Vol 9. No 5_October 2023

TAP CHi KHOA HQC PAI HQC TAN TRAO

ISSN: 2354 - 1431
http://tckh.daihoctantrao.edu.vn/

A PROJECTION ALGORITHM FOR FINDING A COMMON SOLUTION
OF EQUILIBRIUM AND FIXED POINT PROBLEMS

Tran Van Thang™*

L Electric Power University, Hanoi, Vietnam

*Email address: thangtv@epu.edu.com

https://doi.org/10.51453/2354-1431/2023/1033.

Article info

Abstract:

Recieved: 20/9/2023

Accepted: 15/10/2023

Equilibrium problems, Lipschitz
continuous, pseudomonotone, pro-

jection method, fixed point problem.

In this paper, we design a new projection algorithm for find-
ing a common solution of equilibrium and fixed point prob-
lems in a real Hilbert space. The proposed algorithm is a
combination of the projection method and Man iterative tech-
nique. Furthermore, the algorithm uses self-adaptive sizes at
each iteration. The convergent theorem is established under
mild conditions. We also apply the proposed algorithms to

solve a oligopolistic Nash-Cournot equilibrium model.
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Tém tat:
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Ngay duyét dang: 15/10/2023

T khéa:
Bai todn can bing, lien tuc Lipschitz,

gia don diéu, phuong phdp chiéu, phuong

Trong bai bao nay, chiing toi thiét ké mot thuat toan chiéu
duéi vi phan méi dé tim nghiém chung ctia bai toan can bing
va bai toan diém bat dong trong khong gian Hilbert thue.
Thuat toan dudc dé xuat la sy két hop gita phuong phap
chiéu, phuong phap dudi dao ham va ki thuat lap Man. Hon
nita, thuat toan ctia ching to6i sit dung cac buée lap tu thich
tng ¢ moi lan lip. Ching to6i ching minh dudc thuat toan
hoi tu véi céc gia thiét nhe. Ching toi ciing ap dung thuat

phdp dudi vi phan, bai todn diém bat
dong.

toan dé xuat dé gidi mo hinh can bing Nash-Cournot.

1 INTRODUCTION

Let H denote a real Hilbert space with inner prod-
uct (.,.) and norm ||.||. The equilibrium problem,
shortly (EPs), for the bifunction f on a nonempty
convex set C'is to find x* € C such that

f@*,y) >0 VyeC,

where f : C x C — R is a bifunction such
that f(z,z) = 0 for all x € C. In the frame-
work of this paper, we denote the solution set of
Problem (EPs) by Sol(EPs). Problem (EPs) is
a general model of some important mathematical
models such as optimization, variational inequality,
Kakutani fixed point, and so on (see, for example,
[1, 4]). Therefore, the problem has received a lot

of research attention from mathematicians. In or-

der to solve (E'Ps), many iterative methods have
been proposed, among them, the projection and
the extragradient (or double projection) algorithms
are widely used (see [2, 5, 10] and the references
therein). In [5], authors introduced a projection al-
gorithm, that only uses one projection, for an equi-
librium problem involving pseudomonotone contin-
uous bifunction f such that its diagonal subdiffer-
ential is Lipschitz continuous. The strongly conver-
gent theorems are established under standard as-

sumptions.

Motivated and inspired by the projection method
in [5] and the Man iteration technique for fixed
point problems, we design a new projection algo-
rithm for finding a common element of the solution
sets of Problem (EPs) and the set of fixed points
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of a demicontractive mappings .S, namely:
Find z* € Q = Fiz(S) N Sol(EPs).

Furthermore, the algorithm uses self-adaptive sizes
at each iteration. We have proved that the pro-
posed algorithm is strongly convergent under the
mild assumptions. We also apply the proposed al-
gorithms to solve a modified oligopolistic Nash-

Cournot equilibrium model.

The remaining part of the paper is organized as fol-
lows. Section 2 shows preliminaries, some lemmas
that will be used in proving the convergence of our
proposed algorithm. The proposed algorithm and

its convergence analysis are presented in Section 3.

2 PRELIMINARIES

In this section, we recall some concepts and results
that are used to prove the main results of this pa-
per. For any subsets A and B of H, the Hausdorff

distance between these subsets is defined by
p(A, B) := max{d(A, B),d(B, A)}

where d(A, B) := sup,¢ 4 infoep [|a — b]|.

The metric projection from H onto C' is denoted by
Pe and

Po(z) = argmin{||lz —y|| : y€ C} x € H.
From the definition of projection, it is easy to see
that Pc has the following characteristic properties.

Lemma 2.1. For any x € H, we have

(i) p = Pc(x) if and only if (p — x,y —p) <
0, VYyed,;
(i) [[Pe(z) — Pe@)l < [z —yl,

Definition 2.2. A bifunction f : C x C — H is
called to be

Va,y € H.

(i) monotone on C, if f(z,y) + f(y,x)
0 Vx,y e C;

IN

(it) pseudomonotone on C, if f(x,y) > 0 =
fly,z) <0Vz,y e C.

Definition 2.3. Let C' C H be a nonempty subset.
An operator S : C — H is called to be

(i) B-demi-contractive on C, if Fiz(S) is nonempty
and there exists 8 € [0,1) such that

1Sz —p||* < |l = p||* + Bll= — Sz|*, (1)
202

for all x € C and p € Fiz(S);
(ii) demi-closed, if for any sequence {z*} C C,
o —~ 2 e C, (I - 8)(2¥) — 0 implies z € Fiz(S).

It is well known that if S is S-demi-contractive on
C then S is demi-closed and (1) is equivalent to
(see [8])
1

(@ =Sz, —p) > 5(L= Bz = Sz[*,  (2)
for all x € C' and p € Fixz(S).
The following lemmas are useful in the sequel.
Lemma 2.4. ([7]) Let {&} be a sequence of non-

negative real numbers satisfying the following con-

dition
Ekr1 < (1 — on)ék + orou + Br, Yk > 1,

{Qk} c [07 1]; Zzozo Ok = 00,
limsup,_, o ar < 0 and B > 0, Y07 B < oo.
Then, lim &, = 0.

k—o0

where

Lemma 2.5. ([7], Remark 4.4) Let {&x} be a se-
quence of nonnegative real numbers. Suppose that
for any integer m, there exists an integer M such
that M > m and &y < Epgyr. Let k be an inte-
ger such that & < &g,y and define, for all integer
k>k,

(k) =max{i e N: k <i<k,& <&}

Then, 0 < & < &rky4r for all k > k the and
sequence {7(k)} > is nondecreasing and tends to
+00 as k — oo.

3 PROJECTION ALGORITHM

Let us assume that the bifunction f: H x H — H
and mappings S satisfy the following conditions:

Ay, f(z,z) = 0 for all z € C, f(z,y) is pseu-
domonotone on C x C and f(-,y) is sequen-

tially weakly upper semicontinuous on C

As. S : H — H is S-demicontractive and demi-

closed;
As. the set Q is nonempty;

Ay. there exists a real positive number L such
that

p(02£(2,)(@), 02/ (9,)®) ) < Ll =yl

for all z,y € C, where 02 f(x,-)(z) is subdif-
ferential of f(x,-) at z, i.e.,

Oaf(z,)(x)={¢€eH: (& z—y) < f(z,2), Vz € C}.
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Now, we describe our approximate projection algo-
rithm.

Algorithm 3.1. Take arbitrary starting point 2° €
C,v% >0, 0<v<1 L>L and control pa-

rameter sequences {or}, {vi}, {v}, {ur} satisfy-
ing conditions:

0 < i, Z;::()),Uk < +o0
ok € (0,1), limp_00 01 = 0, Z$§) Ok = +00

v €[0,1), limy o0 2 = 0,372 vy, < +o0.

(3)

Step 1. (k = 0,1,...) Choose u* € Oaf(a*,2*) and
compute y* = Po(xF — ypu®).

Step 2. Take v* € B (u*, Lllz* — y*|[) N 02 f (v*,y"),
where B (uf, Tl|z* — y*||) = {u € H : |ju —
uF|| < Lljz* — y*||}. Compute 2* = (1 +

0r)y* — Ora® + yi.(uF — v¥), where

O, =
Uk, otherwise.
Compute
Ve+1 =
E_ .k .
min { Vn‘lfﬁfku‘l sk #k} ,if uf —oF £ 0,
Vi + [k otherwise.

Step 3. Compute w* = gp2z® + (1 — o1) 2%,

2 = (1 - wwf +wsSwt, 0<w<1 -4
Step 4. Set k:=k+ 1, and go to Step 1.

We first obtain the following important lemma.

Lemma 3.1. Assume that (A1) — (A4) hold. Let

p € Sol(EPs) and {x*}, {zF}, {y*}, {2*}, {7} be
the sequences generated by Algorithm 3.1. Then,

(i) v € min{%,7%}, v + M|, Vk > 0 and

limg 00 Yk = A, where Z;::o?) e = M;

(i) 2 = pl* < [l = plP + 2030 + My —
2
v k ki|l2.
1 (0t t) | ot - ot

(iii) the sequences {z*}, {y*}, {z*}, {w*} and
{u* —v*} are bounded.

Proof. By reasoning similar to the proof of Lemma
3.4 in [5], we have (i) and (ii).

min{mayk}v ikaiyk #07

Now we prove (iii). By Step 3 and the S demi-
contractive assumption of S, we get
|25+ = pl* = [|(1 = w)w”® +wSw* —p|®
=[|(w* = p) +w(Sw" —w)|?
<[|w* — p||* + 2w(w* — p, Swk — wk)
+ w?||Sw® — w*||?
<[|w® = pl? + w(w + 8 = 1)||Sw* — w*||?
<[|w" = p||*. (4)
We have from (i) and Condition (3) that

2
[1—(9k+7k Y )]:1—y2>0’
V41

which implies that there exist a nonnegative integer
Ky such that

lim
k—oo

2
1—<0k+’7k ) >0, VkZKO
V41

From the above inequality and (ii), it follows that
125 = plI* < [|l2* = pl* + 2(v0 + M)vy, Yk > Ko.

From the above inequality, the definition of w* and
(4), for every k > Ky, we have

2"+ =) < [Jw® —p|?

= [lorz® + (1 = 0r)2" — p|®

< orlle® = pl* + (1 — ow)ll=" —p|?

< onll2® = pl* + (1 — o) (2" — plI* +2(v0 + M)w)
< max {|J2? — p||?, [|=* — p* + Ax}, (5)

where Ay = 2(yo + M)yy, for every k > K. Simi-

larly, we have

l2* = pl* <max{[la® —p|*, "~ = pl|* + Ax—_1}.

This together with (5) implies that

o+ = p? <

max {[l2° — p|* + A, 2"~ = p|* + A + A}

oo
< maX{HxO —pl?, =" —p||2} + Z A
k=Ko

< +00,

where the latest equality holds because

> oeek, A < +oo. This implies that {z"} is
bounded. By (ii), for all ¥ > Ky, we have
128 = pl? < ll2* = p||? + 2(y0 + M)y,

(6)

and

2
v
(% +w> - 1] ly* = 2** < [|l2* — p||?
Vi+1

— [ = plI? + 2030 + M)ns.
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It follows from (6) and Condition (3) that {z*}
is bounded. This together with the last inequal-
ity and the boundedness of {z*} implies that
{y*} is bounded. We have from (5) that {w"}
is bounded. Finally, we can deduce from v* &
B (uf, L|jz* — y*||) that

lu = v¥|| < Lll2* = 5]l
and so the sequence {u* — v*} is bounded. a

Lemma 3.2. Assume that (A1) — (A4) hold. Let
limg oo (2% — y*|| = 0, limpo ¥ — »*|| = 0,
limy oo |25 — w¥|| = 0 and a subsequence {x*i}

of {z*} converge weakly to p. Then, p € Q.

Proof. Since ||z* — ¢*|| — 0 and the subse-
quence {z*'} converges weakly to p, the sequence
{y*} also converges weakly to p. From o* €
B (uf, L||z¥ — y*]|), it follows that

lu® —v*| < L™ — ]I,

and so limy_,o. |u® — v*| = 0. We get from Step
2 that
(" — 2" 4yt e =yt >0V e C,

which together with u* € 0y f(2*:, 2%) implies
that

o gk o — gkt < (WMo — gt + e,

§7k1(<vki7x_yki> +<uk ki7x_yki>)+€ki
i f(Y @)+ (W — v

(x
t—v
kiaxfykw +€ki-

It follows that

1 ) ) ) )
77@1@ —yMa—yM) < FyML )
k 1

Lx—yk) + ke

7

+ (uF — v

For each fixed point x € C, taking the limit as
i — 0o on both sides of the last inequality, using
=0, the

weak upper semicontinuity of the function f(-,y)

lim; o0 [|2% =y = 0, lim;_ o |JuFi —0*

and the boundedness of the sequence {y*}, we get
flp,z) >0 Ve C.

It means that p € Sol(EPs).

We now show that p € Fiz(S). Using Step 3, we
have

[ — Swk|| = Ljah 1 — k|
w

204|

k41— w¥|| = 0 and last equality,

From limy o ||z
it follows that ||w* — Sw*|| — 0, k — co. Also we

know from Step 3 that

k —zk|| = akaO —zk|| < apMy— 0, k— oo,

(7)
— 2K+ k =0,1,..}. Us-

ing limg o0 ||2% — 9% = 0, limg 00 [|2% — ¥%]| = 0

||w
where My = sup{]|«°

and [[2F — 2| < [[2% — ¥ + [ly* — 2*[|, we have
limy,_,« ||2¥ — 2%|| = 0. Combining this and (7), we

obtain

||wk —xk|| < ||wk —zkH + ||zk —mk|| -0, k— oo.

From this and z% — z, it follows that w® — p.
Using this, limy, o ||w* — Sw”|| = 0 and the demi-
closedness of S, we have p € Fiz(5). O
Now we state and prove the main convergence re-

sult of the algorithm in the following theorem.

Theorem 3.3. Let bifunction f : Hx H — R
satisfy the assumptions (A1) — (A4). Then, the se-
quence {x*} generated by Algorithm 3.1 converges
strongly to a solution p € 2, where p = Pqo(2?).

Proof. Set &, = [la* — p|?, ap = 2(2° — p,w* — p)
and B = 2(yo + M)vk. To prove this theorem, we
consider two following cases.

Case 1. Suppose that there exists & € N such that
Epy1 < & for all k > k. Then, there exists the limit
limg 00 & € [0, 00). Using Step 3, we obtain

5+t —p|I* = [|(1 — w)w” + wSw"* — p|?
=[lw" — pl|* = 2w(w* — p,w* — Swk)
+w2||wk — ka||2. (8)
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which together with Lemma 3.1 and (2) implies

that
[l = p]®

<Jlw* = pl* —w(l = 8 —w)u* — Sw®|?

=llox(a® = p) + (1 = o) (=" — p)II?

— (1= f - W)t — b

—_

<(1 = ok)[|2" = p|]* + 20k (2° — p,w" — p)
_ ka—&-l _ wk||27

<||2* = pl? + 201 (2 — p,w* — p) — [l2"F — 0"

2
1%
<Jlat - p|2 - [1— <ok+w ) ] Iyt — 2|2

Vk+1

+2(v0 + M)y, + 204 (2° — p, w* — p)
_ ||.1‘k+1 _ wk||2

2
174
<l — ol - [1 - (B4 =2) ] Iy = 1P

+2(v0 + M)y, + 2 + o1 My — ||J2" T — w¥||?,
9)

where M = sup{2(z® —p,w* —p) : k =0,1,..} <
00, which implies that

2
14
[1 - (ek w) ] Iy =¥+ [l — b ?
Ve+1

< —Epy1 + &+ +2(v0 + M)vg + 2 4 01 My,

for every k > Ky. Taking the limit as k — oo on
both sides of the last inequality and using Lemma
3.1 (i) and Condition (3), we obtain

lim |2 —wk| = lim ||2* —¢*| =0. (10)
k—oc0 k—o0
Observe that
125 = y* [l = 106" — O™ + pe(u —0*) — ¥

14
< Olly* — 2| + e—|ly* — 2"
Vk+1

v
= <9k+’}/k ) ||yk_xk||7
Vk+1

which together with (10) implies that limy,_, o ||2* —
y*|| = 0. By the definition of z¥*! and boundedness

of the sequence {z*}, we have
lwk — 2%|| = orl|2® — 2*|| < 0xQ1 — 0 as k — oo,

where Q = sup{[|z® — z¥|| : £ =0,1,..} < +oc.
This together with limy,_, ||2* — 2¥|| = 0 implies
that

|wF — 2| < |Jw® — 27|+ ||2% —2F|| = 0 as k — oc.

(11)

By the definition of w* in Step 3 and the inequal-
ity |u+ol* < ||ull® + 2(v,u+v) Vu,v € H, we
get

=l = llow(a® ~p) + (1~ ) ~ D)
<(1—ow)?[12" = plI* + 20k (1 — 0&)(z° — p, 2" — p)
<(1 = an)llz" = pl* + 201(z° — p,w” — p).
From the last inequality and Lemma 3.1 (ii), it fol-
lows that

##1 — 912 < (1 - o) * — pl?

+ 20, (2” — p, @™t = p) + (1= ) [2(70 + M)wy]
<(1 = ow)llz" = pll* + 20k (2° — p, " —p)

+2(v0 + M)vg,
which implies that

Eht1 < (1 — or)ék + oror + Bi- (12)

On the other hand, since the sequence {w*} is
bounded, there exists a subsequence {w*} such
that w — z as i — oo and

limsup(z® —p, w* —p) = lim (2°—p, w" —p). (13)

k— o0 100

We deduce from (11) that ¥ — 2 as i — oco. Ap-
plying limy. ., [Jo*+1
limy o0 [|2% — y*|| = 0 and Lemma 3.2, we get
z € Q. From this, (13) and Lemma 2.1 (i), it follows
that

—wh| =limp oo [|2F — | =

limsup o, = 2(z° — p,z — p) < 0.

k—o0
By wusing Lemma 2.4, the last inequality,

limsup;,_, ., ax < 0 and Condition (3), we deduce
lim &, = lim [z* —p||2 = 0.
k—o0 k— o0
Thus, {2*} converges strongly to the solution p =
PQ (aco)
Case 2. We now assume that there is not k €
N such that {£;}72, is monotonically decreasing.
Then, there exists an integer kg > k such that
ko < &ky+1- We have from Lemma 2.5 that there
exists a subsequence {{,(x)} of {{x} such that
0<& < gT(k)-l—lva(k) < 5T(k)+1 Vk > ko,

where 7(k) = max{i e N: ko <i <k, & <&41}
Using & xy < & k)41, VE > ko and (9), one has

2
14
]- - 97’ + ’77' > yT(k) - :CT(k)
< (k) G 1 l [

+ ||$T(k)+1 _ wT(k)HQ

0<

< =&+t + &) T ory My +2(v0 + M)vray
<oreyMi1 + 2(v0 + M)vy (-
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Passing to the limit in the above inequa and
taking into account Condition (3), we obtain
limg oo [y — 27| = limg_o [|27®F —
w™®)||2 = 0. By the same arguments as in the Case
1, we can show that
lim [Jz7®F — 7B = lim [|27®) — 27|
n—roo n— oo

= lim ||z7®) —y™®)|| = 0.
n—oo

(14)

Since {w™®} is bounded, there exists a subse-
quence of {w™ ™}, still denoted by {w™®}, which
converges weakly to z. Following similar arguments

as in Case 1, we conclude that z € Q and

lim sup o) < 0. (15)

k—o0

We deduce from (12) and &) < §rny41, Yk > ko
that

0r(1)&r k) < &r(k) — Er(i)+1 T+ Or () Xr (k) + Bri)

< 07 (k) Xr(k) T+ Brk)-
B
rﬁ:;. From (15),

Condition (3) and the last inequality, it follows that

It is equivalent to & x) < arr) +

lim sup &) < limsup o) <0,
k—o0 k—o0

which implies that limg_, oo & (1) = 0. We have

Vértmya = llz7®F —p||

< e ®F — T E] 4 [|l27® — |

< 2™+ — aT® 4 £,

Taking the limit as & — oo on both sides
of the last inequality and using (14), we ob-
tain limg—o0 & (k)41 = 0. This together with
0 < & < &4 for all k& > ko implies that
lerEO &x = 0. It means that the sequence {z*} con-
verges strongly to p € €. The proof is complete.
O

As an illustration, we apply Algorithm 3.1. to
solve the well-known Nash-Cournot oligopolistic
market equilibrium model with equilibrium con-
straint in [9]. Consider a class of well-known prob-
lem oligopolistic market equilibrium problem Nash-
Cournot between n firms in the space R™. Let
gj(z;), pj(0z) and f;(z) denote respectively the
total cost, the price function and the profit func-
tion of firm j, where the quantity of product
0y == x1 + 22 + ... + x,. Then, we have f;(z) =
filwr, @2, ... xn) = zp;(0z) — g;(x;). Let C; be

206|

any set of firm j consisting of its possible produc-

tion levels, C; be nonempty, bounded and z; € Cj.

Set C = {z = (21,22, ,2,) € R : z; € C}}
and

flz,y) = (F(2),y —2) + 9(y) — g(z),
where  g(x) = S gi(zy),  F(z) =
(F1(2), Fo(x), ..., Fo(2)), Fj(z) = —pj(0z) —

:cjp;.(éx). Then, the Nash equilibrium can be
rewritten as the following equilibrium problem:
Find p € C such that

f(p,z) >0,

Obviously, if F': R® — R™ is pseudomonotone, L-

vz e C.

Lipschitz continuous and g : R® — R is convex,
differentiable then the function f(z,y) satisfies as-
sumptions Ay, Ay, A4. We now consider the case
that the function p;(d,) is affine

Then

Fj(x) = —p;(0z) — x;p}(62) = Bj0s — o + Bjz;

Vi=1,..,n.

n
=282+ 0 Y, -y

J=Lj#i

and so, F'(z) = Bz — a, where

260 B ... B
B B2 282 ... P ca = (ay, a0, . om)T.
Bn ﬁn 26”

It is known that B is a positive symmetric matrix
and F' is monotone and || B||-Lipschitz continuous
([9]). Therefore, this model can be solve by Algo-
rithm 3.1.

4 CONCLUSIONS

We have introduced a new projection algorithm for
finding a common point of the solution set of Prob-
lem (EPs) and the set of fixed points of a demi-
contractive mappings. Our algorithm only uses one
projection on C' at each iteration. We show that the
proposed algorithm is strongly convergent under
the mild assumptions. We also apply the proposed
algorithms to solve a oligopolistic Nash-Cournot
equilibrium model.
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