ABELIAN CATEGORY OF COARTINIAN MODULES

Bui Thi Hong Cam¹, Do Ngoc Yen²,*
¹ Dong Nai University, Vietnam
² Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Viet Nam
*Email address: yendn@ptit.edu.vn
https://doi.org/10.51453/2354-1431/2023/1027

Abstract:
In this paper, we show that the category of I-coartinian modules forms an Abelian subcategory of the category of all R-modules provided that $\text{ara}(I) = 1$.

Keywords:
Coartinian module, cosupport, Koszul homology.
PHẠM TRỪ ABEL CỦA CÁC MÔDUN COARTIN

Bài Thị Hồng Cẩm¹, Đỗ Ngọc Yến²*
¹ Trường Đại học Đồng Nai, Việt Nam
² Học viên Công nghệ Bưu chính Viễn thông, Hồ Chí Minh, Việt Nam
*Dịa chỉ email: yendn@ptit.edu.vn
https://doi.org.10.51453/2354-1431/2023/1027

Thống tin bài viết
Ngày nhận bài: 02/08/2023
Ngày sửa bài: 07/09/2023
Ngày duyệt đăng: 15/10/2023

Tóm tắt:
Trong bài báo này, chúng tôi sẽ đưa ra một số điều kiện để lặp các môdun I-coartin tạo thành một phạm trừ con Abel của phạm trừ các R-môdun.

Từ khóa:
Môdun coartin, đối giá, đồng điều Koszul.
1 INTRODUCTION

In this paper, \(R \) is a Noetherian commutative ring with identity, \(I \) is an ideal of \(R \) and \(M \) is an \(R \)-module. In [2], Hartshorne defined a module \(M \) to be I-cotinfeld if \(\text{Supp}_R M \subseteq V(I) \) and \(\text{Ext}^i_R(R/I, M) \) is finitely generated for all \(i \geq 0 \). He asked:

Question. Does the category \(\mathcal{M}(R, I)_{\text{cot}} \) of I-cotinform modules form an Abelian subcategory of the category of all \(R \)-modules? That is, if \(f : M \rightarrow N \) is an \(R \)-module homomorphism of I-cotinform modules, are \(\text{Ker } f \) and \(\text{Coker } f \) I-cotinform?

In [4], Nam introduced the \(I \)-coartinian modules which is in some sense dual to the concept of I-cotinform modules. An \(R \)-module \(M \) is said to be \(I \)-coartinian if \(\text{Cospur}_RM \subseteq V(I) \) and \(\text{Tor}^i_R(R/I, M) \) is an artinian \(R \)-module for all \(i \geq 0 \).

We recall that an \(R \) module \(L \) is called cocyclic if it is a submodule of the injective hull \(E(R/m) \) for some maximal ideal \(m \) of \(R \). In [8], Yassemi defined the cosupport of an \(R \)-module \(M \), denoted by \(\text{Cosupp}_R M \) to be the set of prime ideals \(p \) such that there exists a cocyclic homomorphic image \(L \) of \(M \) with \(\text{Ann}_R L \subseteq p \). If \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) is a short exact sequence of \(R \)-modules then

\[
\text{Cosupp}_RB = \text{Cosupp}_RA \cup \text{Cosupp}_RC.
\]

Question. Does the category \(\mathcal{M}(R, I)_{\text{coa}} \) of \(I \)-coaartinian modules form an Abelian subcategory of the category of all \(R \)-modules? That is, if \(f : M \rightarrow N \) is an \(R \)-module homomorphism of \(I \)-coaartinian modules, are \(\text{Ker } f \) and \(\text{Coker } f \) \(I \)-coaartinian?

The main purpose of this paper is to provide a condition such that the category of \(I \)-coaartinian modules is Abelian. More precisely, we shall show that:

Theorem. Let \(I \) be an ideal of \(R \) such that \(\text{ara}(I) = 1 \). Then the category of \(I \)-coaartinian modules forms an Abelian subcategory of the category of all \(R \)-modules \(M \) satisfy \(IM = 0 \).

Throughout this paper, \(R \) will always be a commutative Noetherian ring with non-zero identity and \(I \) will be an ideal of \(R \). The radical of \(I \), denoted by \(\sqrt{I} \), is defined to be the set \(\{ x \in R \mid x^n \in I \text{ for some } n \gg 0 \} \).

2 MAIN RESULTS

First, we recall the definition of \(I \)-coaartinian modules.

Definition 2.1. ([4]) An \(R \)-module \(M \) is called \(I \)-coaartinian if \(\text{Cospur}_RM \subseteq V(I) \) and \(\text{Tor}^i_R(R/I, M) \) is artinian for all \(i \geq 0 \).

We also need some primary properties of \(I \)-coaartinian modules.

Lemma 2.2. ([4, Proposition 4.2]) The following statements hold:

(i) If \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) is a short exact sequence and two of the modules are \(I \)-coaartinian, then so is the third one.

(ii) Let \(f : M \rightarrow N \) be a homomorphism of \(I \)-coaartinian modules. If one of the three modules \(\text{Ker } f, \text{Im } f \) and \(\text{Coker } f \) is \(I \)-coaartinian, then all three of them are \(I \)-coaartinian.

Lemma 2.3. ([4, Proposition 4.5]) Let \(I \) be an ideal of \(R \) and \(M \) is an \(I \)-coaartinian \(R \)-module. Then:

(i) \(\text{Tor}^i_R(N, M) \) is artinian for all \(i \geq 0 \) and any finitely generated \(R \)-module \(N \) such that \(I \subseteq \text{Ann}_R N \);

(ii) \(M \) is \(I^n \)-coaartinian for all integer \(n \geq 1 \);

(iii) For any ideal \(J \) of \(R \) such that \(\sqrt{J} = \sqrt{I} \), then \(M \) is \(J \)-coaartinian.

Lemma 2.4. Let \(I = (x_1, \ldots, x_n) \) be an ideal of \(R \) and \(M \) an \(R \)-module such that \(IM = 0 \). The following statements are equivalent:

(i) \(\text{Tor}^i_R(R/I, M) \) is artinian for all \(i \geq 0 \);

(ii) \(\text{Tor}^i_R(R/I, M) \) is artinian for all \(i = 0, 1, \ldots, n \);

(iii) The Koszul homology module \(H_i(x_1, \ldots, x_n; M) \) is artinian for all \(i = 0, 1, \ldots, n \).

Proof. (i) \(\Rightarrow \) (ii). Trivial.

(ii) \(\Rightarrow \) (iii). Consider the Koszul complex of \(M \) with respect to \(\underline{x} := x_1, \ldots, x_n \):

\[
K\star(\underline{x}; M) : 0 \rightarrow M_n \xrightarrow{\partial_n} M_{n-1} \rightarrow \cdots \rightarrow
M_1 \xrightarrow{\partial_1} M_0 \xrightarrow{i_0} 0,
\]

where \(M_i = \bigoplus_{x \in \underline{x}} M_i(\underline{x}; M). \) It is clear that

\[
H_0(\underline{x}; M) = M/IM \cong R/I \otimes M
\]

and then \(H_0(\underline{x}; M) \) is artinian by the hypothesis. The short exact sequence

\[
0 \rightarrow \text{Im } \partial_1 \rightarrow \text{Ker } \partial_0 \rightarrow H_0(\underline{x}; M) \rightarrow 0
\]
induces a long exact sequence
\[
\text{Tor}^R_i(R/I, \text{Im} \partial_1) \rightarrow \text{Tor}^R_i(R/I, \text{Ker} \partial_0) \rightarrow \text{Tor}^R_i(R/I, H_0(x; M)) \rightarrow \cdots
\]
It should be mentioned that \(\text{Im} \partial_1 = IM \), therefore one gets \(\text{Tor}^R_i(R/I, \text{Im} \partial_1) = 0 \) for all \(i \geq 0 \). Moreover, applying the functor \(R/I \otimes_R - \) to the short exact sequence
\[
0 \rightarrow \text{Ker} \partial_1 \rightarrow M_1 \rightarrow \text{Im} \partial_1 \rightarrow 0
\]
we obtain isomorphisms
\[
\text{Tor}^R_i(R/I, \text{Ker} \partial_1) \cong \text{Tor}^R_i(R/I, M_1) \cong \oplus^n \text{Tor}_i(R/I, M)
\]
for all \(i \geq 0 \). By the assumption, \(\text{Tor}^R_i(R/I, \text{Ker} \partial_1) \) is artinian for all \(i = 0, 1, \ldots, n \). Next, the short exact sequence
\[
0 \rightarrow \text{Im} \partial_2 \rightarrow \text{Ker} \partial_1 \rightarrow H_1(x; M) \rightarrow 0
\]
induces that \(R/I \otimes_R H_1(x; M) \) is artinian. Since \(IH_1(x; M) = 0 \), it follows that \(H_1(x; M) \) is artinian. By the same method, we will prove that \(H_i(x; M) \) is artinian for all \(i = 2, \ldots, n \).

(iii) \(\Rightarrow \) (i). Let
\[
F_* : \cdots \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow 0
\]
be a free resolution of finitely generated \(R \)-modules of \(R/I \). Next, consider the complex
\[
F_* \otimes_R M : \cdots \rightarrow F_{k+1} \otimes_R M \xrightarrow{d_{k+1}} F_k \otimes_R M \xrightarrow{d_k} \cdots
\]
and we have
\[
\text{Tor}^R_i(R/I, M) = H_i(F_* \otimes_R M)
\]
for each \(i \geq 0 \). We use induction to prove that \(H_i(x; \text{Ker} d_i) \) is artinian for all \(i \geq 0 \). Let \(i = 0 \), by the hypothesis, \(H_i(x; F_0 \otimes_R M) \) is artinian for all \(i \geq 0 \) since \(F_0 \otimes_R M \) is isomorphic to a finite copies of \(M \). Now, assume that \(k \geq 0 \) and \(H_i(x; \text{Ker} d_k) \) is artinian for all \(i \geq 0 \). The short exact sequence
\[
0 \rightarrow \text{Im} d_{k+1} \rightarrow \text{Ker} d_k \rightarrow \text{Tor}^R_i(R/I, M) \rightarrow 0
\]
induces the following exact sequence
\[
\text{Ker} d_k/I \text{Ker} d_k \rightarrow \text{Tor}^R_i(R/I, M) \rightarrow 0.
\]
Since \(H_0(x; \text{Ker} d_k) \cong \text{Ker} d_k/I \text{Ker} d_k \), we can conclude that \(\text{Tor}^R_i(R/I, M) \) is artinian. Moreover, this implies that \(H_i(x; \text{Im} d_{k+1}) \) is artinian for all \(i \geq 0 \). The short exact sequence
\[
0 \rightarrow \text{Ker} d_{k+1} \rightarrow F_{k+1} \otimes_R M \rightarrow \text{Im} d_{k+1} \rightarrow 0
\]
induces that \(H_i(x; \text{Ker} d_{k+1}) \) is artinian for all \(i \geq 0 \). By the similar arguments, we assert that \(\text{Tor}_{k+1}(R/I, M) \) is artinian and which completes the proof.

Let \(I \) be an ideal of \(R \). We recall that the arithmetic rank of \(I \), denoted by \(\text{ara}(I) \), is the least number of elements of \(I \) required to generate an ideal which has the same radical as \(I \), i.e.,
\[
\text{ara}(I) = \min \{ n \mid \text{there exists } x_1, \ldots, x_n \in I \text{ such that } \sqrt{(x_1, \ldots, x_n)} = \sqrt{I} \}.
\]

Theorem 2.5. Let \(M \) be a non-zero \(R \)-module such that \(IM = 0 \). Then the following conditions are equivalent:

(i) \(\text{Tor}^R_i(R/I, M) \) is artinian for all \(i \geq 0 \);

(ii) \(\text{Tor}^R_i(R/I, M) \) is artinian for all \(i = 0, 1, \ldots, \text{ara}(I) \).

Proof. It follows from Lemma 2.4.

Corollary 2.6. Let \(M \) be a non-zero \(R \)-module with \(IM = 0 \) and \(\text{Cosupp}_R M \subseteq V(I) \). Then the following conditions are equivalent:

(i) \(M \) is \(I \)-coartinian;

(ii) \(\text{Tor}^R_i(R/I, M) \) is artinian for all \(i = 0, 1, \ldots, \text{ara}(I) \).

Now, we are going to state and prove the main result of this paper.

Theorem 2.7. Let \(I \) be an ideal of \(R \) such that \(\text{ara}(I) = 1 \). Then the category of \(I \)-coartinian modules \(M \) with \(IM = 0 \) forms an Abelian subcategory of the category of all \(R \)-modules.

Proof. Let \(M, N \) be two \(I \)-coartinian \(R \)-modules such that \(IM = IN = 0 \) and \(f : M \rightarrow N \) an \(R \)-homomorphism. It is enough to show that the \(R \)-modules \(\text{Ker} f \) and \(\text{Coker} f \) are \(I \)-coartinian. The short exact sequences
\[
0 \rightarrow \text{Ker} f \rightarrow M \rightarrow \text{Im} f \rightarrow 0
\]
and
\[
0 \rightarrow \text{Im} f \rightarrow N \rightarrow \text{Coker} f \rightarrow 0
\]
induce the following exact sequences
\[
\cdots \rightarrow \text{Tor}^R_2(R/I, \text{Im} f) \rightarrow \text{Tor}^R_1(R/I, \text{Ker} f) \rightarrow \text{Tor}^R_1(R/I, M) \rightarrow \cdots
\]
}\[
\]
Tor_1^R(R/I, \text{Im } f) \to \text{Ker } f / I \text{Ker } f \to M / IM \to \\
\text{Im } f / I \text{Im } f \to 0

and

\cdots \to \text{Tor}_2^R(R/I, \text{Coker } f) \to \text{Tor}_1^R(R/I, \text{Im } f) \to \\
\to \text{Tor}_1^R(R/I, N) \to \cdots

\text{Tor}_1^R(R/I, \text{Coker } f) \to \text{Im } f / I \text{Im } f \to N / IN \\
\to \text{Coker } f / I \text{Coker } f \to 0.

Since \(M, N \) are both \(I \)-coartinian \(R \)-modules, it follows that \(\text{Ker } f / I \text{Ker } f \), \(\text{Coker } f / I \text{Coker } f \), \(\text{Tor}_1^R(R/I, \text{Ker } f) \) and \(\text{Tor}_1^R(R/I, \text{Coker } f) \) are artinian. Hence, the conclusion follows from Corollary 2.6.

3 CONCLUSION

In this paper, we showed some conditions to module \(\text{Tor}_1^R(R/I, M) \) is artinian. In particular, we gave a condition such that the category of \(I \)-coartinian modules is Abelian.

Acknowledgement: This work was supported and funded by the Posts and Telecommunications Institute of Technology (PTIT), Vietnam.

REFERENCES
