
linear operator, Fa*» — Fuf. Using (3.13), Lemma
2.2 and Lemma 2.3, we also obtain Fu' € S(p ).
Hence, uf € Q. So, from u* = PoTu*, (3.19),
and Lemma 2.1 we deduce that limsupy_, . (T'u* —
u* 2k —u*) = (Tu* —u*, ul —u*) <0, which com-
bined with (3.18) gives

limsup(Tu* — u*, 2"t — %) <0.
k—o0

(3.20)

Now, the inequality (3.8) with u replaced by u*, can
be rewritten in the form sgy1 < (1 — by)sk + bick,
(1 - 71)ag = (Tu* —
u*, z" T — u*). Since the condition (o) and 7 €
[0,1), {bx} < (0,1) and Y ;o by = oo. Con-
sequently, from 7 € [0,1) and (3.20), we have

where b, = and ¢, =

k+1

that limsup,_,., cx < 0. Finally, by Lemma 2.5,

limg o0 sk = 0. Hence, limy_,o ||2% — u*|| = 0.

Case 2. There exists a subsequence {k,} of {k}
such that [|z% — u*|| < ||Jz¥»+! —u*|| for all n > 0.
Hence, by Lemma 2.4, there exists an integer, non-

decreasing sequence {v(k)} for k > ko (for some kg
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large enough) such that v(k) — oo as k — oo,

la® — || < e ™F — | and

|zF — u*|| < ||a¥®+L —u*||  for each k > 0.
(3.21)

From (3.8) with u replaced by u* and k replaced
by v(k), we have

0< ”xu(k)-&-l _ u*||2 _ ”xu(k) _ u*||2

< 20, () (Tu™ — w*, VP,

Since () — 0 and the boundedness of {xv(R)}
we conclude that

lim (||x”(k)+1 —u*? = [ar® — u*||2) =0.
k—o0

(3.22)

By a similar argument to Case 1, we obtain
limyo0 || [T — PE (17 — XA) J2v®)|| = 0

and limg .o || [I%2 — P2 (12 = AB)| Fu*®|| = 0.
Also we get

2" H — | < 1= (1= m)ay 9] lla”® = w”)?

+ QOéy(k) <TU,* _ u*7l‘u(k)+1 _ u*>’

where limsupy_, o (Tu* — u*,z"®+1 — 4*) < 0.
Since the first inequality in (3.21) and a, ) > 0,
we have that (1 — 7)|a¥®) — w*||? < 2(Tu* —
w*, x¥*)+ — ). Thus, from

limsup,,_, . (Tu* — u*, "™+l —y*) < 0and 7 €
[0,1), we get limg o0 ||z — u*||2 = 0. This to-
gether with (3.22) implies that limy_, o [|zV ()1 —
u*||? = 0. Which together with the second inequal-
ity in (3.21) implies that limy_, [|z¥ — u*|| = 0.
Since T is a contraction mapping, PoT is a con-
traction too. By Banach contraction mapping prin-
ciple, there exists a unique point u* € ) such that
PoTu* = v*. By Lemma 2.1, we obtain u* is the
unique solution to the VIP(I7** — T, Q). This com-
pletes the proof.

4 NUMERICAL EXPERIMENTS

We perform the iterative schemes in Python run-
ning on a laptop with Intel Core i7 8650U CPU,
16GB RAM.

Example 4.1. In this example, with the purpose
of illustrating the convergence of the Algorithm
3, we will apply the method to solve (SVIP). Let
H, = R* and Hs = R®. Operators A : R* — R*
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and B : R® — R® are defined by

1 1 2 1| |xq T1
1 1 2 1
Ax = 2 , T = 2 € R* and
2 2 7 2| |z3 T3
1 1 2 1| |x4 T4
2 0 0 0 O T T
07 0 0O To To
Bx=10 0 0 0 0f |z3|, z= |z3]| €R®
0 0 0 1 Of |xg Ty
00 0 0 O Is5 Is

that are inverse strongly monotone operator with
constant g = % and ng = %, respectively. Bounded
linear operator F : R* — R®,

00 20
T I
00 70
Fr=1{1 1 0 o| |™|, z=]"|er%
xs3 zs3
00 1 0
X X
030 o0]"" 4
And Tz : R* = R?,
20 0 0] [z 0 1
0+ 0 o0 0.2
Tr = 2 1 x2+ , T = 2
0 0 % 0f s 0 T3
0 0 0 %] [za] [025 T4

is contractive operator with constant 7 =
Let C and @ are defined by C = {z
(x1,22,23,24) | 221 + 24 < 115Q = {y =
(Y1,92, 3,91, 95) | ¥3 +y3 +y3 +yi+y2 < 1}
The solutions set of (SVIP) is

Q:{I:(fu—v, u, 0, v) |

9u2—|—v2§1; 2u+v > —1; u,veR}.

The unique solution of VIP (IR4 - T, Q) is
T
v =(-03 01 0 02)

ﬁ,)\ =0.2,6, = 025,y =
0.01 , tolerance ¢ = 1076 and initial point

= (2 -1 0 57, we get =z =
(—0.2943, 0.1056, —0.0014, 0.2056) . This result
archived within 0.208041 seconds.

Now, choose a =

Next, we used different choices of parameters. Ta-
ble shown below is the performance with differ-
ent A parameter, (0 < A < 27 =~ 0.2222) and
ap = ﬁ,ﬂk = 0.25,7 = 0.01 with initial point
a®=(2 -1 0 5)". Tolerance e = 1075.

Number of .
A . . Time
iterations
0.05 13557 0.5560s
0.10 8514 0.3500s
0.15 6303 0.2649s
0.20 4963 0.2080s

Bang 4.1: Results with different A

Then, we changed the parameter v with 0 < v <

+ = & ~ 0.0185. The other parameters stay un-

changed A = 0.20,ap = \/%ﬁ’ﬁk = 0.25 with
initial point 2° = (2 —1 0 5)T. Tolerance
e =106,
Number of .
7 iterations Time
0.002 7088 0.260000s
0.004 6378 0.247037s
0.006 5808 0.219998s
0.008 5345 0.203006s
0.010 4963 0.199033s
0.012 4647 0.174994s
0.014 4385 0.174000s
0.016 4167 0.159012s
0.018 3987 0.148996s

Bang 4.2: Results with different

Following that, we changed the parameter (i as

well, with the same choice of parameters, as A =
1

0.20,a = \/Tﬁ,'y = 0.01 with initial point
2=(2 —1 0 5)7. Tolerance ¢ = 1076,
Number of .
B . ) Time
1terations
0.1 4501 0.166038s
0.2 4793 0.180050s
0.3 5152 0.214039s
0.4 5606 0.241030s
0.5 6205 0.263004s
0.6 7040 0.278997s
0.7 8307 0.329004s
0.8 10529 0.381039s
0.9 15828 0.617035s

Bang 4.3: Results with different 5
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Results with different A

Results with different B

Number of iterations (k)
Time (s)

s o0l0 o1z o014 o0ls o018 oz 6162 a3 a4 05 a8 @
A Br

Results with different y

e~ Number of terations | 0.26
&= Time

Time (s)

jumber of iterations (k)

Hinh 1: Results with different change in some pa-

rameters

Afterwards, we modify the parameter ay. The ta-
ble below show the results of the algorithm with
A = 0.20,8 = 0.25,v = 0.01. and initial point

2°=(2 —1 0 5)". Tolerance ¢ = 1076,
Number
Qg € of itera- | Time (s)
tions (k)
10~ 4963 0.208041
10-7 23133 0.882029
Q= (]{1 + 1)_0'5 3
10 107595 4.463039
1079 499903 20.689995
10-6 1693 0.07303
10-7 5658 0.209031
= (k+1)70%
ar = (k+1) 10-8] 20287 | 0.826946
10~° 72908 3.344028

Béang 4.4: Results with different ay,

Results with different a; Results with different a;

- a= k1)
-8 a=k+1)0

Time (s)

Hinh 2: The behavior of the number of iterations

and time when «y, changed
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5 CONCLUSION

In this paper, we introduced a new algorithm (Al-
gorithm 3) and a new strong convergence theorem
for solving the (SVIP) in a real Hilbert spaces. We
consider a numerical example to illustrate the ef-

fectiveness of the proposed algorithm.
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