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Abstract:

This paper deals with the robust stability of implicit
integro - dynamic equations. We consider the solv-
ability of the equation and then the preservation of
exponential stability under small perturbations.
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Abstract:

Trong bài báo này, chúng ta trình bày bài toán về tính
ổn định của phương trình động học tích phân ẩn trên
thang thời gian. Cụ thể, chúng ta xét tính giải được
của phương trình và chứng minh được rằng, dưới tác
động của nhiễu, nghiệm của những phương trình này
bảo toàn tính bị chặn và tính ổn định mũ.

1 Introduction

The theory of implicit integro-dynamic equa-
tions has found many applications in demog-
raphy, the study of materials, and in actuar-
ial science through the renewal equation (A.
S. Andreev et al 2018; H. Brunner 2017;Yu,
L., Daleckii et al 1971). However, relatively
few kinds of implicit integro-dynamic equa-
tions and systems can be solved explicitly.
Therefore, during scientific investigations, re-
searchers need to find the methods which al-
low them to study the qualitative behavior of

their solutions without solving them. One of
important problems in studying the qualita-
tive theory is to investigate the robust stabil-
ity of systems. The robust stability is consid-
ered for difference singular equations or dy-
namic equations on time scales in (Du, N. H.
et al 2016; D.D. Thuan et al 2019 ), although
all most works consider only systems without
or finite memory. Therefore, it is worth con-
sidering the robust stability of implicit inte-
gro - dynamic equations on time scales. The
aim of this paper is to continue the study of
this problem by considering the robust stabil-
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ity for the implicit integro-dynamic system on
time scales under the form

A(t)x∆(t) = B(t)x(t)+

� t

t0

K(t, s)x(s)∆s+f(t)

with t ≥ t0 and A(·), B(·), K(·, ·), f(·) are
specified later. We deal with the preservation
of the stability for this dynamic equation un-
der small perturbations. Since the derivative
of state process x(t) at time t depends on all
past path x(s), t0 ≤ s ≤ t, we have to use a
more general inequality of Gronwall-Bellman
type to obtain the upper bound of perturba-
tions.

The paper is organized as follows. In the next
section we recall some basic notions and pre-
liminary results on time scales. In section 3,
we consider the solvability of implicit integro
- dynamic equations. Finally, in section 4, we
are concerned with conditions such that if the
solution of a implicit integro - dynamic equa-
tions is uniformly stable/exponentially sta-
ble, then under small Lipschitz perturbations
it is still uniformly stable/exponentially sta-
ble.

2 Premilinary

2.1 Time scales

A time scale is a nonempty closed subset of
the real numbers, enclosed with the topology

inherited from the standard topology on R .
We usually denote it by the symbol T. On
the time scale T, we define the forward jump
operator σ(t) = inf{s ∈ T : s > t} and the
graininess µ(t) = σ(t)− t. Similary, the back-
ward operator is defined as ρ(t) = sup{s ∈
T : s < t} and the backward graininess is
µ(t) = t− ρ(t).
A regulated function f is called rd-continuous
if it is there exist the left-sided limit at every
left-dense point and right-sided limit at ev-
ery right-dense point and continuous at every

right-dense point. The set of rd-continuous
functions defined on the interval J valued in
X will be denoted by Crd(J,X). A function f
from T to R is regressive (resp., positively re-
gressive) if for every t ∈ T, then 1+µ(t)f(t) �=
0 (resp., 1+µ(t)f(t) > 0). We denote byR =
R(T,R) (resp., R+ = R+(T,R)) the set of
(resp., positively regressive) regressive func-
tions, and CrdR(T,R) (resp., CrdR+(T,R))
the set of rd-continuous (resp., positively re-
gressive) regressive functions fromT toR. For
all x, y ∈ T, we define the circle plus and he
circle minus:

p⊕q := p+q+µ(t)xy, p�q := p− q
1 + µ(t)q

.

It is easy to verify that, for all p, q ∈ R,
p ⊕ q, p � q,�p,�q ∈ R. Element (�q)(·) is
called the inverse element of element q(·) ∈
R. Hence, the set R(T,R) with the calcula-
tion ⊕ forms an Abelian group.

Definition 2.1 (Delta Derivative). A func-

tion ϕ : T → Rd is called delta differentiable
at t if there exists a vector ϕ∆(t) such that
for all ε > 0,

"ϕ(σ(t))− ϕ(s)− ϕ∆(t)(σ(t)− s)" ≤ ε|σ(t)− s|

for all s ∈ (t−δ, t+δ)∩T and for some δ > 0.
The vector ϕ∆(t) is called the delta derivative
of f at t.

2.2 Exponential Functions

Let T be an unbounded above time scale, that is
sup T=∞.

Definition 2.2 (Exponential stability fun-

tion). Let p : T → R is regressive, we define
the exponential function by

ep(t, t0) = exp
�� t

t0

lim
h�µ(s)

Ln(1 + hp(s))

h
∆s
 
.

Properties of the exponential function: If p, q
are regressive, rd-continuous functions and
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t, r, s ∈ T then the following hold:

ep(t, s)eq(t, s) = ep+q(t, s).

ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

ep(t, s)ep(s, r) = ep(t, r).

Theorem 2.3 (see (Bohner, M. et al 2001)).
If p is regressive and t0 ∈ T, then ep(., t0) is
a unique solution of the initial value problem

x∆(t) = p(t)x(t), x(t0) = 1.

Let T be time scale that is unbounded above.
For any a, b ∈ R, the notation [a, b] or (a, b)
means the segment on T, that is [a, b] = {t ∈
T : a ≤ t ≤ b} or (a, b) = {t ∈ T : a < t < b}
and Ta = {t ≥ a : t ∈ T}. We can de-
fine a measure ∆T on T by considering the
Caratheodory construction of measures when
we put∆T[a, b) = b−a. The Lebesgue integral
of a measurable function f with respect to∆T
is denoted by

� b
a
f(s)∆Ts (see (Guseinov, G.

Sh. 2003)).

2.3 Some surveys on linear al-
gebra

We survey briefly some basic properties of lin-
ear implicit dynamic equation.

Lemma 2.4. Let A and B be given n × n
matrices, and Q be a projector onto KerA,
i.e., Q2 = Q, ImQ = KerA. Denote S = {x :
Bx ∈ ImAσ}. Let T be a continuous func-
tion defined on Ta, taking values in Gl(Rn)
such that T |KerAσ is an isomorphism be-
tween KerAσ and KerA. The following as-
sertions are equivalent

a) S ∩ KerA = {0}.

b) G = Aσ − BT Qσ is nonsingular.

c) Rn = S ⊕ KerA.

Proof. The proof of this lemma can be found
in (R. März. 1998), Appendix 1, Lemma A1,
p.329.

Lemma 2.5. A,B, Q,G mentioned in
Lemma 2.4 and suppose that the matrix G is
nonsingular. Then, there hold the following
relations:

a) Pσ = G
−1Aσ where Pσ = I −Qσ.

b) −G−1B TQσ = Qσ.

c) Q̂ := −TQσG−1B, called canonical
projector, is the projector onto KerA
along S.

d) TQσ G
−1 does not depend on the

choice of T and Q.

Proof. The results in this lemma are proved
in (R. März. 1998), p.319.

To consider the robust stability we need the
Gronwall-Bellman’s inequality. It will be in-
troduced and applied in the following lemma.

Lemma 2.6. (see (Choi, S. K. et al 2010)
). Let the functions u(t), σ(t), v(t), w(t, r) be
nonnegative and continuous for a ≤ τ ≤ r ≤
t, and let c1 and c2 be nonnegative. If for
t ∈ Ta

u(t)≤ϕ(t)
�
c1+c2

� t

τ

�
v(s)u(s)+

� s

τ

w(s, r)u(r)∆r
�
∆s

�

then with p(·) = c2
�
v(·) +

� ·
τ
w(·, r)∆r

�
,

u(t) ≤ c1ϕ(t)ep(·)(t, τ), t ≥ τ.

3 Solvability of implicit

integro-dynamic equa-

tions

Let A(·), B(·) be two continuous functions
defined on Tt0, valued in the set of n × n–
matrices (Rn×n for brief), f ∈ Llocp

�
Tt0 ;Rn

�
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andK(·, ·) be a two-variable continuous func-
tion defined on the set {(t, s) : t0 ≤ s ≤ t <
∞}, valued in Rn×n. Consider the linear im-
plicit dynamic equations on time scales (IDE
for short)

Aσ(t)x
∆(t) =B(t)x(t)+

� t

t0

K(t, s)x(s)∆s+f(t)

(3.1)
To solve this equation, we suppose that
KerA(·) is smooth in the sense there exists a
continuously ∆–differentiable projector Q(t)
onto KerA(t), i.e., Q is continuously differ-
entiable and Q2 = Q, Im Q(t) = KerA(t) for
all t ∈ Tt0. By setting P = I − Q we can
rewrite the equation (3.1) as

Aσ(t)
�
Px
�∆
(t) = B(t)x(t) +

� t

t0

K(t, s)x(s)∆s

+ f(t), (3.2)

where B := B+AσP
∆. It is seen that the so-

lution x(·) of the equation (3.2), if it exists, is
not necessarily differentiable but it is required
that the component Px(·) is ∆–differentiable
almost everywhere on Tt0.
Consider the space C1A

�
Tt0 ;Rn

�
is the set of

y ∈ C
�
Tt0 ;Rn

�
such that Py(·) is almost

everywhere- differentiable on Tt0.
Define the linear operators G := Aσ−BTQσ.
It is clear that G ∈ Lloc∞

�
Tt0;Rn×n

�
.

Definition 3.1. The IDE (3.1) is said to be
index-1 if G(t) is invertible for all t ∈ Tt0.

For any T > t0, consider two subspaces:

CTQσG−1([t0,T );Rn) = {v ∈ C([t0, T );Rn) :
v(t) ∈ ImTQσG−1(t)},

CP ([t0, T );Rn) = {u ∈ C([t0, T );Rn) :
u(t) ∈ ImP (t)}.

Theorem 3.2. For any t0 ≥ 0 and x0 ∈
Rn, the equation (3.2) has a unique solution
x(·) ∈ C1A

�
Tt0 ;Rn

�
, satisfying the initial con-

dition
P (t0)(x(t0)− x0) = 0. (3.3)

Proof. We divide the proof of Theorem into
steps.
• Split the solution x(·) into Px(·) + Qx(·)
and try to solve u(·) = Px(·) and v(·) =
Qx(·). Multiplying both sides of (3.2) with
PσG

−1, QσG
−1 and using the properties

Pσ = G
−1Aσ, −G−1B TQσ = Qσ,

we obtain, for t ≥ t0,

u∆(t) =
�
P∆ + PσG

−1B
�
(t)u(t) + PσG

−1f(t)

+ PσG
−1
� t

t0

K(t, s)
�
u(s) + v(s)

�
∆s, (3.4)

v(t) = TQσG
−1Bu(t) + TQσG

−1f(t)

+ TQσG
−1
� t

t0

K(t, s)
�
u(s) + v(s)

�
∆s, (3.5)

• Consider the equation (3.5) by defining an
operatorH : C

�
[t0,∞);Rn

�
→ C

�
[t0,∞);Rn

�

given by

(Hv)(t)=v(t)−TQσG−1
� t

t0

K(t, s)v(s)∆s. (3.6)

From [?, Theorem 3.1] it follows that the con-
tinuity of TQσG

−1(·)K(·, ·) implies the in-
vertibility ofH because (Hv)(t) = y(t), t ≥ t0
is a Volterra integral equation of second kind.
Precisely,

(H−1y)(t) = y(t) +

∞�

n=1

� t

t0

Kn(t, s)y(s)∆s (3.7)

where, Kn is defined by induction

K1(t, s) = TQσG
−1(t)K(t, s),

Kn+1(t, s) =

� t

s

Kn(t, τ)TQσG
−1(τ)K(τ, s)∆τ,

for t ≥ s ≥ t0, n ≥ 1. Paying attention that
for any T > t0 the following inequality holds

sup
t0≤s≤t≤T

"Kn(t, s)" ≤
�
sup

t0≤s≤t≤T

��TQσG−1(t)K(t, s)
��
�n (T − t0)n

n!
,
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which implies that the serie s

R(t, s) = I +
∞�

n=1

Kn(t, s).

is uniformly convergent on the set {(t, s)}
such that t0 ≤ s ≤ t ≤ T and R(·, ·) is con-
tinuous. Thus, H−1 is also a second kind lin-
ear Volterra operator with the kernel R(·, ·).
This means that H is a continuous bijection
on C([t0, T ];Rn).
• We now try to simplify the form of (3.5).
From this equation we get

v(t) = H−1TQσG
−1
�
Bu+

� ·

t0

K(·, s)u(s)ds
�
(t)

+ (H−1TQσG
−1f)(t). (3.8)

In noting that

H−1TQσG
−1
	� ·

t0

K(·, s)u(s)ds


(t)

= H−1
�
u−Hu

�
(t) = (H−1u)(t)− u(t),

we can rewrite (3.8) as

v(t)=(H−1P̂ u)(t)− u(t)+(H−1QσG−1f)(t)
(3.9)

where Q̂(t) = I − P̂ (t) = −TQσG−1B(t) is
the canonical projector onto KerA(t).
• Substituting v(t) into (3.4) obtains

u∆(t)=
�
P∆+ PσG

−1B
�
u(t) +PσG

−1f(t)

+PσG
−1
� t

t0

K(t, s)H−1
�
P̂ u+TQσG

−1f
�
(s)∆s

for all t ≥ t0. (3.10)

We now use the following lemma, its proof
can be easily obtained by using Picard’s ap-
proximation method and usual procedures.

Lemma 3.3. Let S be a function defined on
[t0, T ] × CP

�
[t0, T ];Rn

�
, valued in Rn, such

that S(t, u) depends only the values of u on

[t0, t] for every u ∈ CP
�
[t0, T ];Rn

�
and S sat-

isfies the Lipschitz condition, i.e., there is a
constant k > 0 such that

"S(t, y1)− S(t, y2)" ≤ k sup
t0≤s≤t

"y1(s)− y2(s)" ,

for all t ∈ [t0, T ], y1, y2 ∈ CP
�
[t0, T ];Rn

�
.

Then the equation

y∆=(P∆+PσG
−1B)y + PσG

−1S(t, y), (3.11)

with the initial condition y(t0) = P (t0)x0 has
a unique solution in CP ([t0, T ];Rn). More-
over, there exists a constant c such that if y(t)
and z(t) are two solutions of (3.11) then

"y(t)− z(t)" ≤ c "y(t0)− z(t0)" , (3.12)

By using this lemma, we see that the equation
(3.10) has a unique solution u(·) with initial
condition u(t0) = P (t0)x0. Then, we use the
formula (3.9) to obtain the solution of (3.2)
as

x(t) = u(t) + v(t)

=(H−1P̂ u)(t) + (H−1TQσG
−1f)(t), (3.13)

for t ≥ t0. The proof is complete.

Remark 3.4. i) Inspired by the above decou-
pling procedure, we state the initial condition
u(t0) = P (t0)x0, or equivalent to

P (t0)(x(t0)− x0) = 0, x0 ∈ Rn. (3.14)

We note that the condition (3.14) does not de-
pend on the chosen projector opertor Q(t0).
ii) Let u(t) be the solution of the equation
(3.10). Multiplying both sides of this equation
with Qσ yields Qσu

∆ = QσP
∆u. Paying at-

tention that Q∆ = (Q2)∆ = Q∆Qσ + QQ
∆

obtains
(Qu)∆ = Q∆Qu

Thus, if Q(t0)u(t0) = 0 then Q(t)u(t) = 0
for all t ≥ t0. This means that (3.10) has the
invariant property: every solution starting in
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ImP (t0) remains in ImP (t) for all t > t0
x(t0) ∈ ImP (t0) then x(t) ∈ ImP (t), for all
t ∈ Tt0.
ii) Since TQσG

−1 is independent of the choice
of Q, so is the operator H.

iii) We note that for every T > t0, the
space CQσG−1([t0, T ];Rn) is independent of
the choice Qσ and it is invariant under the
the operator H.

We now try to give the variation of constants
formula for the solution x(·) of the equation
(3.2). In order to do that, first we consider
the homogeneous equation, i.e., f = 0

Aσ
�
Py
�∆
(t)=By(t)+

� t

t0

K(t, s)y(s)∆s. (3.15)

Define the Cauchy matrix Φ(t, s), t ≥ s ≥ t0
generated by homogeneous system (3.15) as
the solution of the equation

A(t)Φ∆(t, s)=B(t)Φ(t, s)+

� t

s

K(t, τ)Φ(τ, s)∆τ,

and P (s) (Φ(s, s)− I) = 0.Then, we have the
variation of constants formula for the solution
of (3.2)

Theorem 3.5. The solution x(·) of the
equation (3.2) with the initial condition
P (t0)(x(t0)− x0) = 0 can be expressed as

x(t) = Φ(t, t0)P (t0)x0 +

� t

t0

Φ(t, τ)PσG
−1(τ)

�
f(τ) +

� τ

t0

K(τ, h)(H−1TQσG
−1f)(h)∆h

�
∆τ

+ (H−1TQσG
−1f)(t), t ≥ t0. (3.16)

Proof. A similar procedure to split the solu-
tion of the homogeneous equation (3.15) into
y(·) = u(·) + v(·) obtains

u∆(t) =
�
P∆ + PσG

−1B
�
u(t)

+ PσG
−1
� t

t0

K(t, s)
�
H−1P̂ u

�
(s)∆s, (3.17)

And y(t) = (H−1P̂ u)(t). (3.18)

Denote by Φ0(·, ·) the Cauchy operator of
(3.17), i.e., it is the solution of the matrix
equation

Φ∆0 (t, s) =
�
P∆ + PσG

−1B
�
Φ0(t, s)

+ PσG
−1(t)

t�

s

K(t, τ)
�
H−1P̂σΦ0(·, s)

�
(τ)∆τ

and Φ0(s, s) = I for all t ≥ s ≥ t0. Then, by
directly differentiating both sides we obtain
the variation constants formula for the solu-
tion u(·) of (3.10) with the initial condition
u(t0) = P (t0)x0

u(t)=Φ0(t, t0)P (t0)x0 +

� t

t0

Φ0(t, τ)PσG
−1
�
f(τ)

+

� τ

t0

K(τ, h)H−1TQσG
−1f(h)∆h

�
∆τ. (3.19)

On the other hand, since u(t) =
Φ0(t, t0)P (t0)x0 and by (3.18) we have the
relation between Φ(t, s) and Φ0(t, s)

Φ(t, s) =
�
H−1P̂ Φ0(·, s)P (s)

�
(t). (3.20)

Thus, by acting H−1P̂ to both sides of (3.19)
and paying attention to the expression (3.13)
it is seen that the unique solution x(·) of (3.2)
with the initial condition P (t0)(x(t0)− x0) =
0 can be given by the variation of constants
formula (3.16). The proof is complete.

Assumption 3.6. There exists a differen-
tiable projector Qσ(·) onto KerA(·) such that
TQσG

−1 and P = I − Q are bounded on
[t0,∞).
Definition 3.7. i) The implicit integro -

dynamic equation (3.15) is uniformly
stable if and only if there exists a posi-
tive number M0 > 0 such that

"Φ(t, s)" ≤M0, t ≥ s. (3.21)

ii) Let ω is regressive projective. The in-
tegro - equation (3.15) is said to be ω-
exponentially stable if and only if there
exists a positive number M such that

"Φ(t, s)" ≤Me�ω(t, s), t ≥ s. (3.22)
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4 Stability of implicit in-

tegro - dynamic equa-

tion under small pertur-

bations

In this section, we consider the effect of small
nonlinear perturbations to the stability of im-
plicit integro - equation (3.15). Suppose that
for every t ≥ t0, the perturbed equation has
the form

Aσ(t)x
∆(t) = B(t)x(t) +

� t

t0

K(t, s)x(s)∆s

+ F (t, x(t)), t ∈ Tt0 . (4.1)

Assume that F (t, 0) = 0, for all t ≥ t0, which
follows that the equation (4.1) has the trivial
solution x(·) ≡ 0. First at all, we consider the
solvability of (4.1).

Assumption 4.1. For all t ≥ t0, the func-
tions PσG

−1(t)F (t, x) and TQσG
−1(t)F (t, x)

are Lipschitz in x with Lipschitz coefficient
lt and γt respectively. Suppose further that l·
and γ· are continuous functions.

We endow CTQσG−1([t0, T ];Rn) with the norm
inherited from C([t0, T ];Rn) and understand
that "H−1" mean that the norm of opera-
tor H−1 in CTQσG−1([t0, T ];Rn). By denoting
γt = sup

t0≤s≤t
γs for t ≥ t0, we have

Lemma 4.2. Let T > t0. If γT "H−1" < 1,
then the equation (4.1) with the initial condi-
tion

P (t0)(x(t0)− x0) = 0, (4.2)

is solvable on [t0, T ]. Further, there exists a
constant MT such that

"x(t)" ≤MT "P (t0)x(t0)" , for all t0 ≤ t ≤ T.

Proof. As in the proof of Theorem 3.2, de-
noting u(·) = Px(·) and v(·) = Qx(·) comes

to

u∆(t)=
�
P∆+ PσG

−1B
�
u(t)+PσG

−1
� t

t0

K(t, s)H−1

�
P̂ u+TQσG

−1f
�
(s)∆s+PσG

−1F
�
t, x(t)

�
(4.3)

for T ≥ t ≥ t0. And

x(t) = u(t) + v(t) = (H−1P̂ u)(t)

+ (H−1TQσG
−1F
�
·, x(·)

�
)(t),

for T ≥ t ≥ t0. Fix u(·) ∈ CP
�
[t0, T ];Rn

�
and

consider the mapping Γu : C
�
[t0, T ];Rn

�
→

C
�
[t0, T ];Rn

�
defined by

Γu(x)(t)=(H
−1P̂ u)(t)+H−1TQσG

−1F
�
·, x(·)

�
(t)

for T ≥ t ≥ t0. It is easy to see that
sup
t0≤t≤T

"Γu(x)(t)− Γu(x	)(t)"

≤ γT
��H−1

�� sup
t0≤t≤T

"x(t)− x	(t)",
for any x,x	 ∈ C

�
[t0, T ];Rn

�
. Since

γT "H−1" < 1, Γu is a contractive mapping.
Hence, by the fixed point theorem, there ex-
ists uniquely an x∗ ∈ C

�
[t0, T ];Rn

�
such that

x∗ = Γu(x
∗).

Denote x∗ = g(u) we have

g(u)(t) = (H−1P̂ u)(t)

+H−1TQσG
−1F
�
·, g(u(·))

�
(t).

Further,

sup
[t0,T ]

"g(u)(t)−g(u	)(t)" ≤ βT sup
[t0,T ]

"u(t)−u	(t)"

+γT
��H−1

�� sup
[t0,T ]

"g(u)(t)−g(u	)(t)",

with βT = "H−1P̂ ". Letting LT = βT
1−γT �H−1�

deduces

sup
t0≤t≤T

"g(u)(t)−g(u	)(t)"≤LT sup
t0≤t≤T

"u(t)−u	(t)".

This means that g is Lipschitz continuous
with the Lipschitz coefficient LT . In partic-
ular,

sup
t0≤t≤T

"g(u)(t)" ≤ LT sup
t0≤t≤T

"u(t)" . (4.4)
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Substituting x = g(u) into (4.3) obtains

u∆(t)=
�
P∆+PσG

−1B
�
u(t)+PσG

−1F
�
t, g(u)

�
(t)

+PσG
−1
� t

t0

K(t, s)g(u)(s)∆s. (4.5)

Note that for any T ≥ t ≥ t0, the function
PσG

−1F
�
t, g(u)(t)

�
is Lipschitz in u. By ap-

plying again Lemma 3.3, we can solve u(·)
from (4.5) with the initial condition u(t0) =
P (t0)x0. Then the solution of (4.1) is given
by

x(t) = g(u)(t), T ≥ t ≥ t0. (4.6)

Further, by Lemma 3.3

"u(t)" ≤ c "u(t0)" , T ≥ t ≥ t0.

Combining (4.4) and (4.6) obtains

"x(t)" ≤MT "P (t0)x(0)" , T ≥ t ≥ t0,

where MT = cLT . The proof is complete.

From Lemma 4.2, it follows that the solution
x(·) of the equation (4.1) with the initial con-
dition P (t0)(x(t0)−x0) = 0 exists on [t0,∞) if
γT "H−1" < 1 for all T > t0 and the constant-
variation formulas (3.16) can be written as

x(t) = Φ(t, t0)P (t0)x0 +

� t

t0

Φ(t, τ)PσG
−1(τ)

�
F (τ, x)+

� τ

t0

K(τ, s)H−1TQσG
−1F (·, x)(s)∆s

�
∆τ

+H−1TQσG
−1F (t, x(t)), t ≥ t0. (4.7)

To proceed, firstly, we consider the bounded-
ness of solutions of the equation (3.15) under
small nonlinear perturbations.

Theorem 4.3. Assume that the assumptions
3.6, 4.1 hold, the solutions of (3.15) is uni-
formly stable and H−1 is a bounded operator
acting on CTQσG−1([0,∞),Rn) with "H−1" =
K1. Then, if L = 1 − K1γ∞ > 0, we can
find a constant M2 > 0 such that the solution

x(·) of (4.1) with the initial condition (3.14)
satisfies

"x(t)" ≤M2eM2N(t)"P (t0)x0", (4.8)

for all t ≥ t0, where

N(t)=

t�

t0

�
lτ+K1

� τ

t0

γs"PσG−1K(τ, s)Q(s)"∆s
�
∆τ.

Proof. Firstly, we note that the condition
L > 0 implies that the solution x(·) of (4.1)
with the initial condition (3.14) exists on
[t0,∞) by Lemma 4.2. The uniform stability
of solutions of (3.15) says that

"Φ(t, s)" ≤M0, t ≥ s ≥ t0.

Therefore, from the variation of constants for-
mula (4.7), it follows that for all t ≥ t0

"x(t)" ≤M0 "P (t0)x0"
+
��H−1TQσG−1F

�
·, x(·)

�
(t)
��

+

� t

t0

M0

	��PσG−1(τ )F (τ, x(τ))
��
� τ

t0

"PσG−1(τ)

+K(τ, s)H−1TQσG
−1(s)F (·, x(·))(s)"∆s



∆τ.

By virtue of the Lipschitz conditions of
PσG

−1F (·, x(·)) and QσG−1F (·, x(·)), we get

"x(t)" ≤M0"P (t0)x0"+
��H−1

�� γt sup
t0≤s≤t

"x(s)"

+M0

� t

t0

	
lτ "x(τ)"+

� τ

t0

"PσG−1K(τ, s)Q(s)"

× "H−1" γs sup
t0≤s1≤s

"x(s1)"∆s


∆τ

≤ M0 "P (t0)x0"+K1γ∞ sup
t0≤s≤t

"x(s)"

+M0

� t

t0

	
lτ sup
t0≤s≤τ

"x(s)"+K1
� τ

t0

γs

× "PσG−1K(τ, s)Q(s)" sup
t0≤s1≤s

"x(s)"∆s


∆τ.
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Putting M2 =
M0
L
, we have

sup
t0≤s≤t

"x(s)" ≤M2 "P (t0)x0"

+M2

� t

t0

	
lτ sup
t0≤s≤τ

"x(s)"+K1
� τ

t0

γs×

"PσG−1(τ)K(τ, s)Q(s)" sup
t0≤s1≤s

"x(s1)"∆s


∆τ.

Following the generalized Gronwall-Bellman
inequality in Lemma 2.6

"x(t)"≤ sup
t0≤s≤t
"x(s)"≤M2"P (t0)x0"eN1(·)(t, t0)

for all t ≥ t0, where

N1(τ )=lτ+

� τ

t0

K1γs"PσG−1(τ)K(τ, s)Q(s)"∆s.

Since N1(·) is positive,

eN1(·)(t, t0) ≤ exp
�� t

t0

N1(τ)∆τ
�

≤ exp
�� t

t0

�
lτ +K1

� τ

t0

γs"PσG−1(τ)

×K(τ, s)Q(s)"∆s
�
∆τ
�
.

Thus, "x(t)" ≤M2eN(t)"P (t0)x0" for all t ≥
t0. The proof is complete.

As a consequence of Theorem 4.3 we see that

Corollary 4.4. Assume that the assumptions
3.6, 4.1 hold, the solutions of (3.15) is uni-
formly stable and H−1 is a bounded operator
acting on CTQσG−1([0,∞),Rn) with "H−1" =
K1. If L = 1−K1γ∞ > 0 and

N=

∞�

t0

�
lτ+

� τ

t0

K1γs"PσG−1K(τ, s)Q(s)"∆s
�
∆τ

<∞,

then, the solution of the equation (4.1) is uni-
formly stable in the sense that

"x(t)" ≤M3"P (t0)x0", t ≥ t0,

for a certain constant M3.

Next, we consider the robust exponential sta-
bility of (3.15) For any λ > 0, let �G = G(I +
λµQσ); �K(t, h) = eλ(σ(t), s)K(t, h)e�λ(h, s).
We define the operators �H as in (3.6) by using
�G and �K(t, h) instead of G andK(t, h). Then
we have the following theorem about expo-
nential stability of solutions of the equation
(3.15) under small nonlinear perturbations.

Theorem 4.5. If the equation (3.15) is ω-
exponentially stable and there exists an λ ∈
(0, ω) and �λ ∈ R+ such that �H−1 acts
continuously on CTQσG−1([0,∞),Rn) with
" �H−1" = �K1 satisfying �L = 1 − �K1γ∞ > 0.
Suppose further that

lim sup
τ→∞

	
lτ + �K1

� τ

t0

γheλ(τ, h)"PσG−1(τ)

×K(τ, h)Q(h)"∆h


≤ λ�L
2M(1 + λµ∗)

(4.9)

with M defined in (3.22). That is, there is
a positive number ω1 such that the perturbed
equation (4.1) is ω1-exponentially stable.

Proof. Let ε0 be a positive number such that
δ+ ε0 ≤ λ

2(1+λµ∗) . Then, from (4.9), there is a
positive number T0 > 0 such that

lt + �K1
� t

t0

γheλ(t, h)"PσG−1(t)K(t, h)Q(h)"∆h

< δ + ε0 ≤
λ

2(1 + λµ∗)
, (4.10)

for all t ≥ T0. To simplify notations we write
x(t) for the solution x(t, s, x0).

Aσ(t)(Px)
∆(t) =B(t)x(t) +

� t

t0

K(t, s)x(s)∆s

+ F (t, x(t)).

Let y(t) = eλ(t, s)x(t), t ≥ s ≥ t0. Since

y∆(t) = eλ(σ(t), s)x
∆(t) + λeλ(t, s)x(t)
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It is easy to see that y satisfies the equation

Aσ(t)(Py)
∆(t) = Aσ(t)(eλ(t, s)Px)

∆(t)

= Aσ(t)
�
eλ(σ(t), s)(Px)

∆ + λeλ(t, s)Px
�

= eλ(σ(t), s)
�
B(t)x(t) +

� t

t0

K(t, s)x(s)∆s

+ F (t, x(t))
�
+ λeλ(t, s)Aσ(t)Px

=
�
(1 + λµ(t))B(t) + λAσ(t)P (t)

�
y(t)

+

� t

s

eλ(σ(t), s)K(t, h)e�λ(h, s)y(h)∆h

+ eλ(σ(t), s)F
�
t, e�λ(t, s)y(t)

�

= �By(t) +
� t

s

�K(t, h)y(h)∆h+ �F
�
t, y(t)

�
,

for all t ≥ s and (4.11)

�B(t) = (1 + λµ(t))B(t) + λAσ(t)P (t),
�K(t, h) = eλ(σ(t), s)K(t, h)e�λ(h, s),

�F
�
t, y(t)

�
= eλ(σ(t), s)F

�
t, e�λ(t, s)y(t)

�
.

Since

�G = Aσ −
�
(1 + λµ)B + λAσP

�
TQσ

= G− λµBTQσ = G
�
I − λµG−1BTQσ

�

= G(I + λµQσ).

We see that (I + λµQσ)
−1 =

�
Pσ + (1 +

λµ)Qσ
�−1

= Pσ +
1

1 + λµ
Qσ, which im-

plies �G is invertible, and �G−1 =
�
Pσ +

1

1 + λµ
Qσ
�
G−1, it is seen that the equation

(4.11) is index-1. Furthermore,

Pσ �G−1 = PσG−1; (1 + λµ)Qσ �G−1 = QσG−1.

Moreover,

Pσ �G−1 �F (t, y(t)) = eλ(σ(t), s)
×PσG−1F

�
t, e�λ(t, s)y(t)

�
,

Qσ �G−1 �F (t, ·) = eλ(t, s)QσG−1F
�
t, e�λ(t, s)y(t)

�
.

Further, Pσ �G−1 �F (t, ·) and TQσ �G−1 �F (t, ·)
are (1 + λµ(t))lt and γt-Lipschitz, respec-
tively. Consider the corresponding homoge-
neous equation to (4.11)

Aσ(t)(Pz)
∆(t) = �B(t)z(t) +

� t

s

�K(t, h)z(h)∆h.

(4.12)

By definition, the Cauchy operator
�Φ(t, h), t ≥ h ≥ s of (4.12) and Φ(t, h) of
(3.15) have a relation

�Φ(t, h) = eλ(t, h)Φ(t, h), t ≥ h ≥ s.

Therefore, for all t ≥ h ≥ s

"�Φ(t, h)"=eλ(t, h) "Φ(t, h)"≤Me(λ�ω)(t, h)≤M.

This means that (4.12) is uniformly stable.
And the solution of (4.11) is expressed by

y(t)=�Φ(t, s)P (s)y0+
� t

s

�Φ(t, τ)Pσ �G−1(τ)
�
�F (τ, y(τ))

+

� τ

s

�K(τ, h) �H−1TQσ �G−1 �F (·, x(·))(h)∆h
�
∆τ

+ �H−1TQσ �G−1 �F (t, y(t)).

"y(t)" ≤MP (s)y0 + �K1γ∞ sup
t0≤h≤t

"y(h)"

+M

� t

s

�
(1 + λµ(τ ))lτ"y(τ)"

+

� τ

s

"Pσ �G−1(τ) �K(τ, h)Q(h)""

× �K1"γh sup
t0≤h1≤h

"x(h1)"∆h
�
∆τ.

By using Theorem 4.3, with �M = M
�L
we have

"y(t)" ≤ �Me �N(·,s)(t, s) "P (s)x0" , t ≥ s.

where

�N(τ, s) =(1 + λµ(τ))
	
lτ + �K1

� τ

s

γheλ(τ, h)

× "PσG−1(τ)K(τ, h)Q(h)"∆h
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• Consider three cases when t ≥ T0 ≥ s ≥ t0.
From (4.10) we see that

"x(t)" = e�λ(t, s) "y(t)"
≤Me�λ(t, s)e �N (t, s) "P (s)x0"
=Me�λ(t, s)e �N (t, T0)e �N(T0, s) "P (s)x0"
≤Me�λ(t, s)e �N (t, s)e �N(T0, t0) "P (s)x0"
=Me �N�λ(t, s)e �N (T0, t0) "P (s)x0"

where

�N � λ = (1 + λµ(τ ))
�
lτ + �K1

� τ

s

γheλ(τ, h)"

× PσG−1(τ)K(τ, h)Q(h)"∆h
�
� λ

≤ (1 + λµ(τ))(δ + ε0)� λ

=
(δ + ε0)[1 + µ(τ)λ]− λ

1 + µ(τ)λ

≤ −λ/2
1 + µ(τ)λ

≤ −λ/2
1 + µ∗λ

:= −λ1.

Thus, "x(t)" ≤ K1e−λ1(t, s)"P (s)x0", where
K1 =M e �N(·)(T0, t0).

• In case t > s > T ≥ t0, using a similar
argument as above we get

"x(t)" ≤M"x(s)"e−λ1(t, s).
• Consider the remaining case t0 ≤ s ≤ t ≤
T0. With λ1 > 0 defined above and from the
inequality (4.5), we have By virtue of the pos-

itivity of �L and Lemma 4.2 we get
"x(t)" ≤MT0eλ

2
(t, s)e�λ

2
(t, s)"x(s)".

Since �λ
2
= −λ/2
1+µ(τ)λ

2

≤ −λ/2
1+µ∗λ := −λ1. Thus

"x(t)" ≤MT0eλ
2
(T0, t0)e−λ1(t, s)"x(s)".

Combining the above estimates yields

"x(t)" ≤ Ke�ω1(t, s)"x(s)" for all t ≥ s ≥ t0,
where K = max{M,K1,MT0eλ

2
(T0, t0)}. The

proof is complete.
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Birkhäuser, Boston.

Guseinov, G. Sh. (2003). Integration on
time scales, J. Math. Anal. Appl. 285,
107-127.

H. Brunner. (2017). Volterra integral
equations: an introduction to theory and
applications, University Printing House,
Cambridge CB2 8BS, United Kingdom.

Yu, L., Daleckii, Krein, M. G. (1971).
Stability of Solutions of Differential
Equations in Banach Space, Amer.
Math. Soc., Providence, RI.

Du, N. H., Linh, V. H., Nga, N. T. T.
(2016). On stability and Bohl exponent
of linear singular systems of difference
equations with variable coefficients, J.
Differ. Equ. Appl. 22, 1350-1377.

Choi, S. K., and Koo, N. (2010). On a
Gronwall-type inequality on time scales.
Journal of Chungcheong maththematica
society 23, no. 1, 137-148.

R. März. (1998). Extra-ordinary differ-
ential equation: attempts to an analysis
of differential algebraic system, Progress
in Mathematics 168, 313-334.

D.D. Thuan, K.C. Nguyen, N.T. Ha,
N.H. Du, (2019). Robust stability of lin-
ear time-varying implicit dynamic equa-
tions: a general consideration, Math.
Control Signals Systems 31, no. 3, 385-
413.


