

TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO

ISSN: 2354 - 1431 http://tckh.daihoctantrao.edu.vn/

ABELIAN CATEGORY OF COARTINIAN MODULES

Bui Thi Hong Cam¹, Do Ngoc Yen^{2,*} ¹ Dong Nai University, Vietnam

² Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Viet Nam *Email address: yendn@ptit.edu.vn

https//doi.org.10.51453/2354-1431/2023/1027

Article info

Abstract:

Recieved: 02/08/2023 Revised: 07/09/2023 Accepted: 15/10/2023 In this paper, we show that the category of *I*-coartinian modules forms an Abelian subcategory of the category of all *R*modules provided that ara(I) = 1.

Keywords:

Coartinian module, cosupport, Koszul homology.

TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO

ISSN: 2354 - 1431 http://tckh.daihoctantrao.edu.vn/

PHẠM TRÙ ABEL CỦA CÁC MÔĐUN COARTIN

Bùi Thị Hồng Cẩm¹, Đỗ Ngọc Yến^{2,*}
¹ Trường Đại học Đồng Nai, Việt Nam
² Học viện Công nghệ Bưu chính Viễn thông, Hồ Chí Minh, Việt Nam
*Dịa chỉ email: yendn@ptit.edu.vn
https//doi.org.10.51453/2354-1431/2023/1027

Thông tin bài viết

Tóm tắt:

của phạm trù các $R{-}{\rm môđun.}$

Trong bài báo này, chúng tôi sẽ đưa ra một số điều kiện để

lớp các môđun I-coartin tạo thành một phạm trù con Abel

Ngày nhận bài: 02/08/2023 Ngày sửa bài: 07/09/2023 Ngày duyệt đăng: 15/10/2023

Từ khóa:

Môđun coartin, đối giá, đồng điều Koszul.

1 INTRODUCTION

In this paper, R is a Noetherian commutative ring with identity, I is an ideal of R and M is an R-module. In [2], Hartshorne defined a module M to be I-cofinite if $\operatorname{Supp}_R M \subseteq V(I)$ and $\operatorname{Ext}^i_R(R/I, M)$ is finitely generated for all $i \geq 0$. He asked:

Question. Does the category $\mathcal{M}(R, I)_{cof}$ of *I*-cofinite modules form an Abelian subcategory of the category of all *R*-modules? That is, if $f: M \to N$ is an *R*-module homomorphism of *I*-cofinite modules, are Ker f and Coker f *I*-cofinite?

In [4], Nam introduced the *I*-coartinian modules which is in some sense dual to the concept of *I*-cofinite modules. An *R*-module *M* is said to be *I*-coartinian if $\operatorname{Cosupp}_R M \subseteq V(I)$ and $\operatorname{Tor}_i^R(R/I, M)$ is an artinian *R*-module for all $i \geq 0$. We recall that an *R* module *L* is called *cocyclic* if it is a submodule of the injective hull $E(R/\mathfrak{m})$ for some maximal ideal \mathfrak{m} of *R*. In [8], Yassemi defined the *cosupport* of an *R*-module *M*, denoted by $\operatorname{Cosupp}_R M$ to be the set of prime ideals \mathfrak{p} such that there exists a cocyclic homomorphic image *L* of *M* with $\operatorname{Ann}_R L \subseteq \mathfrak{p}$. If $0 \to A \to B \to C \to 0$ is a short exact sequence of *R*-modules then

 $\operatorname{Cosupp}_R B = \operatorname{Cosupp}_R A \cup \operatorname{Cosupp}_R C.$

Question. Does the category $\mathcal{M}(R, I)_{coa}$ of *I*-coartinian modules form an Abelian subcategory of the category of all *R*-modules? That is, if $f: M \to N$ is an *R*-module homomorphism of *I*-coartinian modules, are Ker f and Coker f *I*-coartinian?

The main purpose of this paper is to provide a condition such that the category of *I*-coartinian modules is Abelian. More precisely, we shall show that: **Theorem.** Let *I* be an ideal of *R* such that ara(I) = 1. Then the category of *I*-coartinian mod-

ules forms an Abelian subcategory of the category of all R-modules M satisfy IM = 0.

Throughout this paper, R will always be a commutative Noetherian ring with non-zero identity and I will be an ideal of R. The radical of I, denoted by \sqrt{I} , is defined to be the set $\{x \in R \mid x^n \in$ I for some $n \gg 0\}$.

2 MAIN RESULTS

First, we recall the definition of I-coartinian modules.

Definition 2.1. ([4]) An *R*-module *M* is called *I*-coartinian if $\operatorname{Cosupp}_R(M) \subseteq V(I)$ and $\operatorname{Tor}_i^R(R/I, M)$ is artinian for all $i \geq 0$.

We also need some primary properties of *I*-coartinian modules.

Lemma 2.2. ([4, Proposition 4.2]) The following statements hold:

- (i) If $0 \to A \to B \to C \to 0$ is a short exact sequence and two of the modules are *I*-coartinian, then so is the third one.
- (ii) Let f : M → N be a homomorphism of I-coartinian modules. If one of the three modules Ker f, Im f and Coker f is I-coartinian, then all three of them are I-coartinian.

Lemma 2.3. ([4, Proposition 4.5]) Let I be an ideal of R and M is an I-coartinian R-module. Then:

- (i) $\operatorname{Tor}_{i}^{R}(N, M)$ is artinian for all $i \geq 0$ and any finitely generated *R*-module *N* such that $I \subseteq \operatorname{Ann}_{R} N;$
- (ii) M is I^n -coartinian for all integer $n \ge 1$;
- (iii) For any ideal J of R such that $\sqrt{J} = \sqrt{I}$, then M is J-coartinian.

Lemma 2.4. Let $I = (x_1, \ldots, x_n)$ be an ideal of R and M an R-module such that IM = 0. The following statements are equivalent:

- (i) $\operatorname{Tor}_{i}^{R}(R/I, M)$ is artinian for all $i \geq 0$;
- (ii) $\operatorname{Tor}_{i}^{R}(R/I, M)$ is artinian for all $i = 0, 1, \dots, n;$
- (iii) The Koszul homology module $H_i(x_1, \ldots, x_n; M)$ is artinian for all $i = 0, 1, \ldots, n$.

Proof. (i) \Rightarrow (ii). Trivial.

(ii) \Rightarrow (iii). Consider the Koszul complex of M with respect to $\underline{x} := x_1, \dots, x_n$

$$K_{\bullet}(\underline{x}; M) : 0 \to M_n \xrightarrow{\partial_n} M_{n-1} \to \dots \to$$
$$\to M_1 \xrightarrow{\partial_1} M_0 \xrightarrow{\partial_0} 0,$$

where $M_i = \bigoplus^{C_n^i} M$. It is clear that

$$H_0(\underline{x}; M) = M/IM \cong R/I \otimes M$$

and then $H_0(\underline{x}; M)$ is artinian by the hypothesis. The short exact sequence

$$0 \to \operatorname{Im} \partial_1 \to \operatorname{Ker} \partial_0 \to H_0(\underline{x}; M) \to 0$$

induces a long exact sequence

$$\operatorname{Tor}_{i}^{R}(R/I,\operatorname{Im} \partial_{1}) \to \operatorname{Tor}_{i}^{R}(R/I,\operatorname{Ker} \partial_{0}) \to \\ \to \operatorname{Tor}_{i}^{R}(R/I,H_{0}(\underline{x};M)) \to \cdots$$

It should be mentioned that $\operatorname{Im} \partial_1 = IM$, therefore one gets $\operatorname{Tor}_i^R(R/I, \operatorname{Im} \partial_1) = 0$ for all $i \ge 0$. Moreover, applying the functor $R/I \otimes_R -$ to the short exact sequence

$$0 \to \operatorname{Ker} \partial_1 \to M_1 \to \operatorname{Im} \partial_1 \to 0$$

we obtain isomorphisms

$$\operatorname{Tor}_{i}^{R}(R/I,\operatorname{Ker} \partial_{1}) \cong \operatorname{Tor}_{i}^{R}(R/I, M_{1})$$
$$\cong \oplus^{n} \operatorname{Tor}_{i}(R/I, M)$$

for all $i \ge 0$. By the assumption, $\operatorname{Tor}_i^R(R/I, \operatorname{Ker} \partial_1)$ is artinian for all $i = 0, 1, \ldots, n$. Next, the short exact sequence

$$0 \to \operatorname{Im} \partial_2 \to \operatorname{Ker} \partial_1 \to H_1(\underline{x}; M) \to 0$$

induces that $R/I \otimes_R H_1(\underline{x}; M)$ is artinian. Since $IH_1(\underline{x}; M) = 0$, it follows that $H_1(\underline{x}; M)$ is artinian. By the same method, we will prove that $H_i(\underline{x}; M)$ is artinian for all i = 2, ..., n.

(iii) \Rightarrow (i). Let

$$F_{\bullet}:\cdots \to F_2 \to F_1 \to F_0 \to 0$$

be a free resolution of finitely generated R-modules of R/I. Next, consider the complex

$$F_{\bullet} \otimes_R M : \dots \to F_{k+1} \otimes_R M \xrightarrow{d_{k+1}} F_k \otimes_R M \xrightarrow{d_k} \dots$$

and we have

$$\operatorname{Tor}_{i}^{R}(R/I, M) = H_{i}(F_{\bullet} \otimes_{R} M)$$

for each $i \geq 0$. We use induction to prove that $H_i(\underline{x}; \operatorname{Ker} d_i)$ is artinian for all $i \geq 0$. Let i = 0, by the hypothesis, $H_i(\underline{x}; F_0 \otimes_R M)$ is artinian for all $i \geq 0$ since $F_0 \otimes_R M$ is isomorphic to a finite copies of M. Now, assume that $k \geq 0$ and $H_i(\underline{x}; \operatorname{Ker} d_k)$ is artinian for all $i \geq 0$. The short exact sequence

$$0 \to \operatorname{Im} d_{k+1} \to \operatorname{Ker} d_k \to \operatorname{Tor}_k^R(R/I, M) \to 0$$

induces the following exact sequence

$$\operatorname{Ker} d_k / I \operatorname{Ker} d_k \to \operatorname{Tor}_k^R(R/I, M) \to 0.$$

Since $H_0(\underline{x}; \operatorname{Ker} d_k) \cong \operatorname{Ker} d_k / I \operatorname{Ker} d_k$, we can conclude that $\operatorname{Tor}_k^R(R/I, M)$ is artinian. Moreover,

this implies that $H_i(\underline{x}; \operatorname{Im} d_{k+1})$ is artinian for all $i \geq 0$. The short exact sequence

$$0 \to \operatorname{Ker} d_{k+1} \to F_{k+1} \otimes_R M \to \operatorname{Im} d_{k+1} \to 0$$

induces that $H_i(\underline{x}; \text{Ker} d_{k+1})$ is artinian for all $i \geq 0$. By the similar arguments, we assert that $\text{Tor}_{k+1}^R(R/I, M)$ is artinian and which completes the proof.

Let I be an ideal of R. We recall that the arithmetic rank of I, denoted by $\operatorname{ara}(I)$, is the least number of elements of I required to generate an ideal which has the same radical as I, i.e.,

ara(I) = min{n | there exists
$$x_1, \dots, x_n \in I$$

such that $\sqrt{(x_1, \dots, x_n)} = \sqrt{I}$ }.

Theorem 2.5. Let M be a non-zero R-module such that IM = 0. Then the following conditions are equivalent:

- (i) $\operatorname{Tor}_{i}^{R}(R/I, M)$ is artinian for all $i \geq 0$;
- (ii) $\operatorname{Tor}_{i}^{R}(R/I, M)$ is artinian for all $i = 0, 1, \dots, \operatorname{ara}(I)$.

Proof. It follows from Lemma 2.4.

Corollary 2.6. Let M be a non-zero R-module with IM = 0 and $\text{Cosupp}_R M \subseteq V(I)$. Then the following conditions are equivalent:

- (i) M is I-coartinian;
- (ii) $\operatorname{Tor}_{i}^{R}(R/I, M)$ is artinian for all $i = 0, 1, \dots, \operatorname{ara}(I)$.

Now, we are going to state and prove the main result of this paper.

Theorem 2.7. Let I be an ideal of R such that ara(I) = 1. Then the category of I-coartinian modules M with IM = 0 forms an Abelian subcategory of the category of all R-modules.

Proof. Let M, N be two *I*-coartinian *R*-modules such that IM = IN = 0 and $f : M \to N$ an *R*homomorphism. It is enough to show that the *R*modules Ker f and Coker f are *I*-coartinian. The short exact sequences

$$0 \to \operatorname{Ker} f \to M \to \operatorname{Im} f \to 0$$

and

$$0 \to \operatorname{Im} f \to N \to \operatorname{Coker} f \to 0$$

induce the following exact sequences

$$\cdots \to \operatorname{Tor}_{2}^{R}(R/I, \operatorname{Im} f) \to \operatorname{Tor}_{1}^{R}(R/I, \operatorname{Ker} f) \to \\ \to \operatorname{Tor}_{1}^{R}(R/I, M) \to \cdots$$

$$\operatorname{Tor}_{1}^{R}(R/I,\operatorname{Im} f) \to \operatorname{Ker} f/I\operatorname{Ker} f \to M/IM \to \\ \to \operatorname{Im} f/I\operatorname{Im} f \to 0$$

and

$$\cdots \to \operatorname{Tor}_2^R(R/I, \operatorname{Coker} f) \to \operatorname{Tor}_1^R(R/I, \operatorname{Im} f) \to \\ \to \operatorname{Tor}_1^R(R/I, N) \to \cdots$$

$$\operatorname{Tor}_{1}^{R}(R/I,\operatorname{Coker} f) \to \operatorname{Im} f/I\operatorname{Im} f \to N/IN \to \\ \to \operatorname{Coker} f/I\operatorname{Coker} f \to 0$$

Since M, N are both *I*-coartinian *R*-modules, it follows that $\operatorname{Ker} f/I \operatorname{Ker} f$, $\operatorname{Coker} f/I \operatorname{Coker} f$, $\operatorname{Tor}_{1}^{R}(R/I, \operatorname{Ker} f)$ and

 $\operatorname{Tor}_{1}^{R}(R/I,\operatorname{Coker} f)$ are artinian. Hence, the conclusion follows from Corollary 2.6.

3 CONCLUSION

In this paper, we showed some conditions to module $\operatorname{Tor}_i^R(R/I, M)$ is artinian. In particular, we gave a condition such that the category of *I*-coartinian modules is Abelian.

Acknowledgements. This work was supported and funded by the Posts and Telecommunications Institude of Technology (PTIT), Vietnam.

REFERENCES

- Cuong N. T., Nam T. T., On the colocalization, co-support and co-associated primes of local homology modules, *Vietnam J. Math.*, 2001, 29, 359-368.
- [2] Hartshorne R., Affine duality and cofiniteness, *Invent. Math.*, 1970, 2, 145-164.
- [3] Melkersson L., Modules cofinite with respect to an ideal, J. Algebra, 2005, 285, 649-668.
- [4] Nam T. T., Co-support and Coartinian Modules, Algebra Collog., 2008, 15, 83-96.
- [5] Northcott D. G., An Introduction to Homological Algebra, Cambridge University Press, Cambridge, 1960.
- [6] Rotman J. J., An Introduction to Homological Algebra, Academic Press, New York, 1979.
- [7] Strooker J., Homological Questions in Local Algebra, Cambridge University Press, Cambridge, 1990.
- [8] Yassemi S., Coassociated primes, Comm. Algebra, 1995, 23, 1473-1498.

Bui Thi Hong Cam/Vol 9. No 5_October 2023| p.237-242