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Thoéng tin bai bao Abstract:

Ngay nhan bai: 15/7/2024 Trong bai bdo nay, chiing ta trinh bay bai toan veé tinh
Ngay hoan thiéen: — 05/08/2024 on dinh ctia phuong trinh dong hoc tich phan an trén
Ngay chap nhan: — 25/08/202/ thang thoi gian. Cu thé, ching ta xét tinh giai dugce

clia phuong trinh va ching minh dude rang, dudi tac
dong ctia nhiéu, nghiém cta nhiing phuong trinh nay

Tu khéa:

Tinh on dinh ving, Chi sé 1, Phuong béo toan tinh bi chan va tinh 6n dinh md.

trinh dong hoc tich phan

1 Introduction

The theory of implicit integro-dynamic equa-
tions has found many applications in demog-
raphy, the study of materials, and in actuar-
ial science through the renewal equation (A.
S. Andreev et al 2018; H. Brunner 2017;Yu,
L., Daleckii et al 1971). However, relatively
few kinds of implicit integro-dynamic equa-
tions and systems can be solved explicitly.
Therefore, during scientific investigations, re-
searchers need to find the methods which al-
low them to study the qualitative behavior of
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their solutions without solving them. One of
important problems in studying the qualita-
tive theory is to investigate the robust stabil-
ity of systems. The robust stability is consid-
ered for difference singular equations or dy-
namic equations on time scales in (Du, N. H.
et al 2016; D.D. Thuan et al 2019 ), although
all most works consider only systems without
or finite memory. Therefore, it is worth con-
sidering the robust stability of implicit inte-
gro - dynamic equations on time scales. The
aim of this paper is to continue the study of
this problem by considering the robust stabil-
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ity for the implicit integro-dynamic system on
time scales under the form

/Kts ) As+1 (1)

with ¢ > to and A(.), ), K(-,-), f(+) are
specified later. We deal w1th the preservation
of the stability for this dynamic equation un-
der small perturbations. Since the derivative
of state process z(t) at time ¢ depends on all
past path z(s),ty < s < t, we have to use a
more general inequality of Gronwall-Bellman
type to obtain the upper bound of perturba-
tions.

A(t)z™(t) =

The paper is organized as follows. In the next
section we recall some basic notions and pre-
liminary results on time scales. In section 3,
we consider the solvability of implicit integro
- dynamic equations. Finally, in section 4, we
are concerned with conditions such that if the
solution of a implicit integro - dynamic equa-
tions is uniformly stable/exponentially sta-
ble, then under small Lipschitz perturbations
it is still uniformly stable/exponentially sta-
ble.

2 Premilinary

2.1 Time scales

A time scale is a nonempty closed subset of
the real numbers, enclosed with the topology

inherited from the standard topology on R .
We usually denote it by the symbol T. On
the time scale T, we define the forward jump
operator U(? = inf{s € T : s > t} and the
graininess p(t) = o(t) —t. Similary, the back-
ward operator is defined as p(t) = sup{s €

T : s < t} and the backward graininess is
pu(t) =t — p(t).

A regulated function f is called rd-continuous
if it is there exist the left-sided limit at every
left-dense point and right-sided limit at ev-
ery right-dense point and continuous at every
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right-dense point. The set of rd-continuous
functions defined on the interval J valued in
X will be denoted by C,q(J, X). A function f
from T to R is regressive (resp., positively re-
gressive) if for every t € T, then 1+pu(t) f(t) #
0 (resp., 14+ u(t) f(t) > 0). We denote by R =
R(T,R) (resp., Rt = RT(T,R)) the set of
(resp., positively regressive) regressive func-
tions, and CqR(T,R) (resp., C.aR*(T,R))
the set of rd-continuous (resp., positively re-
gressive) regressive functions from T to R. For
all x,y € T, we define the circle plus and he
circle minus:

pPq = p+q+p(t)zy,

It is easy to verify that, for all p,g € R,
PP qpOq,6p,6q € R. Element (©¢)(+) is
called the inverse element of element ¢(-) €

R. Hence, the set R(T,R) with the calcula-
tion @ forms an Abelian group.

Definition 2.1 (Delta Derivative). A func-

tion ¢ : T — R? is called delta differentiable
at t if there exists a vector p™(t) such that

forall e >0,

le(@(t) = @(s) = 2 () (o (t) = s)l| < elo(t) —s|

foralls € (t—0,t+0)NT and for some § > 0.
The vector ®(t) is called the delta derivative

of f att.

2.2 FExponential Functions

Let T be an unbounded above time scale, that is
sup T = co.

Definition 2.2 (Exponential stability fun-

tion). Let p: T — R is regressive, we define
the exponential function by

¢
e,(t,tp) = exp {/
to

Properties of the exponential function: If p, ¢
are regressive, rd-continuous functions and

IRCLEESVICIIN
IATE h
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t,r,s € T then the following hold:

eP(t7 S)Qq(t, S) = 6P+q(ta 5)'
ep(a(t),8) = (L+ u(t)p(t))ey(t, s);
ep(t, s)ep(s, ) = ey(t,r).

Theorem 2.3 (see (Bohner, M. et al 2001)).
If p is regressive and ty € T, then ey(.,to) is
a unique solution of the initial value problem

z2(t) = p(t)z(t), z(te) = 1.

Let T be time scale that is unbounded above.
For any a,b € R, the notation [a,b] or (a,b)
means the segment on T, that is [a,b] = {t €
T:a<t<b}or(ab={teT:a<t<b}
and T, = {t > a : t € T}. We can de-
fine a measure At on T by considering the
Caratheodory construction of measures when
we put Ar|a, b) = b—a. The Lebesgue integral
of a measurable function f with respect to At
is denoted by ff f(s)Ars (see (Guseinov, G.
Sh. 2003)).

2.3 Some surveys on linear al-
gebra

We survey briefly some basic properties of lin-
ear implicit dynamic equation.

Lemma 2.4. Let A and B be given n X n
matrices, and () be a projector onto KerA,
ie., Q* = Q,ImQ = Ker A. Denote S = {z :
Bx € ImA,}. Let T be a continuous func-
tion defined on T,, taking values in GI(R™)
such that T|KerA, is an isomorphism be-
tween KerA, and KerA. The following as-
sertions are equivalent

a) SN KerA={0}.
b) G=A, — BT Q, is nonsingular.

c) R" =S5 @ KerA.

8|

Proof. The proof of this lemma can be found
in (R. Méarz. 1998), Appendix 1, Lemma Al,
p.329. O

Lemma 2.5. A, B, Q,G mentioned in
Lemma 2.4 and suppose that the matriz G is
nonsingular. Then, there hold the following
relations:

a)
b) ~G'BTQ,=Q,.

P, =G YA, where P, =1 —Q,.

¢) Q= —-TQ,G'B, called canonical
projector, is the projector onto KerA
along S.

TQ, G does not depend on the
choice of T and Q).

d)

Proof. The results in this lemma are proved
in (R. Mérz. 1998), p.319. O

To consider the robust stability we need the
Gronwall-Bellman’s inequality. It will be in-
troduced and applied in the following lemma.

Lemma 2.6. (see (Choi, S. K. et al 2010)
). Let the functions u(t),o(t),v(t), w(t,r) be
nonnegative and continuous fora < 17 <r <

t, and let ¢; and co be momnegative. If for
teT,

u(t)<o(t) [clJng / l[v(s)u(s)Jr / w(s, r)u(r)Ar}As}

then with p(-) = ¢; [v(-) + [w(-,r)Ar],
u(t) < crp(t)epy(t, 1), t>T.

3 Solvability of implicit
integro-dynamic equa-
tions

Let A(-), B(-) be two continuous functions

defined on Ty,, valued in the set of n x n-
matrices (R™" for brief), f € L°(T,;R")
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and K (-, -) be a two-variable continuous func-
tion defined on the set {(¢,s) : tg < s <t <
oo}, valued in R™*". Consider the linear im-
plicit dynamic equations on time scales (IDE

(s)As+f(t)

for short)
/Kt s)x
(3.1)

To solve this equation, we suppose that
Ker A(+) is smooth in the sense there exists a
continuously A-differentiable projector Q(t)
onto Ker A(t), i.e., Q is continuously differ-
entiable and Q% = Q, Im Q(t) = Ker A(t) for
all t € Ty,. By setting P = I — ) we can
rewrite the equation (3.1) as

A, ()™ (t) =

A, (1) (Pz)(t) = B(t)z(t)

+ f(t),

where B := B+ A,P?. It is seen that the so-
lution z(-) of the equation (3.2), if it exists, is

(3.2)

not necessarily differentiable but it is required Hov)(t)=

that the component Pz(-) is A—differentiable
almost everywhere on T, .

Consider the space C4(Ty,;R™) is the set of
y € C(Ty;R") such that Py(-) is almost
everywhere- differentiable on Ty, .

Define the linear operators G := A, — BTQ,,.
It is clear that G € LI¢(T,; R™ ™).

Definition 3.1. The IDE (3.1) is said to be (H

indez-1 if G(t) is invertible for allt € Ty,.
For any T > ty, consider two subspaces:
1ty = {v € C([to, T); R") -
o(t) € InTQ,G (1)},
Cp([to, T);R™) ={u € C([ty, T);R") :
u(t) € Im P(t)}.

Theorem 3.2. For any tg > 0 and zy €
R™, the equation (3.2) has a unique solution
z(-) € C4(Ty; R™), satisfying the initial con-
dition

Crq,c-

P(to)(z(ty) — z0) = 0. (3.3)

+ /t:K(t, s)a(s)As

Proof. We divide the proof of Theorem into
steps.
e Split the solution z(-) into Pz(-) + Qz(-)
and try to solve u(-) = Pz(:) and v(-) =
Qz(-). Multiplying both sides of (3.2) with
P,G7', Q,G™! and using the properties
P, = Gil AU7 _GilgTch = QU7
we obtain, for t > t,,
ut(t) = (P* + P,G7'B) (t)u(t) + B,G ' f(t)
t
+P,G7' | K(t,s)(u(s) +
to
v(t) =TQ,G

+7TQ,G™* /tlt((t, s) (u(s) +

v(s))As, (3.4)

Lf(t)
v(s))As, (3.5)

' Bu(t) + TQ,G~

3.5) by defining an
) — C( tp, 00 ,Rn)

e Consider the equatlon
operator H : C’( tg, 00
given by

o(t) —~TQ, G /t K(t, s)o(s)As. (3.6)

From [?, Theorem 3.1] it follows that the con-
tinuity of TQ,G'(-)K(-,-) implies the in-
vertibility of H because (Hv)(t) = y(t),t > t,
is a Volterra integral equation of second kind.
Precisely,

Jrz K (t,s)y(s)As (3.7)

where, K, is defined by induction
=TQ,G'(t)K(t,s),

K1(t,s) :/ Kn(t, ") TQ,G (1)K (T, s)AT,

K (t,s)

fort > s > tg, n > 1. Paying attention that
for any T' > ty the following inequality holds

wp Kt )] <
to<s<t<T
_ n (T —ty)"
(sw frQ.c i) T
to<s<t<T n!
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which implies that the serie s
R(t,s) =1+ Kt s).
n=1

is uniformly convergent on the set {(¢,s)}
such that t) < s <t < T and R(:,-) is con-
tinuous. Thus, H ! is also a second kind lin-
ear Volterra operator with the kernel R(-,-).
This means that H is a continuous bijection
on C([to, T]; R™).

e We now try to simplify the form of (3.5).
From this equation we get

v(t) = H'TQ,G~ Bu+/K (t)
+(H'TQ,G™ f)(t

In noting that

HTQ,G ! < t;K(-,s)u(s)ds> ()

=H '(u— Hu)(t) = (H 'u)(t) — u(t),
we can rewrite (3.8) as
v(t)=(H"Pu)(t) — u(t)+(H ' Q.G f)(1)
(3.9)
where Q(t) = I — P(t) = —TQ,G 'B(t) is
the canonical projector onto Ker A(t).
e Substituting v(t) into (3.4) obtains

ut(t)= (P*+ P,G'B)u(t) + P,G (1)
1f) (s)As

(3.10)

t
+ P,,G—l/ K(t,s)H (Pu+TQ,G~
to

for all t > t,.
We now use the following lemma, its proof

can be easily obtained by using Picard’s ap-
proximation method and usual procedures.

Lemma 3.3. Let S be a function defined on
[to, T| x C’p([to,T];R"), valued in R™, such
that S(t,u) depends only the values of u on
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[to, t] for every u € Cp([to, T);R") and S sat-
isfies the Lipschitz condition, i.e., there is a
constant k > 0 such that

[S(t51) =St w2)ll <& sup lyi(s) — ya(s)]l
to<s<t

for all t € [to,T], y1,y2 € C’p([to,T];R”).

Then the equation

=(P*4+P,G"'B)y + P,G7'S(t,y), (3.11)

with the initial condition y(ty) = P(to)xo has
a unique solution in Cp([ty,T];R™). More-
over, there exists a constant ¢ such that if y(t)
and z(t) are two solutions of (3.11) then

ly(t) — 2O < clly(to) — 2@, (3.12)

By using this lemma, we see that the equation
(3.10) has a unique solution u(-) with initial
condition u(tg) = P(to)xo. Then, we use the
formula (3.9) to obtain the solution of (3.2)
as

2(t) = u(t) +v(t)
=(H"'Pu)(t) + (H ), (3.13)

Ul

,1TQUG,
for t > ty. The proof is complete.

Remark 3.4. i) Inspired by the above decou-
pling procedure, we state the initial condition
u(to) = P(to)zo, or equivalent to

P(to)(z(to) —x0) =0, zp € R".  (3.14)

We note that the condition (3.14) does not de-
pend on the chosen projector opertor Q(to).
it) Let u(t) be the solution of the equation
(3.10). Multiplying both sides of this equation
with Q, vyields Q,u”™ = Q,P>u. Paying at-
tention that Q> = (Q*? = Q*Q, + QQ*

obtains
(Qu)* = Q*Qu

Thus, if Q(to)u(ty) = 0 then Q(t)u(t) = 0
for allt > tog. This means that (3.10) has the
mwariant property: every solution starting in
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ImP(ty) remains in ImP(t) for all t > t,
z(ty) € ImP(ty) then x(t) € ImP(t), for all
teTy.

ii) Since TQ,G™! is independent of the choice
of Q, so is the operator H.

iti) We note that for every T > to, the
space Cg, c-1([to, T);R™) is independent of
the choice QQ, and it is invariant under the
the operator H.

We now try to give the variation of constants
formula for the solution z(-) of the equation
(3.2). In order to do that, first we consider
the homogeneous equation, i.e., f =0

A, (Py)A(t)ZEy(m/t tK(t, s)y(s)As.  (3.15)

Define the Cauchy matrix ®(¢,s),t > s>t
generated by homogeneous system (3.15) as
the solution of the equation

A(t)®A(t, s)=DB(t)d(t, 5)—|—/ft((t,7)(1>(7, s)AT,

and P(s) (®(s,s) — I) = 0.Then, we have the
variation of constants formula for the solution
of (3.2)

Theorem 3.5. The solution z(-) of the
equation (3.2) with the initial condition
P(to)(z(to) — xo) = 0 can be expressed as

x(t) = ®(t, to) P(to)xo + /t o(t,7)P,G (1)

to

(f(r) + t;( (r,h)(H'TQ,G™* f)(h)Ah) At

+ (H'TQ,G7f) (1), t > to. (3.16)

Proof. A similar procedure to split the solu-
tion of the homogeneous equation (3.15) into
y(-) =u(-) +9(-) obtains

ut(t) = (P*+ P,G 'B)u(t)
+ PUG_l/It((t, s)(H ' Pa)(s)As, (3.17)

And y(t) = (H'Pa)(t). (3.18)

Denote by ®¢(-,-) the Cauchy operator of
(3.17), i.e., it is the solution of the matrix
equation

5 (t,s) = (P2 + P,G'B)®y(t, s)
L PG / K(t,7) (HBy®o(-, 8)) (1) AT

and Pg(s,s) = [ for all t > s > to. Then, by
directly differentiating both sides we obtain
the variation constants formula for the solu-
tion u(-) of (3.10) with the initial condition
u(to) = P(to)wo

¢
U(t) :(I)()(t7t0)P(t0)fL'0 +/q>0(t7 T)Pgail (f(T)
+ [k HTQ, G f(h)Ah) AT, (3.19)
to
On the other hand, since ()

Do (t,t0)P(to)ro and by (3.18) we have the
relation between ®(t, s) and ®q(t, s)

O(t,s) = (H'P (-, 5)P(s))(t). (3.20)
Thus, by acting H~'P to both sides of (3.19)
)

)

3.20

and paying attention to the expression (3.13
it is seen that the unique solution z(-) of (3.2
with the initial condition P(ty)(z(tg) — xo) =
0 can be given by the variation of constants
formula (3.16). The proof is complete. O

Assumption 3.6. There exists a differen-

tiable projector Q,(+) onto Ker A(+) such that

TQ,G™' and P I — @ are bounded on

[t07 OO)

Definition 3.7. i) The implicit integro -
dynamic equation (3.15) is uniformly
stable if and only if there exists a posi-
tive number My > 0 such that

(¢, s)[| < Mo, t=>s.

(3.21)

ii) Let w is regressive projective. The in-
tegro - equation (3.15) is said to be w-
exponentially stable if and only if there
exists a positive number M such that

|D(t, s)|| < Megy(t,s), t >s.  (3.22)
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4 Stability of implicit in-
tegro - dynamic equa-
tion under small pertur-
bations

In this section, we consider the effect of small
nonlinear perturbations to the stability of im-
plicit integro - equation (3.15). Suppose that
for every t > tg, the perturbed equation has
the form

As(t)z2(t) =

+ F(t, x(t)), (4.1)
Assume that F'(¢,0) = 0, for all t > ¢, which
follows that the equation (4.1) has the trivial
solution z(-) = 0. First at all, we consider the
solvability of (4.1).

Assumption 4.1. For all t > to, the func-
tions P,G7Y(t)F(t,z) and TQ,G ' (t)F(t, )
are Lipschitz in x with Lipschitz coefficient
ly and ~; respectiwvely. Suppose further that .
and . are continuous functions.

We endow Crq,c-1([to, T]; R™) with the norm
inherited from C([to, T]; R™) and understand
that |H~'|| mean that the norm of opera-
tor H=' in Crg,c-1([to, T]; R™). By denoting

7, = sup 7s for t > ty, we have
to<s<t

Lemma 4.2. Let T > to. If 7 ||H'| <1,
then the equation (4.1) with the initial condi-
tion

P(to)(x(to) — x0) = 0, (4.2)

is solvable on [tg,T]. Further, there exists a 4,<;<

constant My such that
[z(@)|| < Mz [|P(to)z(to)| ,

Proof. As in the proof of Theorem 3.2, de-
noting u(-) = Pz(:) and v(-) = Qx(-) comes
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forall tg <t <T.

to

¢
K(t,s)H*

(Pu+TQ,G7Y) (s)As+P,G'F (¢, x(t)) (4.3)
forT >t >ty. And
z(t) = u(t) + v(t) = (H ' Pu)(t)
+(H'TQ,G (-, 2(-)))(1),
forTthtO.Fixu()ECp(to, R)and

consider the mapping I'y, : C ([t07T] ]R")
C([to, T}; R™) defined by

u®(t)= (P*+ P,G™'B)u(t)+P,G™!

L(2)()=(H P u)(t)+H'TQ,G F(-,x(-))(t)
for T'>t > ty. It is easy to see that
sup [IT(2)(t) — Tu(2")(1)]]

to<t<T
<Ap | HY| sup [la(t) -2 (1)),
to<I<T _
for any z,2/ € C([to,T);R"). Since
Frl|HY| < 1, T, is a contractive mapping.
Hence, by the fixed point theorem, there ex-
ists uniquely an z* € C([to, T]; R™) such that

x* =Ty (z").

Denote * = g(u) we have

g(u)(t) = (H ' Pu)(t)

+ H'TQ,G7'F (-, g(u(:)))(t).
Further,
EupHg( u)(H)—g(u) ()] < /BTsu%Hu(t)_ul(t)H
7 [|H su%\\g(U)(t)—g(u')(t)ll,

with fr = [|[H 1P ||. Letting Lr = ;==
deduces

sup lg(u)(t)—g(u)(E)l| < L sup ||u(t) —u (£)]]

to<t<T

This means that g is Lipschitz continuous
with the Lipschitz coefficient L. In partic-
ular,

sup |lg(u)(t)|| < Ly sup |lu(t)]].
to<I<T to<t<T

(4.4)
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Substituting = = g(u) into (4.3) obtains
u® (t)=(P*+BG 'B)u(t)+BG'F(t, g(u))(t)

+PUG1/tK(t, s)g(u)(s)As.

0

(4.5)

Note that for any 7" > t > t,, the function
P,G7'F(t, g(u)(t)) is Lipschitz in u. By ap-
plying again Lemma 3.3, we can solve u(-)
from (4.5) with the initial condition u(ty) =
P(to)xo. Then the solution of (4.1) is given
by

x(t)

Further, by Lemma 3.3

g(u)(t), T >t >t. (4.6)

[u@)]] < ellulto)]l

Combining (4.4) and (4.6) obtains

T>1t> 1.

|z(t)|| < Mp ||P(to)z(0)]], T >t>t,

where My = cLp. The proof is complete. [

From Lemma 4.2 it follows that the solution
z(-) of the equation (4.1) with the initial con-
dition P(to)(z(to)—x0) = 0 exists on [tg, 00) if
o ||H | < 1forall T > to and the constant-
variation formulas (3.16) can be written as

x(t) = (L, to)P(to)wo + /t o(t, 7)P,G (1)

to

(F(T, o)+ tf((T, $)H™'TQ,G'F (-, z) (S)AS)AT

+ H'TQ,G'F(t,x(t)), t>t. (4.7)
To proceed, firstly, we consider the bounded-
ness of solutions of the equation (3.15) under
small nonlinear perturbations.

Theorem 4.3. Assume that the assumptions
3.6, 4.1 hold, the solutions of (3.15) is uni-
formly stable and H™' is a bounded operator
acting on Crqg,g-1([0,00), R™) with |H | =
Ky. Then, if L = 1 — Ki7,, > 0, we can
find a constant My > 0 such that the solution

z(-) of (4.1) with the initial condition (3.14)
satisfies

le()]] < Mo MO|P(to)aoll,  (4.8)

for allt > ty, where

N(t)= / (lT+K1/t S IIP.GE(r, S)Q(S)HAS)AT.

to

Proof. Firstly, we note that the condition
L > 0 implies that the solution x(-) of (4.1)
with the initial condition (3.14) exists on
[to, 00) by Lemma 4.2. The uniform stability
of solutions of (3.15) says that

1D(t, s)l| < Mo, t>s 2> to.

Therefore, from the variation of constants for-
mula (4.7), it follows that for all ¢ > ¢,

lz@)] < Mo || P(to)zoll
+ | HTQeG™HF (- () (1) |
+ /t M()(HPUG—l(T)F(T,x(T))H /t I1P,GL(r)

+ K(7,8)H'TQ,G(s)F (-, 2())(s) HAS) AT.

By virtue of the Lipschitz conditions of
PUG_lF(',SC(')) and QGG_IF(',I'('))7 we get

()] < Mol P(to)zoll+|| H~{| 7, sup [|z(s)|
to<s<t

+ M, /;(u 2 (7)||+ /t PG (7, 5)Q(5)]

Je(si)las) Ar

< My ||P(to)zoll + K174 sup ||z(s)]|

to<s<t

t T
w00 [ (1, s (ol + 12 [ 3,
to to<s<t to
< PG K ( 5)Q(s) | sup ||:c<s>uAs) Ar

tp<s1<s

x [ H7, sup

to<s1<

13
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Putting My = J we have

sup |[z(s)[| < My [|P(to)xoll
togsgt

t T
can, [ (zT o (o)) + K1 [ 7%
to\ to<s<rt to

(1)K (7, 5)Q(s)]| sup ux<sl>uAs) Ar

to<s1<s

| PGt

Following the generalized Gronwall-Bellman
inequality in Lemma 2.6

(6| < sup||z(s)[| < M| P(to)xollen, (- (t, to)
to<s<t

for all t > tg, where

M) =t (K7, | PG (7) K (7, 5)Q(s) | As.
to

Since N;(-) is positive,

t
exo(tto) S exp ([ Ni(r)Ar)

to
t T
<o ([ (4K [ IPGT0)
to to

X K (7, 5)Q(5)|As) Ar ).

Thus, ||z(t)|| < MyeV®||P(to)xo|| for all ¢ >
to. The proof is complete. O

As a consequence of Theorem 4.3 we see that

Corollary 4.4. Assume that the assumptions
3.6, 4.1 hold, the solutions of (3.15) is uni-
formly stable and H™' is a bounded operator
acting on Crg,q-1([0,00), R™) with |[H™Y| =
K. ]fL =1- Klﬁoo > 0 and

o0

N= /(zT + / K7 BG™ K (7,5)Q(s) | As) Ar

to

< 00,

then, the solution of the equation (4.1) is uni-
formly stable in the sense that

()]l < Ms||P(to)zoll, ¢ = to,

for a certain constant Ms;.

14|

Next, we consider the robust exponential sta-
bility of (3.15) For any A >0, let G = G(I +
Qo) K(t, h) = ex(o(t), s)K(t, h)esa(h, s).
We define the operators H as in (3.6) by using
G and K (t, h) instead of G and K (¢, h). Then
we have the following theorem about expo-
nential stability of solutions of the equation
(3.15) under small nonlinear perturbations.

Theorem 4.5. If the equation (3.15) is w-
exponentially stable and there exvists an A €
(0,w) and 6\ € R such that H™' acts
continuously on Crq,c-1([0,00),R") with
|H™Y|| = K, satisfying L = 1 — Ky7., > 0.
Suppose further that

limsup<lT + I?l/ Anea(r, h)|| PG (7)

T—00 to
AL

x K(1,h)Q(h )||Ah> S M 1) (4.9)

with M defined in (3.22). That is, there is

a positive number wy such that the perturbed
equation (4.1) is wy-exponentially stable.

Proof. Let gg be a positive number such that
d+eo < 2(T/\>\u*) Then, from (4.9), there is a
positive number Ty > 0 such that

()

t
L+ Kl/ﬁheA(t, WIP,G-L (0K (£ h)Q(h)|| AR
t

0

<bten<s (4.10)

(L+Apr)’

for all t > Tj. To simplify notations we write
x(t) for the solution x(t, s, o).

/Kts

=ex(t,s)x(t),t > s > to. Since

As(t)(Px)>(t)

+ F(t, z(t)

ex(a(t), )z (t) + Aex(t, s)z(t)
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It is easy to see that y satisfies the equation Further, Pgé_lﬁ(t, ) and TQUé_lﬁ(t, )
are (1 + Au(t))l; and ~-Lipschitz, respec-
A (1) (Py)2(t) = Ay (t)(ex(t, s)Px)>(t tively. Consider the corresponding homoge-

)
= A, (1) <6,\(0’(t), $)(P2)2 + Aea(t, s)P:c) neous equation to (4.11)
=ex(o(t),s) (F(t)x(t)+ / tK(ts):r(s)As A ()(P2)2(t) / K(t,h)z

(4. 12)
+ F(t,x(t))) + dex(t, $) A, () Px

By  definition, the Cauchy operator

[(1+Au( NB(t) + A, ()P (1)]y(t) SRt > b o of (412) and Bl R of
+ / ex(a(t), s)K(t, h)eax(h, s)y(h)Ah (3.15) have a relation
T 6;( (1), t 69/\(t S)y(t)) (5(757 h) = ex(t,h)®(t,h), t>h > s.
— By / K £, h)y(h)Ah + ﬁ(t, y(t)), Therefore, for all t > h > s
for all £ > s and 1) BB =ex(t ) [0(2. )| <Meqe (<M.

_ This means that (4.12) is uniformly stable.
B(t) = (1 + A\u(t))B(t) + M4 (t)P(t),  And the solution of (4.11) is expressed by
K(t.h) = ex(o(t), s)K(t. h)ear (b, 8) _ L /=
F(t,y(t) = ex(o(t), s)F (£ eon(t. s)y(t)). y(t)=2(t, S)P(S)y0+/@(taT)PaG (1) (F(ﬂ?J(T))

S

Since + / K(r, h)ﬁf—lTQ,,é—lﬁ(.,x(.))(h)m)m
G = A, = [(14+ M) + A4, P| TQ, + H'TQ,G (L, y(t)).
=G - \BTQ, =G(I — \uG~'BTQ, ~ _
HBTQ (1= Q) [y <M P(s)yo + K17 sup [ly(h)]|
=G+ M\Qs). to<h<t
Wose tht (100t = (v e N CRRVGIAMET
-1
= P hich -
Q) = Bt Q. which im + [ IRG R EHQMI
plies G is invertible, and Gl = (P +
| 1 x Kill5, sup uxml)nAh)AT.
i QU)G , it is seen that the equation to<hi1<h
(4.1 ) is index-1. Furthermore, By using Theorem 4.3, with M = % we have

PG = PG (14 M)Q,G 7 = Q.G [ly(t)]| < Meg.(t,5) | P(s)xo , t > s.

Moreover, where
PGB (E (1) = ex(a(t), ) (e =1+ e (1 4+ o [ Tt
X PGV (t, ean(t, s)y(t)), 4 S
QG F(t,) = exlt, )Qo G F (. ccn(t, s)y(1)). X NEGT (KT, h>@<h)”“‘>

15
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e Consider three cases when t > Ty > s > {.
From (4.10) we see that

[z(t)]| = een(t, s) ly(®)]l

< Meaa(t, s)e(t, ) [|P(s)xol|

= Megn(t, s)es(t, To)ex (To, s) [|[P(s)o|
< Mega(t, s)ex(t, s)ex(To, to) || P(s)ol|
= Meg,(t, s)eg(To, to) | P(s)xol|

where
-

Fex= 4o b+ Ry [ Tealr )]

S

x P,G-Y(r)K(r, h)Q(h)HAh] oA

< (L4 A7)0 +20) © A
_ (O+e)[l+pumA = A
1+ p(m)A
< —)\/2 < —-\/2 —
T4+ p(m)A = 14 p*A

Thus, [|z(t)|| < Kie_x,(t,s)||P(s)xol|, where
K, = Meﬁ(.)(To,to).
e In case t > s > T > ty, using a similar
argument as above we get

@)l < Mllz(s)l[e-x (¢ s).

e Consider the remaining case tg < s <t <
Ty. With A; > 0 defined above and from the
inequality (4.5), we have By virtue of the pos-

itivity of L and Lemma 4.2 we get
la(®)]l < Mryes(t, s)eqy (t.9)2(s)].

: A A2 N2 .
Since 6§ = )3 < T —A1. Thus

lz()]| < Mryex(To, to)e-x, (£, 5)[|z(s)]]-
Combining the above estimates yields
lz(t)|| < Kecw, (t,s)|x(s)|| for all t > s > ¢,

where K = max{M, KhMTOe%(TO,tO)}. The
proof is complete. O
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