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THONG TIN BAI BAO TOM TAT

Ngay nhan bai: 20/8/2023 Ching ta quan tam dén tinh kha vi cip mot theo
Ngay stra bai: 28/9/2023 huéng cia ham gi4 tri toi wu trong bai toan quy hoach
Ngay dang: 15/10/2023 toan phuong tham s6 héa vé6i rang buodc tuyén tinh

trong khong gian Hilbert. Ching ta suy ra mot cong
TU KHOA thitc tuong minh dé tinh dao ham theo huéng cap
Quy hoach toan phuong, khong gian mot clia ham gia tri téi wu trong truong hgp dang

Hilbert, dang Legendre, tap nghiém, toan phuong trong ham muc tiéu la dang Legendre.
ham gid tri toi wu, khd vi theo hudng.

1. Introduction

Let H be a real Hilbert space with an inner product (-,-) and its induced norm denoted
by || - ||. Let £(H) be the space of continuous linear operators from H into H equipped
with the operator norm induced by the vector norm in H and also denoted by | - ||. The
norm in the product space Xi X ... X X} of the normed spaces X1,..., X} is defined by
(x1,. .. xp)|| = max{||z1],...,||zk|}. Let

Q= L(H) x H™TE x R™.
We consider parameterized quadratic programming problem of the form

min f(z,w) == 3(z, Toz) + (co, 2) or)
w
sstex €H:gi(z,w) = {c,x)+a; <0,i=1,...,m,

depending on the parameter vector

W= (T()?C()aclv""CW’Ual?"'aam) € Qa
where Ty : H — H is a continuous linear self-adjoint operator, cg,¢c; € H, and «; are real
numbers, 1 =1,2,...,m.
Put A = (\1,...,\p) where \;;i = 1,...,m are real numbers. By

F(z,w)={z e H:gi(z,w) = (¢,z)+0; <0,i=1,...,m}
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and

L(x’wv >‘) = f($aw) + Z Aigi(wi)’

i=1
we denote constraint set and the Lagrangian function of (QP,), respectively.

For a given point wy in the parameter space €2, we view the corresponding problem (QF,,)
as an unperturbed problem, and investigate differentiability properties of the optimal value
function

©: Q= RU{+o00}

defined by

o) = inf{f(z,w):z € F(w)} if F(w)#0
+00 if F(w)=10

The solution set of (QP,) defined by
Sol(QF,) ={z € F(z,w) | f(z,w) = p(w)}.

Stability is an important topic in optimization theory and practical applications. Directional
differentiability of the optimal value function for QP problems in Euclidean spaces has
been investigated extensively in various versions; see [10] and the references therein. The
continuity of the solution set mappings and of the optimal value function for parametric
quadratic programming problems in a Hilbert space have been intensively studied in [5].
Optimality conditions for quadratic programming problems in Hilbert spaces have been
intensively studied in [4]. Various aspects of the value function in optimization have been
studied in [2, 6, 7, 8, 9] and the references therein. Since quadratic programming is a class of
optimization problems, the results in optimization can be applied to convex and nonconvex

quadratic programming problems.

This paper studies parametric quadratic programming problems in a Hilbert space. The
main results of the paper concern differentiability properties of the optimal value function
of the problem whose quadratic part of the objective function is a Legendre form. We
would like to stress that the notion of Legendre form, which originated in the Calculus of
Variations is crucial for the solution existence theorem of quadratic programming problems
in Hilbert spaces. In [3], Dong and Tam constructed an example to show that the conclusion
of that theorem fails if the assumption on the Legendre property of the quadratic form is

omitted.

The remainder of the paper is organized as follows. In Section 3 we study differentiability
properties of the optimal value function of the problem (QF,) where feasible set is also

subject to perturbations. Concluding remarks are offered in Section 3.

2. Lemmas

Throughout this paper, we denote Dg(x) : X — Y as the Gateaux derivative of the mapping
g: X — Y at the point z € X and D,g(x,w) as the partial derivative of the mapping ¢ :
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X xQ — Y. It is said that g is Gateaux differentiable at z if g is directionally differentiable
at = and the directional derivative ¢'(z,h) is linear and continuous in h. That is. g(z,) :
X — Y is a continuous linear operator. We denote this operator (when it exists) by Dg(z),
i.e., Dg(x)h = ¢'(z,h).

Let xo € Sol(QPF,,). For a given direction d € 2 consider the following linearization of

(QPu)

min Dxf(l’o, wo)h + f(l’o, d)

, (PLq)
s.t. h € H: Dygi(zo,wo)h + gi(zo,d) <0, i € I(xg,wp),

where D, f(xo,wo)h = (Toxo+c, h), Dygi(zo,wo)h = (ci, h) and I(xg,wo) denotes the index
set of active at x( inequality constraints, i.e.,

I(xo,wg) = {’L ‘ gi(l'(),(.U(]) = O,i = 1,2, . ,'m}.

Let X and Y be Banach spaces and K is a closed convex subset of Y. Consider the sets

defined by abstract constraints in the form
O(w):={re X |G,w) e K}

where w € €2, Q is a topological space and G : X x ) — Y is a continuous mapping.

We say that Robinson’s constraint qualification holds at a point xg € X such that G(z¢.w) €
K, with respect to the mapping G(-,wp) and the set K, if the following regularity condition
is satisfied.

0 € int{G(x0,wo) + Dy G(x0,wo) X — K }.

Lemma 2.1. Let z9p € F(z,wp) and suppose that there exists & € H such that g;(z) < 0
foralli=1,...,m (Slater condition). Then the following holds

a) Robinson’s constraint qualification is satisfied at xy.

b) The constraint set of the problem (PLg) is nonempty.

Proof. 1t is clear that g; are continuous and convex. By convexity of g;, we have
gi(xo +t(Z —x0)) = ¢i((1 — t)xo +tZ) < (1 —t)gi(zo) + tgi(z) Vt € (0,1). (1)

We have

(i@ — m0) = ltiﬂ)lgi(xo +t(x txo)) — gi(z0) .

Combining (1) with (2) we obtain

_ (1 —1t)gi(xo) +tgi(T) — gi(0)
(ciyT —xp) < 11}&)1 0 ; 0

= 9i(Z) — gi(wo)

Put h = Z — x¢. It follows from the above inequality that

(ciy h) + gi(wo) < gi() < 0. (3)
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a) Let G : H x Q@ — R™ defined by
G(,0) = (912w, - gm(0)).
Then the constraint set of (QF,) can be rewritten as
F(z,w)={zx e H:G(z,w) € R}

We have
DG(Io,wO)B = (<01, 7l>, <CQ, 71), cey <—|—Cm, 71))

and hence (3) can be rewritten as
G(z0,wo) + DG (z0,wo)h € int{ R™}.

Since R™ has a nonempty interior, by Lemma 2.99 in [1], Robinson’s constraint qualification
holds at xg.

b) It follows from (3) that
Dwgi($0>w0)ﬁ = <Ci7 B> < 0,7 € I(xo)

Hence, for each i € I(x(), there exists §; > 0 large enough such that

Dogi(x0,wo)(Bih) + gi(z0,d) < 0.
Let 8 = max{f;,i € I(x0)}. We have
Dgi(o,wo)(BR) + gi(zo,d) < 0 Vi € I(xo).

This shows that constraint set of (PLg) is nonempty. The proof is complete. ]

Dual of the above problem (PLg;) can be written as

max xg,d) + Aigi(xo, d).
AeA(xw(])f(o ) ; gi(zo,d)

It is not difficult to show that
f(x07 d) + Z )\’L'gi(x(% d) = DwL(x(]a )‘7 (,U())d.
i=1

Therefore, the dual of (PLg;) can be written in the form

max D,L(xzg, A\, wo)d, DL
/\EA(IQ,WQ) ( 0 0) ( d)

where A(xo,wp) denotes the set of all Lagrange multipliers at that is, the set of A =
(A1,. -, Am) € R such that
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Lemma 2.2. Let 9 € F(z,wp) and suppose that there exists T € H such that g;(z) < 0
foralli=1,...,m. Then for each h is a feasible point of the problem (PLg) there exists
v € ‘H satisfying

(ciyv) + 2Dy gi(xg,w)h + (Th,h) <0, for alli € I(xg,wo), (5)
where I1(xo,wo) = {i € I(zo,wo) | Dzgi(To,wo)h + gi(zo,d) = 0}.

Proof. We first prove that there exists hg € H such that (c;, ho) + gi(xo,wo) < 0 for all
i € I(x,wp). Suppose that g;(z) < 0 for all 4 = 1,...,m. Then there exists h = Z —xz9 € H

such that (¢;,h) < 0 for all i € I(xg). Hence, for each i € I(xg), there exists 7; > 0 large
enough such that

Degi(wo,wo)(vih) + gi(xo, d) < 0.
Let hg = vh where v = max{~;,i € I(z9)}. We have
D gi(z0,wo)ho + gi(zo,d) <0 Vi € I(zo).
Chose « > 0 is sufficiently large. Let v = a(hg — h). Then, for all i € I(xg,wp) we have

(ciyv) + 2Dy gi(wo,w)h + (Th, h) =
= afc;, (ho — h)) +2Dygi(zo,w)h + (Th, h)
= a[(ci, ho) + gi(q:o,wo)] +2D,gi(xo,w)h + (Th, h) < 0.

The proof is complete. O

We shall denote by D(xg, v) the set of v’s satisfying (5).

Proposition 2.1. Suppose that there exists & € H such that g;(z) <0 for alli=1,...,m.
Then val(PLg) = val(DLg) < +00 and the common value val(PLg) = val(DLg) is finite if
and only if the set A(xo,wo) of Lagrange multipliers is nonempty.

Proof. Using the similar argument as in the proof of Lemma 2.2, we obtain that there
exists hg € H such that D,g;(xo,wo)ho+gi(xo,d) < 0 for all i € I(xp) and hence Robinson’s
constraint qualification holds. It is not difficult to show that the objective function of (DLg)
is lower semicontinuous and the (DLy) is a convex problem. Therefore, by [1, Propostion
4.21] we obtain that val(PLg) = val(DL4) < 400 and the common value val(PLg) =
val(DLyg) is finite if and only if the set A(zg,wp) of Lagrange multipliers is nonempty. [

3. Main results

In this paper, we consider the case that (QF,,) certainly has a solution. For each (QF,),

we consider the following problem

min{%(v,Tov) cv € 0T F(x,w)}. (CRP)
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where
0FF(w)={veH | (cv) <0, Vi=1,...,m}.
Let us denote by Sol(CRP) the solution set of (CRP).

The following theorem will describe sufficient conditions for ¢(-) to be first order direc-
tionally differentiable and give explicit formulas for computing this directional derivative

of (). For this, we will need the following assumption:

Assumption (A).

lim inf {@n — 20, To(2n — 20))

n—00 tn

>0 (A)

The assumption (A) was introduced by Tam and in [10]. For a detailed discussion of this
assumption, see [10].

In the following theorem we extend the result in [10] to Hilbert spaces.

Theorem 3.1. Consider the problem (QP,) where (x,Toz) is a Legendre form. Suppose
that

(i) there exists T € H such that g;(z) <0 for alli=1,...,m,
(ii) Sol(CRP) = {0},
(iii) the assumption (A) is satisfied.

Then, the optimal value function ¢(-) is Hadamard directionally differentiable at wg in the
direction d, and
/ .
¢ (wo,d) = inf sup DyL(xg, A, wp)d. 6
( ) IESOl(QPwo) )\EA(Z’O,L&JO) w ( ) ( )

Proof. Since (x,Tpz) is a Legendre, and since Sol(CRP) = {0}, by [5, Lemma 2] we deduce
that Sol(QP,,) is nonempty. Let 29 € Sol(QF,,).

By Lemma 2.1 we obtain that, under the Slater condition, constraint set of (PLg) is
nonempty. Let h be a feasible point of the problem (PLgy). Consider a point v € D(zg,v)
and let z(t) = xo+th+ %U be the corresponding parabolic sequence. For any w(t) := wo+td

we have

gi(a(t),w(t)) = gi(wo, wo) + ¢ Dagi(o, o) + gi(wo, )|
) (7)

+ % [(c@-, v) + 2D gi(zo,w)h + (Th, h)} + o(t?)

It is clear that if ¢ ¢ I(xo,wo) then g;(z(t),w(t)) < 0 for ¢ > 0 small enough. For i €
I(x0,wp), combining (7) with Lemma 2.2, we obtain that g;(z(¢),w(t)) < 0 for ¢ > 0 small
enough. Consequently, x(t) € F(z,w(t)) for t > 0 small enough. It follows that
2
o(wo +td) < f(xo + th + iv,w(t))
= f(wo,wo) + t[Dzgi(wo, wo)h + gi(zo, d)] + o(t).
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and hence, since ¢(wy) = f(xo,wp),

lim Supw(WO + td) — p(wo)

Dygi(x0,wo)h + gi(wo, d)
t10 t

N

Since h is an arbitrary feasible point of (PLg) and by Proposition 2.1 , we obtain

td) —
limsup(p(wo—i_ ) = ¢lwo) < sup  DyL(xg, A\, wo)d. (8)
10 t XeA(zo,wo)

Consider a sequence t,, | 0 as n — 00, and let w,, = wgy + t,d. Since F' is nonempty, (z, Tpx)
is a Legendre and Sol(CRP) = {0}, by [5, Lemma 2, Lemma 5, Lemma 6,] we deduce that
Sol(wp+tyd) is bounded, nonempty for n large enough. Hence there exists x,, € Sol(wo+t,d).
By Sol(wo + tnd) is bounded, {x,} it has a weakly convergent subsequence. Without loss of
generality, we can assume that x,, itself weakly converges to some xzg. Let any = € F(x,wp).
By [5, Lemma 3|, the set-valued map w +— F(z,w) is lower semi-continuous at w. Thus,
there exits {y,} C F(z,wo + tpd) such that y,, — . Since x,, € Sol(wo + t,d), we have
9i(Tp,wo +tp,d) <0, i=1,2,....m

and

f(zn,wo + tnd) < f(yn,wo + tad).

Taking liminf in the both above inequalities as k — oo we have f(xo,wo) < f(x,wp) and
gi(x,wp) < 0. These imply xo € Sol(QP,,)-

We have
o(wo + tnd) — p(wo) = f(zn,wo + thd) — f(xo,wp). 9)
Take any A € A(zp,wp). Since
Xigi(xo,wp) =0, Ay =20 Vi=1,2,...,m
and
9i(xn,wo +tp,d) <0, Vi=1,2,...,m

we get from (9)

p(wo + tnd) — p(wo)

> f(wn,wo + tnd) — f(wo,w0) = > Xigi(xo,w0) + > Xigi(Tn, wo + tnd)
i=1 i=1

=[(@n,wo) + tn f(x, wo) — f(z0,wo) Z Aigi(2o,wo) Z Xi[gi(2n, wo) + tngi(zn, d)]
=1

f(@n, d) + Z Aigi (2, d)] + f(2n, wo) — f(x0,w0) + Y Ai[gi(@n, wo — gi(xo,wo)]
=1

1
=t Dy, L(0, A\, wo)d + 5(% — x9, To(xn, — 20))
m
+ (Tzog+c+ Zci,xn — Ip).

i=1
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m
Since A € A(zg,wp), by [4, Theorem 3.2], Tzg + ¢+ >_ ¢; = 0. Hence, we have
i=1

1
o(wo + tnd) — @(wy) = tn Dy L(xo, A, wp)d + 5(1'” — xo, To(xpn — x0))

Multiplying both sides of this equality by ¢, !, take lim inf as n — oo and using assumption
(A), we obtain

lim infSO(wo + tnd) — o(wo)
t10 t

P DwL($07 >\a WO)d'
As X\ € A(xg,wp) can be chose arbitrarily, we conclude that

lim inf('p(w0 + tad) — p(wo) >  sup D,L(xg, \,wp)d.
t40 13 )\EA(xo,wo)

Together with (8) this implies that

tod) —
lim 2ot tnd) Z0lwo) G D o, A wo)d.

n—r00 tn AEA(o,w0)

We obtain then that formula (6) holds. which completes the proof. O

Remark 3.1. Note that if T is a positive semidefinite continuous linear self-adjoint oper-
ator on H, then (QP,,) is a convex problem and assumption (A) automatically satisfied.
Consequently, the (A) can be dropped from the assumption of Theorem 3.1. if (QF,,,) is a

convex problem.

4. Conclusions

By using the Legendre property of quadratic form, we established differentiability properties
of the optimal value function for quadratic programming problems under linear constraints

in Hilbert spaces.
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