

TAP CHÍ KHOA HOC ĐAI HOC TẦN TRÀO

ISSN: 2354 - 1431

http://tckh.daihoctantrao.edu.vn/

$(g-2)_{e,\mu}$ ANOMALIES AND LEPTON FLAVOR VIOLATING DECAYS IN A TWO HIGGS DOUBLET MODEL: INVERTED ORDER SCHEME OF NEUTRINO OSCILLATION DATA

Nguyen Hua Thanh Nha^{1,2}, Le Ngoc Quyen³, Lam Thi Thanh Phuong^{4,5,6}, Nguyen Thi Cam Nhung⁷, Nguyen Thanh Phong⁴, Vu Quang Tho⁸, Trinh Thi Hong^{5,6,*}

¹ Subatomic Physics Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam

² Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam

³ Mang Thit High School, Hamlet 1, Cai Nhum Ward, Mang Thit District, Vinh Long Province, Vietnam

⁴ Can Tho University, 3/2 Street, Can Tho City, Vietnam

⁵ An Giang University, Long Xuyen City, Vietnam

⁶ Vietnam National University, Ho Chi Minh City, Vietnam

⁷ No. 126 Nguyen Thien Thanh Street, Ward 5, Tra Vinh City, Vietnam

⁸ Tan Trao University, Km 6, Trung Mon, Yen Son District, Tuyen Quang Province, Vietnam

*Email address: tthong@agu.edu.vn

http://doi.org/10.51453/2354-1431/2024/1174

TAP CHÍ KHOA HOC ĐAI HOC TÂN TRÀO

ISSN: 2354 - 1431

http://tckh.daihoctantrao.edu.vn/

MOMENT TỪ DỊ THƯỜNG $(g-2)_{e,u}$ VÀ CÁC QUÁ TRÌNH RÃ VI PHAM SỐ LEPTON THẾ HỀ TRONG MÔ HÌNH HAI LƯỚNG TUYẾN HIGGS: TRƯỜNG HƠP NEUTRINO PHÂN BẤC NGHICH

Nguyễn Hứa Thanh Nhã^{1,2}, Lê Ngọc Quyên³, Lâm Thị Thanh Phương^{4,5}, Nguyễn Thị Cẩm Nhung⁶, Nguyễn Thanh Phong⁴, Vũ Quang Thọ⁷, Trịnh Thị Hồng^{5,*}

¹ Nhóm nghiên cứu Vật lý hạt hạ nguyên tử, Viện Tiên tiến Khoa học và Công nghệ, Trường Đại học Văn Lang, Việt Nam

² Khoa Công nghệ ứng dụng, Trường Đại học Văn Lang, Việt Nam

³ Trường THPT Mang Thít, Khóm 1, Thị Trấn Cái Nhum, Huyên Mang Thít, Tỉnh Vĩnh Long,

Việt Nam

⁴ Trường Đại học Cần Thơ, Việt Nam

⁵ Trường Đại học An Giang, ĐHQG-HCM, Việt Nam

⁶ Trường Đại học Trà Vinh, Việt Nam

7 Trường Đại học Tân Trào, Việt Nam

*Email address: tthong@agu.edu.vn

http://doi.org/10.51453/2354-1431/2024/1174

1 INTRODUCTION

The Standard Model (SM) of particle physics is to this day an accurate description of the elementary particles and their interactions. Nevertheless, there are still problems that the SM cannot explain, such as the lepton flavor violating (LFV) decays, the origin of the neutrino mass and the lepton flavour violation in the neutrino sector, charged lepton anomalies $(g-2)_{e,\mu}$. Besides, neutrino oscillation experiments have shown it has mass and mixing flavours. Therefore, expanding the SM with the Beyond the SM (BSM) theories is indispensable work. A recent work (T. T. Hong et al, 2024) studied all LFV decay satisfying two experimental data of $(g-2)$ anomalies, namely

*Nguyen Hua Thanh Nha/*Vol 10. No 4_August 2024| p.17-25

• The latest data of $a_{\mu} \equiv (g - 2)_{\mu}/2$ was given where $a_{\epsilon}^{\text{exp}}$ corresponds to in (Aguillard, D. P. *et al.* [Muon g-2], 2023), mental data given in (Fan *Nguyen Hua Thanh Nha/Vol* 10. No 4_August 2024| p.17-25

The latest data of $a_{\mu} \equiv (g-2)_{\mu}/2$ was given where a_{e}^{\exp} corresponds t

in (Aguillard, D. P. *et al.* [Muon g-2], 2023), mental data given in (Fa

which s Nguyen Hua Thanh Nha/Vol 10. No 4_August 2024| p.17-25

The latest data of $a_{\mu} \equiv (g-2)_{\mu}/2$ was given

in (Aguillard, D. P. *et al.* [Muon g-2], 2023),

which shows a clear discrepancy from the SM

prediction of a_{μ} *Nguyen Hua Thanh Nha/Nol* 10. No 4¹
The latest data of $a_{\mu} \equiv (g-2)_{\mu}/2$ was given
in (Aguillard, D. P. *et al.* [Muon g-2], 2023), men
which shows a clear discrepancy from the SM
prediction of $a_{\mu}^{\text{SM}} = 11659181$ *Nguyen Hua Thanh Nha/*Vol 10. No 4_August 202
 of $a_{\mu} \equiv (g-2)_{\mu}/2$ was given where a_e^{\exp} co:

D. P. *et al.* [Muon g-2], 2023), mental data g

clear discrepancy from the SM Sukra, B. A. I

s^M = 116591810(43) × *Nguyen Hua Thanh Nha/*Vol 10. No 4_August 2024| p.17-25

The latest data of $a_{\mu} \equiv (g - 2)_{\mu}/2$ was given

in (Aguillard, D. P. *et al.* [Muon g-2], 2023),

which shows a clear discrepancy from the SM

prediction of $a_{$ Nguyen Hua Thanh Nha/Vol 10. No 4_August 2024| p.17-25

The latest data of $a_{\mu} \equiv (g-2)_{\mu}/2$ was given

in (Aguillard, D. P. *et al.* [Muon g-2], 2023), mental data given in (Fan,

which shows a clear discrepancy from t *Nguyen Hua Thanh Nha/Vc*
The latest data of $a_{\mu} \equiv (g-2)_{\mu}/2$ was given
in (Aguillard, D. P. *et al.* [Muon g-2], 2023),
which shows a clear discrepancy from the SM
prediction of $a_{\mu}^{\text{SM}} = 116591810(43) \times 10^{-11}$
(Nguyen Hua Thanh Nha/Vol 10. No 4_Augu
 u of $a_{\mu} \equiv (g - 2)_{\mu}/2$ was given

D. P. *et al.* [Muon g-2], 2023), mental c

clear discrepancy from the SM
 $\mu^{\text{SM}} = 116591810(43) \times 10^{-11}$
 t al., 2020). The deviation • The latest data of $a_{\mu} \equiv (g-2)_{\mu}/2$ was given

in (Aguillard, D. P. *et al.* [Muon g-2], 2023), mental data given in (Fa

which shows a clear discrepancy from the SM

(Aoyama, T. *et al.*, 2020). The deviation be-

t in (Aguillard, D. P. *et al.* [Muon g-2], 2023),

which shows a clear discrepancy from the SM

prediction of $a_{\mu}^{\text{SM}} = 116591810(43) \times 10^{-11}$

(Aoyama, T. *et al.*, 2020). The deviation be-

tween experiment and SM p

$$
\Delta a_{\mu}^{\rm NP} \equiv a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = (2.49 \pm 0.48) \times 10^{-9} (5.1\sigma).
$$
perim (1) *Berna*

$$
\Delta a_e^{\text{NP}} \equiv a_e^{\text{exp}} - a_e^{\text{SM}} = (3.4 \pm 1.6) \times 10^{-13},\tag{2}
$$

where a_e^{exp} corresponds to the rece 2024| p.17-25
corresponds to the recent experi-
a given in (Fan, X., Myers, T. G.,
c. D., Gabrielse, G., 2023). 4_August 2024| p.17-25
where a_e^{exp} corresponds to the recent experi-
mental data given in (Fan, X., Myers, T. G.,
Sukra, B. A. D., Gabrielse, G., 2023).
The decay rates such as charged LFV

(1) Bernard $et\ al.$ [BaBar], 2010, Baldini, A. M. = 116591810(43) × 10⁻¹¹

., 2020). The deviation be-

and SM prediction used (cLFV), LFV

z-boson (LF

z-boson (LF Sukra, B. A. D., Gabrielse, G. , 2023).

Sukra, B. A. D., Gabrielse, G. , 2023).

• The decay rates such as charged LFV (cLFV), LFV Higgs (LFVh) decays, and LFV Z-boson (LFVZ) decays are constrained ex-4_August 2024| p.17-25
where a_e^{\exp} corresponds to the recent experimental data given in (Fan, X., Myers, T. G.,
Sukra, B. A. D., Gabrielse, G., 2023).
The decay rates such as charged LFV
(cLFV), LFV Higgs (LFVh) decays 4_August 2024| p.17-25
where a_e^{\exp} corresponds to the recent experimental data given in (Fan, X., Myers, T. G.,
Sukra, B. A. D., Gabrielse, G., 2023).
The decay rates such as charged LFV
(cLFV), LFV Higgs (LFVh) decays 4_August 2024| p.17-25
where a_e^{exp} corresponds to the recent experimental data given in (Fan, X., Myers, T. G.,
Sukra, B. A. D., Gabrielse, G., 2023).
The decay rates such as charged LFV
(cLFV), LFV Higgs (LFVh) deca 4_August 2024| p.17-25
where a_e^{\exp} corresponds to the recent experi-
mental data given in (Fan, X., Myers, T. G.,
Sukra, B. A. D., Gabrielse, G., 2023).
The decay rates such as charged LFV
(cLFV), LFV Higgs (LFVh) deca where a_e^{exp} corresponds to the recent experimental data given in (Fan, X., Myers, T. G., Sukra, B. A. D., Gabrielse, G., 2023).
The decay rates such as charged LFV (cLFV), LFV Higgs (LFVh) decays, and LFV Z-boson (LF where u_e corresponds to the recent experimental data given in (Fan, X., Myers, T. G., Sukra, B. A. D., Gabrielse, G., 2023).
The decay rates such as charged LFV (cLFV), LFV Higgs (LFVh) decays, and LFV Z-boson (LFVZ) de

	mental and SM for $(g-2)_e$ data is:	• Similarly, the discrepancy between experi-	et al. [MEG], 2016, Abdesselam, A. et al. [Belle], 2021).
		$\Delta a_e^{\text{NP}} \equiv a_e^{\text{exp}} - a_e^{\text{SM}} = (3.4 \pm 1.6) \times 10^{-13},$ (2)	
	Branching ratio (Br)	Most recent	Future sensitivity
	$Br(\tau \to \mu \gamma)$	$< 4.4 \times 10^{-8}$ (Aubert, Bernard <i>et</i>) al. [BaBar], 2010; Baldini, A. M. et al. [MEG], 2016; Abdesselam, A. et al. [Belle], 2021)	$< 6.9 \times 10^{-9}$ (Baldini, A. M. et al. [MEG II], 2018; Altmannshofer, W. $et \ al.$ [Belle-II], 2020)
cLFV	$\text{Br}(\tau\to e\gamma)$	$< 3.3 \times 10^{-8}$ (Aubert, Bernard <i>et</i> al. [BaBar], 2010; Baldini, A. M. et $al.$ [MEG], 2016; Abdesselam, A. et al. [Belle], 2021)	$< 9.0 \times 10^{-9}$ (Baldini, A. M. <i>et al.</i> [MEG II], 2018; Altmannshofer, W. $et \ al.$ [Belle-II], 2020)
	$\text{Br}(\mu\to e\gamma)$	$< 4.2 \times 10^{-13}$ (Aubert, Bernard <i>et</i> al. [BaBar], 2010; Baldini, A. M. et $al.$ [MEG], 2016; Abdesselam, A. et <i>al.</i> [Belle], 2021)	$< 6 \times 10^{-14}$ (Baldini, A. M. <i>et al.</i> [MEG II], 2018; Altmannshofer, W. $et \ al.$ [Belle-II], 2020)
	$Br(h \to \tau \mu)$	$< 1.5 \times 10^{-3}$ (Sirunyan, A. M. <i>et al.</i>) [CMS], 2021)	orders of $\mathcal{O}(10^{-4})$ (Qin, Q. <i>et al.</i>) 2018; Barman, R. K., Dev, P. S. B., Thapa, A., 2023; Aoki, M., Kanemura, S., Takeuchi, M., Za- makhsyari, L., 2023)
LFV _h	$Br(h \to \tau e)$	[CMS], 2021]	orders of $\mathcal{O}(10^{-4})$ (Qin, Q. et al. 2018)
	$\text{Br}(h\to \mu e)$	\vert < 2.2 × 10 ⁻³ (Sirunyan, A. M. <i>et al.</i> $< 6.1 \times 10^{-5}$ (Aad, G. <i>et al.</i> [AT- [LAS], 2020) 2018)	orders of $\mathcal{O}(10^{-5})$ (Qin, Q. et al.
	$Br(Z \to \tau^{\pm} \mu^{\mp})$	$< 6.5 \times 10^{-6}$ (Aad, G. <i>et al.</i> [AT- LAS], 2022)	10^{-6} at HL-LHC (Dam, M., 2019) and 10^{-9} at FCC-ee (Dam, M., 2019; Abada, A. et al. [FCC], 2019)
LFVZ		$\begin{array}{ l l } \hline \text{Br}(Z\to \tau^\pm e^\mp) &< 5.0\times 10^{-6}(\text{Aad, G. }et~al.~[\text{AT-}\\\text{LAS}],~2022)\\ &\text{Br}(Z\to \mu^\pm e^\mp) &~~2.62\times 10^{-7}(\text{Aad, G. }et~al.~[\text{ATLAS}],\\ &~2023)\hline \end{array}$	10^{-6} at HL-LHC (Dam, M., 2019) and 10^{-9} at FCC-ee (Dam, M., 2019; Abada, A. et al. [FCC], 2019)
		2023)	7×10^{-8} at HL-LHC (Aad, G. et al. [ATLAS], 2022) and 10^{-10} at FCC- ee (Dam, M., 2019); Abada, A. et al. [FCC], 2019)

Nguyen Hua Thanh N Vol 10. No 4_August 2024| p.17-25
Our work is arranged as follows. In section 2, LFVZ, and cLFV decays. All need
we will investigate the three LFV decay classes, decay rates $Br(h \rightarrow e_b e_a)$, $Br(Z$
namely Nguyen Hua Thanh N Vol 10. No 4_August 2024| p.17-2.

Our work is arranged as follows. In section 2, LFVZ, and cLFV decays. All

we will investigate the three LFV decay classes, decay rates Br($h \to e_b e_a$),

namely $e_b \to e_a \$ namely $e_b \to e_a \gamma$, $Z \to e_b^{\pm} e_a^{\mp}$, and $h \to e_b^{\pm} e_a^{\mp}$ in $\text{Br}(e_b \to e_a)$ Nguyen Hua Thanh N Vol 10. No 4_August 2024| p.17-25
Our work is arranged as follows. In section 2, LFVZ, and cLFV decays. All nee
we will investigate the three LFV decay classes, decay rates Br($h \to e_b e_a$), Br(i
namely *Nguyen Hua Thanh N* Vol 10. No 4_August 2024| p.17-25
Our work is arranged as follows. In section 2, LFVZ, and cLFV decays. All new
we will investigate the three LFV decay classes, decay rates Br($h \rightarrow e_b e_a$), Br(\ldots
nam *Nguyen Hua Thanh N* Vol 10. No 4_August 2024| p.17-25
Our work is arranged as follows. In section 2, LFVZ, and cLFV decays. All ne
we will investigate the three LFV decay classes, decay rates Br($h \to e_b e_a$), Br($e_b \to e_a \gamma$ Nguyen Hua Thanh N Vol 10. No 4_August 2024| p.17-25
Our work is arranged as follows. In section 2, LFVZ, and cLFV decays. All need
we will investigate the three LFV decay classes, decay rates Br($h \rightarrow e_6e_a$), Br(Z
namel Nguyen Hua Thanh N Vol 10. No 4_August 2024| p.17-25
Our work is arranged as follows. In section 2, LFVZ, and cLFV decays. All 1
we will investigate the three LFV decay classes, decay rates Br($h \rightarrow e_6e_a$), B
namely $e_b \rightarrow e$ Our work is arranged as follows. In section 2, LFVZ, and cLFV decays. All nee
we will investigate the three LFV decay classes, decay rates Br($h \rightarrow e_b e_a$), Br(z_a namely $e_b \rightarrow e_a \gamma$, $Z \rightarrow e_b^+ e_a^+$, and $h \rightarrow e_b^+ e_a^+$ in Br(e Our work is arranged as follows. In section 2, LFVZ, and cLFV decays. All ne
we will investigate the three LFV decay classes, decay rates $Br(h \rightarrow e_b e_a)$, $Br(\text{namely } e_b \rightarrow e_a \gamma, Z \rightarrow e_b^+ e_a^+$, and $h \rightarrow e_b^+ e_a^+$ in $Br(e_b \rightarrow e_a \gamma)$ were we will investigate the three LFV decay clumely $e_b \rightarrow e_a \gamma$, $Z \rightarrow e_b^{\pm} e_a^{\mp}$, and $h \rightarrow e_b^{\pm}$
the 2HDM $N_{L,R}$ framework, concentrating c
regions of the parameter space accommodatin
 1σ range of the $(g-2)_{e,\mu}$ experime the 2HDMN_{LR} framework, concentrating on the al , 2024), therefore we do not repeat here
regions of the parameter space accommodating the focus on the main ingredients to establis
1*σ* range of the $(g - 2)_{e,\mu}$ experimen where we focus on the dependence of LFV decay

mulated as follows (La

rates on the heaviest active neutrino masses. Fi-

mulated as follows (La

rates on the heaviest active neutrino masses. Fi-

lin, A., Hoferichter 1

NEUTRINOS

rates on the heaviest active neutrino masses. Find, L. D., Thuc, T. T., Dat, N. T.

nally, we summarize important results in the sec-

tion conclusion.

2018):

2 THE 2HDM WITH INVERSE SEESAW $Br(e_b \rightarrow e_a \gamma) = \frac{48 \pi^2}{G_F^2 m_b^$ mally, we summarize important results in the sec-

ellin, A., Hoferichter M., Schmidt-

2018):

2 THE 2HDM WITH INVERSE SEESAW $Br(e_b \rightarrow e_a \gamma) = \frac{48\pi^2}{G_F^2 m_b^2} \left(|c_{(ab)R}|^2 \right)$

NEUTRINOS

2.1 Particle content and coupling tion conclusion. 2018):

2 THE 2HDM WITH INVERSE SEESAW Br($e_b \rightarrow e_c$

NEUTRINOS

2.1 Particle content and couplings where $G_F =$

In this work, we will study the model discussed in Br($\tau \rightarrow e \overline{\nu_e} \nu_{\tau}$

(T. T. Hong *et* **2.1 Particle content and couplings** $\text{Br}(e_b \to e_a \gamma) = \frac{48\pi^2}{G_F^2 m_b^2} \left(|c_{(ab)R}| \times \text{Br}(e_b \to e_a \overline{\nu_a}) \right)$
 2.1 Particle content and couplings $\text{where } G_F = g^2/(4\sqrt{2}m_W^2)$, $\text{Br}(\mu)$

In this work, we will study the mode **2 THE 2HDM WITH INVERSE SEESAW** $Br(e_b \to e_a \gamma) = \frac{48\pi^2}{G_F^2 m_b^2} \left(|c_{(ab)F} \rangle \right)$
 2.1 Particle content and couplings $\times Br(e_b \to e_a I)$

In this work, we will study the model discussed in $Br(\tau \to e\overline{\nu_e}\nu_{\tau}) \simeq 0.1782$, Br **NEUTRINOS**
 C²_{*C*⁰} \cdot ² (1°(*ao*)*K*)
 2.1 Particle content and couplings
 E C_{*F*} = $g^2/(4\sqrt{2}m_W^2)$, Br($\mu \to e_a\overline{\nu_a}\nu$

In this work, we will study the model discussed in $Br(\tau \to e\overline{\nu_e}\nu_{\tau}) \simeq 0.$ **2.1 Particle content and couplings**

where $G_F = g^2/(4\sqrt{2}m_W^2)$, Bi

In this work, we will study the model discussed in $Br(\tau \to e\overline{\nu_e}\nu_{\tau}) \simeq 0.1782$, $Br(\tau$

(T. T. Hong *et al*, 2024) discussed recently to (Workman, R **2.1 Particle content and couplings**
In this work, we will study the model discussed in
(T. T. Hong *et al*, 2024) discussed recently to
explain experimental data of $(g - 2)_{e,\mu}$ anomalies,
where all LFV processes mention where $G_F = g^2/(4\sqrt{2m_W})$, B

where $G_F = g^2/(4\sqrt{2m_W})$, B

(T. T. Hong *et al*, 2024) discussed recently to (Workman, R. L. *et al.* [Par

explain experimental data of $(g-2)_{e,\mu}$ anomalies, 2022), and all relevant analytic
 In this work, we will study the model discussed in $Br(\tau \to e\nu_e\nu_\tau) \simeq 0.1782$, $Br(\tau$

(T. T. Hong *et al*, 2024) discussed recently to (Workman, R. L. *et al.* [Parexplain experimental data of $(g - 2)_{e,\mu}$ anomalies, 202 explain experimental data of $(g - z)_{e,\mu}$ anomalies,
where all LFV processes mentioned above will be
discussed, namely the particle content is of the lep-
tons and Higgs sector is listed in Table 2, which is a
particular m

s omitted, see reviews in (Mon-
 $c_{(ba)R}$ with $b \neq a$ m:

2022; Branco, G. C. *et al*, 2012). the cLFV rates, espi-

ngian of leptons is (Mondal, T., to a_{e_a} is from the two
 c_k^+ , denoted as $a_{e_a,0}$
 $a_{e_a,0}$

$$
-\mathcal{L}_Y^{\ell} = \overline{L_L} y_{\ell} H_1 e_R + \overline{L_L} f \tilde{H}_2 N_R + \overline{N_L} y^{\chi} e_R \chi^+ + \overline{N_L} y_N N_R \varphi + \overline{(N_L)^C} \frac{\lambda_L}{\Lambda} N_L \varphi^2 + \text{h.c.}, \qquad a_{e_a,0}(c^{\pm}) = \frac{G_F m_a^2}{\sqrt{2\pi^2}} \times \text{Re}\left\{ \begin{array}{c} (3) \end{array} \right.
$$

where $\tilde{H}_2 = i\sigma_2 H_2^*$, y_ℓ , f , Y_N , y^χ , and λ_L dal, T., Okada, H., 2022; Branco, G. C. *et al*, 2012). the cLFV rates, especially the m.

The Yukawa Lagrangian of leptons is (Mondal, T., to a_{e_a} is from the two singly charged only correspond to $\frac{1}{k_p^+}$, denote Okada, H., 2022)
 $-\mathcal{L}_{Y}^{\ell} = \overline{L_{L}y_{\ell}}H_{1}e_{R} + \overline{L_{L}}f\tilde{H}_{2}N_{R} + \overline{N_{L}}y^{\chi}e_{R}\chi^{+}$
 $+\overline{N_{L}}y_{N}N_{R}\varphi + \overline{(N_{L})^{C}}\frac{\lambda_{L}}{\Lambda}N_{L}\varphi^{2} + \text{h.c.},$ $a_{e_{a},0}(c^{\pm}) = \frac{G_{F}m_{a}^{2}}{\sqrt{2\pi}^{2}} \times \text{Re}\left\{\left[\frac{vt}{\sqrt{2\pi$ analytic fo
 $-\mathcal{L}_Y^{\ell} = \overline{L_L} y_{\ell} H_1 e_R + \overline{L_L} f \tilde{H}_2 N_R + \overline{N_L} y^{\chi} e_R \chi^+$
 $+\overline{N_L} y_N N_R \varphi + \overline{(N_L)^C} \frac{\lambda_L}{\Lambda} N_L \varphi^2 + \text{h.c.},$ $a_{e_a,0}(c^{\pm}) =$

(3)

where $\tilde{H}_2 = i\sigma_2 H_2^*$, y_{ℓ} , f , Y_N , y^{χ} , and λ_L $-\mathcal{L}_Y = L_L y_\ell n_1 e_R + L_L f n_2 N_R + N_L y^\circ e_R \chi$
 $+ \overline{N_L} y_N N_R \varphi + (\overline{N_L})^C \frac{\lambda_L}{\Lambda} N_L \varphi^2 + \text{h.c.},$ $a_{e_a,0}(c^{\pm}) = \frac{G_F m_a^2}{\sqrt{2\pi^2}} \times \text{Re} \left\{ \left[\frac{vt}{\Lambda} \right] \times [x_1 + \overline{N_L} y_N N_R \varphi + \overline{N_L} y_N \right\}$, χ (3)

where $\tilde{H}_2 = i\sigma_2 H_$

Hua Thanh N Vol 10. No 4_August 2024| p.1
lows. In section 2, LFVZ, and cLFV decays
LFV decay classes, decay rates Br($h \rightarrow e_b t$), and $h \rightarrow e_b^{\pm} e_a^{\mp}$ in Br($e_b \rightarrow e_a \gamma$) were deter
oncentrating on the al, 2024), therefore $\frac{1}{b}e_a^{\mp}$ in $\text{Br}(e_b \to e_a \gamma)$ were determi 0. No 4_August 2024| p.17-25
LFVZ, and cLFV decays. All needed formulas for
decay rates $Br(h \rightarrow e_b e_a)$, $Br(Z \rightarrow e_b e_a)$, and
 $Br(e_b \rightarrow e_a \gamma)$ were determined in (T. T. Hong *et* 0. No 4_August 2024| p.17-25
LFVZ, and cLFV decays. All needed formulas for
decay rates Br($h \to e_b e_a$), Br($Z \to e_b e_a$), and
Br($e_b \to e_a \gamma$) were determined in (T. T. Hong *et*
al, 2024), therefore we do not repeat here. We 0. No 4_August 2024| p.17-25
LFVZ, and cLFV decays. All needed formulas for
decay rates Br($h \rightarrow e_b e_a$), Br($Z \rightarrow e_b e_a$), and
Br($e_b \rightarrow e_a \gamma$) were determined in (T. T. Hong *et*
al, 2024), therefore we do not repeat here. We 0. No 4_August 2024| p.17-25
LFVZ, and cLFV decays. All needed formulas for
decay rates $Br(h \rightarrow e_b e_a)$, $Br(Z \rightarrow e_b e_a)$, and
 $Br(e_b \rightarrow e_a \gamma)$ were determined in (T. T. Hong *et*
al, 2024), therefore we do not repeat here. We just
 0. No 4_August 2024| p.17-25
LFVZ, and cLFV decays. All needed formulas for
decay rates $Br(h \rightarrow e_b e_a)$, $Br(Z \rightarrow e_b e_a)$, and
 $Br(e_b \rightarrow e_a \gamma)$ were determined in (T. T. Hong *et*
al, 2024), therefore we do not repeat here. We just
 0. No 4_August 2024| p.17-25
LFVZ, and cLFV decays. All needed formulas for
decay rates Br($h \rightarrow e_b e_a$), Br($Z \rightarrow e_b e_a$), and
Br($e_b \rightarrow e_a \gamma$) were determined in (T. T. Hong *et*
al, 2024), therefore we do not repeat here. We 0. No 4_August 2024| p.17-25
LFVZ, and cLFV decays. All needed formulas for
decay rates $Br(h \rightarrow e_b e_a)$, $Br(Z \rightarrow e_b e_a)$, and
 $Br(e_b \rightarrow e_a \gamma)$ were determined in (T. T. Hong *et*
al, 2024), therefore we do not repeat here. We just
 0. No 4_August 2024| p.17-25
LFVZ, and cLFV decays. All needed formulas for
decay rates $Br(h \rightarrow e_b e_a)$, $Br(Z \rightarrow e_b e_a)$, and
 $Br(e_b \rightarrow e_a \gamma)$ were determined in (T. T. Hong *et*
al, 2024), therefore we do not repeat here. We just
 LFVZ, and cLFV decays. All needed formulas for
decay rates $Br(h \rightarrow e_b e_a)$, $Br(Z \rightarrow e_b e_a)$, and
 $Br(e_b \rightarrow e_a \gamma)$ were determined in (T. T. Hong *et*
al, 2024), therefore we do not repeat here. We just
focus on the main ingredients LFVZ, and cLFV decays. All needed formulas for
decay rates $Br(h \rightarrow e_b e_a)$, $Br(Z \rightarrow e_b e_a)$, and
 $Br(e_b \rightarrow e_a \gamma)$ were determined in (T. T. Hong *et*
al, 2024), therefore we do not repeat here. We just
focus on the main ingredients

2018): cus on the main ingredients to establish the IO

neme for numerical investigation.

e branching ratios of the cLFV decays are for-

ulated as follows (Lavoura, L., 2003; Hue, L. T.,

nh, L. D., Thuc, T. T., Dat, N. T. T., mulated as follows (Lavoura, L., 2003; Hue, L. T.,

Ninh, L. D., Thuc, T. T., Dat, N. T. T., 2018; Criv-

ellin, A., Hoferichter M., Schmidt-Wellenburg, P.,

2018):
 $Br(e_b \rightarrow e_a \gamma) = \frac{48\pi^2}{G_F^2 m_b^2} \left(|c_{(ab)R}|^2 + |c_{(ba)R}|^2$

$$
Br(e_b \to e_a \gamma) = \frac{48\pi^2}{G_F^2 m_b^2} \left(\left| c_{(ab)R} \right|^2 + \left| c_{(ba)R} \right|^2 \right) \times Br(e_b \to e_a \overline{\nu_a} \nu_b), \tag{4}
$$

(1. 1. hong *et al.* 2024) discussed recently to (workinal, R. E. *et al.* [1 article explain experimental data of $(g - 2)_{e,\mu}$ anomalies, 2022), and all relevant analytic for where all LFV processes mentioned above will d in (Hue, data that is necessary for nur

in this work. The non-zero v
 $\begin{aligned} &\text{in (Mon-1)}\quad &\text{in this work. The non-zero v} \\ &\text{in (Mon-2)}\quad &\text{in (Mon-1)}\quad &\text{in (LFV rates, especially the} \\ &\text{in (LFV rates, especially the} \\ &\text{in (C) total, T.},\quad &\text{in (C) circle} \\ &\text{in (C) circle} \\ &\text{in (C) circle} \\ &\text{in (C) circle} \\ &\text$ where $G_F = g^2/(4\sqrt{2}m_W^2)$, $Br(\mu \to e \overline{\nu_e} \nu_\mu) \simeq 1$, (Workman, R. L. et al. [Particle Data Group],

2018):
 $Br(e_b \rightarrow e_a \gamma) = \frac{48\pi^2}{G_F^2 m_b^2} \left(|c_{(ab)R}|^2 + |c_{(ba)R}|^2 \right)$
 $\times Br(e_b \rightarrow e_a \overline{\nu_a} \nu_b),$ (4)

where $G_F = g^2/(4\sqrt{2}m_W^2)$, $Br(\mu \rightarrow e \overline{\nu_e} \nu_\mu) \simeq 1$,
 $Br(\tau \rightarrow e \overline{\nu_e} \nu_\tau) \$ 2018):
 $Br(e_b \rightarrow e_a \gamma) = \frac{48\pi^2}{G_F^2 m_b^2} \left(|c_{(ab)R}|^2 + |c_{(ba)R}|^2 \right)$
 $\times Br(e_b \rightarrow e_a \overline{\nu_a} \nu_b),$ (4)

where $G_F = g^2/(4\sqrt{2}m_W^2)$, $Br(\mu \rightarrow e \overline{\nu_e} \nu_\mu) \simeq 1$,
 $Br(\tau \rightarrow e \overline{\nu_e} \nu_\tau) \simeq 0.1782$, $Br(\tau \rightarrow \mu \overline{\nu_\mu} \nu_\tau) \simeq 0.1739$
 Br($e_b \rightarrow e_a \gamma$) = $\frac{48\pi^2}{G_F^2 m_b^2} \left(|c_{(ab)R}|^2 + |c_{(ba)R}|^2 \right)$
 $\times \text{Br}(e_b \rightarrow e_a \overline{\nu_a} \nu_b),$ (4)
 where $G_F = g^2/(4\sqrt{2}m_W^2)$, $\text{Br}(\mu \rightarrow e \overline{\nu_e} \nu_\mu) \simeq 1$,
 $\text{Br}(\tau \rightarrow e \overline{\nu_e} \nu_\tau) \simeq 0.1782$, $\text{Br}(\tau \rightarrow \mu \overline{\nu_\mu} \nu_\tau$ $G_F^2 m_b^2$ $(e_{ab})R_1 + e_{ba}R_2$ $($ $e_{ab}R_1)$
 $\times \text{Br}(e_b \rightarrow e_a \overline{\nu_a} \nu_b),$ (4)

where $G_F = g^2/(4\sqrt{2}m_W^2)$, $\text{Br}(\mu \rightarrow e \overline{\nu_e} \nu_\mu) \simeq 1$,
 $\text{Br}(\tau \rightarrow e \overline{\nu_e} \nu_\tau) \simeq 0.1782$, $\text{Br}(\tau \rightarrow \mu \overline{\nu_\mu} \nu_\tau) \simeq 0.1739$

(Workma \times Br($e_b \rightarrow e_a \overline{\nu_a} \nu_b$), (4)

where $G_F = g^2/(4\sqrt{2}m_W^2)$, Br($\mu \rightarrow e \overline{\nu_e} \nu_\mu$) $\simeq 1$,

Br($\tau \rightarrow e \overline{\nu_e} \nu_\tau$) $\simeq 0.1782$, Br($\tau \rightarrow \mu \overline{\nu_\mu} \nu_\tau$) $\simeq 0.1739$

(Workman, R. L. *et al.* [Particle Data Group],

2 where $G_F = g^2/(4\sqrt{2}m_W^2)$, $Br(\mu \to e\overline{\nu_e}\nu_\mu) \simeq 1$,
 $Br(\tau \to e\overline{\nu_e}\nu_\tau) \simeq 0.1782$, $Br(\tau \to \mu\overline{\nu_\mu}\nu_\tau) \simeq 0.1739$

(Workman, R. L. *et al.* [Particle Data Group],

2022), and all relevant analytic formulas were giv where $G_F = g^2/(4\sqrt{2}m_W^2)$, $Br(\mu \to e\overline{\nu_e}\nu_\mu) \simeq 1$,
 $Br(\tau \to e\overline{\nu_e}\nu_\tau) \simeq 0.1782$, $Br(\tau \to \mu\overline{\nu_\mu}\nu_\tau) \simeq 0.1739$

(Workman, R. L. *et al.* [Particle Data Group],

2022), and all relevant analytic formulas were giv $Br(\tau \to e\overline{\nu_e}\nu_{\tau}) \simeq 0.1782$, $Br(\tau \to \mu\overline{\nu_{\mu}}\nu_{\tau}) \simeq 0.1739$
(Workman, R. L. *et al.* [Particle Data Group],
2022), and all relevant analytic formulas were given
in detail in previous research (T. T. Hong *et al*, to a_{e_a} is from the two singly charged Higgs boson nan, R. L. *et al.* [Particle Data Group],
and all relevant analytic formulas were given
iil in previous research (T. T. Hong *et al*,
We only comment here on important relat-
the IO scheme of the neutrino oscillation
nat c_k^{\pm} , denoted as $a_{e_a,0}(c^{\pm})$ expressed by 22), and all relevant analytic formulas were given
detail in previous research (T. T. Hong *et al*,
24). We only comment here on important relat-
t to the IO scheme of the neutrino oscillation
that that is necessary for n in detail in previous research (T. T. Hong *et a*
2024). We only comment here on important relat
ing to the IO scheme of the neutrino oscillation
data that is necessary for numerical investigation
in this work. The non-ze

$$
a_{e_a,0}(c^{\pm}) = \frac{G_F m_a^2}{\sqrt{2}\pi^2} \times \text{Re}\left\{ \left[\frac{vt_{\beta}^{-1} c_{\alpha} s_{\alpha}}{\sqrt{2}m_a} U_{\text{PMNS}} \hat{x}_{\nu}^{1/2} y^{\chi} \right]_{aa} \times [x_1 f_{\Phi}(x_1) - x_2 f_{\Phi}(x_2)] \right\}
$$
\n
$$
(5)
$$
\nwith $x_k = M_0^2 / m_{c_k}^2$ and\n
$$
\hat{x}_{\nu} \equiv \frac{\hat{m}_{\nu}}{\mu_0} = x_0 \times \text{diag}\left(\frac{m_{n_1}}{m_{n_2}}, 1, \frac{m_{n_3}}{m_{n_2}}\right), x_0 \equiv \frac{m_{n_2}}{\mu_0}.
$$
\n(6)

with $x_k = M_0^2/m_{c_k}^2$ and

$$
\hat{x}_{\nu} \equiv \frac{\hat{m}_{\nu}}{\mu_0} = x_0 \times \text{diag}\left(\frac{m_{n_1}}{m_{n_2}}, 1, \frac{m_{n_3}}{m_{n_2}}\right), \ x_0 \equiv \frac{m_{n_2}}{\mu_0}.
$$
\n(6)

Symmetry	L_L	e_R	N_L	N_R	H_1	H_2	φ	χ^-		
$SU(3)_C$	1	1	1	1	1	1	1	1		
$SU(2)_L$	$\bf{2}$	1	1.	1	$\bf{2}$	2	1	1		
$U(1)_Y$	$-\frac{1}{2}$	-1	Ω	Ω	$\frac{1}{2}$	$rac{1}{2}$	Ω	-1		
\mathbb{Z}_2			$^+$	$^+$		$^+$	$^+$			

Nguyen Hua Thanh Nha/Vol 10. No 4_August 2024| p.17
This formula with $b \neq a$ will result in unaccept-
able values of cLFV decay rates excluded by recent
experimental constraints. According to this discus-
 $s_{12}^2 = 0.318$ *Nguyen Hua Thanh Nha/Vol 10.* No 4_August 2024| p.17-25
This formula with $b \neq a$ will result in unaccept-
able values of cLFV decay rates excluded by recent
experimental constraints. According to this discus-
sion, $c_{($ Nguyen Hua Thanh Nha/Vol 10. No 4_August 2024| p.17-2:

This formula with $b \neq a$ will result in unaccept-

experimental constraints. According to this discus-

experimental constraints. According to this discus-

sion, *Nguyen Hua Thanh Nha/Vol* 10. No 4_August 2024| p.17-25
This formula with $b \neq a$ will result in unaccept-
able values of cLFV decay rates excluded by recent
experimental constraints. According to this discus-
sion, $c_{($ *Nguyen Hua Thanh Nha/Nol* 10. No 4_August 2024| p.17-25

This formula with $b \neq a$ will result in unaccept-

able values of cLFV decay rates excluded by recent

experimental constraints. According to this discus-

sion, *Nguyen Hua Thanh Nha/Vol 10.* No 4_Augu

This formula with $b \neq a$ will result in unaccept-

able values of cLFV decay rates excluded by recent

experimental constraints. According to this discus-

sion, $c_{(ab)R,0}$ will In particularly, y^{χ} is derived in terms of a diagonal

In particularly, y^{χ} is derived in terms of a diagonal

In particularly, y^{χ} is derived in terms of a diagonal

In the strengthend as follows:

In the st tal constraints. According to this discus-
 ϵ_{10} will be chosen in the diagonal form s_{13}^2

the Yukawa coupling matrix y^{χ} at the Δm_{21}^2

of our numerical investigation Δm_{32}^2
 $\omega_{pR,0} \propto \left[U_{\text{PMNS$

$$
c_{(ab)R,0} \propto \left[U_{\text{PMNS}} \hat{x}_{\nu}^{1/2} y^{\chi} \right]_{ab} \propto \delta_{ab}.
$$
 (7)

matrix y^d defined as follows:

$$
c_{(ab)R,0} \propto \left[U_{\text{PMNS}} \hat{x}_{\nu}^{1/2} y^{\chi} \right]_{ab} \propto \delta_{ab}.
$$
 (7) The active mixi
determined belc
ticularly, y^{χ} is derived in terms of a diagonal
 y^d defined as follows:

$$
y^d
$$
 $U_{\text{PMNS}} = \text{diag} \left(\sqrt{\frac{m_{n_1}}{m_{n_2}}}, 1, \frac{m_{n_3}}{m_{n_2}} \right)^{1/2} y^{\chi}$
$$
= y^d \equiv \text{diag} \left(y_{11}^d, y_{22}^d, y_{33}^d \right),
$$
 (8)
 $m_{n_3} < m_{n_1} < m_{n_2}$ with respect to the in-
order of the neutrino oscillation data will
there exists, we

In particularly, y^{χ} is derived in terms of a diagonal
 $\hat{m}_{\nu} = (\hat{m}_{\nu}^2)^{1/2}$
 $\text{matrix } y^d$ defined as follows:
 $U_{\text{PMNS}} = \text{diag}\left(\sqrt{m_{n_2}^2 - \Delta m_{21}^2}, m_{n_2}, \Delta m_{21}^2, m_{n_3}\right)$
 $U_{\text{PMNS}} = \text{diag}\left(\sqrt{m_{n_2}^2 - \Delta m_{21}$ In particularly, y^{χ} is derived in terms of a diagonal

matrix y^d defined as follows:
 $U_{PMNS} = \text{diag}\left(\sqrt{m_{n_2}^2 - \Delta m_{21}^2}, m_{n_2},\right)$
 $U_{PMNS} =$
 $U_{PMNS} \times \text{diag}\left(\frac{m_{n_1}}{m_{n_2}}, 1, \frac{m_{n_3}}{m_{n_2}}\right)^{1/2} y^{\chi}$
 $= y^d$ In particularly, y^{λ} is derived in terms of a diagonal

matrix y^d defined as follows:
 $U_{PMNS} =$
 $U_{PMNS} \times diag\left(\frac{m_{n_1}}{m_{n_2}}, 1, \frac{m_{n_3}}{m_{n_2}}\right)^{1/2} y^{\lambda}$
 $= y^d \equiv diag\left(y_{11}^d, y_{22}^d, y_{33}^d\right),$

where $m_{n_3} < m_{$ matrix y^* defined as follows:
 $U_{PMNS} =$
 $U_{PMNS} \times diag\left(\frac{m_{n_1}}{m_{n_2}}, 1, \frac{m_{n_3}}{m_{n_2}}\right)^{1/2} y^{\chi}$
 $= y^d \equiv diag\left(y_{11}^d, y_{22}^d, y_{33}^d\right),$

where $m_{n_3} < m_{n_1} < m_{n_2}$ with respect to the inverted order of the neutr $\label{eq:UVPMNS} \begin{array}{ll} U_{\rm PMNS} = \\[2mm] U_{\rm PMNS} = \\[2mm] \hline \\[2mm] \h$ $U_{\text{PMNS}} \times \text{diag} \left(\frac{m_{n_1}}{m_{n_2}}, 1, \frac{m_{n_3}}{m_{n_2}} \right)^{\frac{N}{2}} y^{\chi}$ $\left(\begin{array}{cccc} 0.817 & 0.558 \\ -0.389 + 0.091i & 0.521 + 0.06 \\ 0.409 + 0.078i & -0.641 + 0.0 \end{array} \right)$
where $m_{n_3} < m_{n_1} < m_{n_2}$ with respect to the inwhere $U_{\$ $\binom{m_{n_2} + m_{n_2}}{m_{n_2}}$ (8)
 $= y^d \equiv \text{diag}(y_{11}^d, y_{22}^d, y_{33}^d),$ (8)

where $m_{n_3} < m_{n_1} < m_{n_2}$ with respect to the in-

verted order of the neutrino oscillation data will

be selected in the numerical examination $y^a \equiv \text{diag}(y_{11}^a, y_{22}^a, y_{33}^a),$ (8)

where $m_{n_3} < m_{n_1} < m_{n_2}$ with respect to the in-

verted order of the neutrino oscillation data will

three act

be selected in the numerical examination. We em-

the heav

ph where $m_{n_3} < m_{n_1} < m_{n_2}$ with respect to the in-
verted order of the neutrino oscillation data will
be selected in the numerical examination. We em-
phasize that Eq.(8) was defined for the IO scheme, is
fy two conditi where $m_{n_3} < m_{n_1} < m_{n_2}$ with respect to the in-
where U_{PMNS} is
verted order of the neutrino oscillation data will
be selected in the numerical examination. We em-
the heaviest. In
phasize that Eq.(8) was defined

The given in (a)
$$
a_{e_a,0} = \frac{G_F m_a^2 \sqrt{x_0}}{\sqrt{2} \pi^2} \times \text{Re} \left[\frac{v t_\beta^{-1} c_\alpha s_\alpha}{\sqrt{2} m_a} y^d \right]_{aa}
$$
 is given in (a) $a_{e_a,0} = \frac{G_F m_a^2 \sqrt{x_0}}{\sqrt{2} \pi^2} \times \text{Re} \left[\frac{v t_\beta^{-1} c_\alpha s_\alpha}{\sqrt{2} m_a} y^d \right]_{aa}$ is the respective number of formulas with m_{n_3} must be replaced with m_{n_3} must be replaced with m_{n_3} to be a positive. Therefore, the result is m_{n_3} must be replaced with m_{n_3} must be replaced with m_{n_3} must be replaced with m_{n_3} with m_{n_3} must be replaced with m_{n_3} with m_{n_3} with m_{n_3} must be replaced with m_{n_3} with m_{n_3} with m_{n_3} with m_{n_3} must be replaced with m_{n_3} with $$

$$
x_0 \equiv \frac{m_{n_2}}{\mu_0} \tag{10}
$$

vestigation. The non-unitary of
 $x_0 \equiv \frac{m_{n_2}}{\mu_0}$ (10) mixing matrix $(I_3 - \frac{1}{2}RR^{\dagger}) U_{\text{P}}$

defining the ratio between the active neutrino mass

and the ISS scale μ_0 . To be consistent with the right

experim $x_0 \equiv \frac{m_{n_2}}{\mu_0}$ (10) mix

g the ratio between the active neutrino mass

e ISS scale μ_0 . To be consistent with the right

mental ranges of $(g-2)_{e,\mu}$, it was shown that

st be large enough, namely $x_0 > \mathcal{O}(10^{-$

0. No 4_August 2024 | p.17-25
\n(Workman, R. L. *et al.* [Particle Data Group], 2022)
\n
$$
s_{12}^2 = 0.318_{-0.016}^{+0.016}, s_{23}^2 = 0.578_{-0.010}^{+0.017},
$$
\n
$$
s_{13}^2 = 2.225_{-0.070}^{+0.064} \times 10^{-2}, \delta = 284_{-28}^{+26} \text{ [Deg]},
$$
\n
$$
\Delta m_{21}^2 = 7.5_{-0.20}^{+0.22} \times 10^{-5} \text{ [eV}^2],
$$
\n
$$
\Delta m_{32}^2 = -2.52_{-0.02}^{+0.03} \times 10^{-3} \text{ [eV}^2].
$$
\n(11)
\nThe active mixing matrix and neutrino masses are determined below
\n
$$
\hat{m}_{\nu} = (\hat{m}_{\nu}^2)^{1/2}
$$
\n
$$
= \text{diag}\left(\sqrt{m_{n_2}^2 - \Delta m_{21}^2}, m_{n_2}, \sqrt{m_{n_2}^2 + \Delta m_{32}^2}\right),
$$
\n
$$
U_{\text{PMNS}} =
$$
\n
$$
\left(\begin{array}{cc} 0.817 & 0.558 & 0.036 + 0.145i \\ 0.390 + 0.001i & 0.571 + 0.069i & 0.759 \end{array}\right)
$$

The active mixing matrix and neutrino masses are determined below

$$
\Delta m_{21}^2 = 7.5^{+0.22}_{-0.20} \times 10^{-5} [\text{eV}^2],
$$

\n
$$
\Delta m_{32}^2 = -2.52^{+0.03}_{-0.02} \times 10^{-3} [\text{eV}^2].
$$
 (11)
\nThe active mixing matrix and neutrino masses are determined below
\n
$$
\hat{m}_{\nu} = (\hat{m}_{\nu}^2)^{1/2}
$$
\n
$$
= \text{diag}\left(\sqrt{m_{n_2}^2 - \Delta m_{21}^2}, m_{n_2}, \sqrt{m_{n_2}^2 + \Delta m_{32}^2}\right),
$$

\n
$$
U_{\text{PMNS}} =
$$
\n
$$
\begin{pmatrix}\n0.817 & 0.558 & 0.036 + 0.145i \\
-0.389 + 0.091i & 0.521 + 0.062i & 0.752 \\
0.409 + 0.078i & -0.641 + 0.053i & 0.642\n\end{pmatrix}
$$
\n(12)
\nwhere U_{PMNS} is chosen at the best-fit point, while
\nthree active neutrino masses are functions of m_{n_2} -
\nthe heavier. In addition, values of m_{n_2} must sat-

$$
y^{\chi} \qquad \begin{pmatrix} 0.817 & 0.558 & 0.036 + 0.145i \\ -0.389 + 0.091i & 0.521 + 0.062i & 0.752 \\ 0.409 + 0.078i & -0.641 + 0.053i & 0.642 \end{pmatrix}
$$
(8) (12)

(8)

ect to the in-

where U_{PMNS} is chosen at the best

tion data will

tion-We em-

the heaviest. In addition, values of

he IO scheme,

is fy two conditions including the

ne NO scheme

Plank2018 (Aghanim, N. *et a* $\frac{v t_\beta^{-1} c_\alpha s_\alpha}{\sqrt{\alpha}} y^d$ that m_{n_3} can small down to the zerocause if we use m_{n_3} as a variable to investigate, the Eq.(8) will be more difficult to define the inverse for all the same of the same in contribution $a_{e_{a,0}} = \frac{G_F m_a^2 \sqrt{x_0}}{\sqrt{2\pi^2}} \times \text{Re} \left[\frac{v t_0^{-1} c_{\alpha s} s_{\alpha}}{\sqrt{2m_a}} y^d \right]_{aa}$
 $\times [x_1 f_{\Phi}(x_1) - x_2 f_{\Phi}(x_2)]$, (9) cause if (10) very strictly by $\eta = \frac{1}{2} |RR^{\dagger}| \propto \hat{x}_\nu \propto x_0$ in the $u_{e_a,0} = \frac{1}{\sqrt{2\pi^2}} \times \text{Re} \left[\frac{1}{\sqrt{2m_a}} y \right]_{aa}$ the respective maximal one is a
 $\times [x_1 f_{\Phi}(x_1) - x_2 f_{\Phi}(x_2)]$, (9) cause if we use m_{n_3} as a variable
 E_q .(8) will be more difficult to

while formulas with $\times [x_1 f_{\Phi}(x_1) - x_2 f_{\Phi}(x_2)]$, (9) cause if we use m_{n_3} as a variable

Eq.(8) will be more difficult to

matrix with one zero diagonal ei
 m_{n_2} , especially the quantity
 $x_0 \equiv \frac{m_{n_2}}{\mu_0}$ (10) mixing matrix experimental ranges of (g−2)_{e,µ}, it was shown that
 x_0 must be large enough, namely $x_0 > \mathcal{O}(10^{-7})$.
 Eq.(8) will choose m_{n_2} for convenience

vestigation. The non-unitary of t
 $x_0 \equiv \frac{m_{n_2}}{\mu_0}$ (10) mix $\hat{m}_{\nu} = (\hat{m}_{\nu}^2)^{1/2}$
 $= \text{diag}\left(\sqrt{m_{n_2}^2 - \Delta m_{21}^2}, m_{n_2}, \sqrt{m_{n_2}^2 + \Delta m_{32}^2}\right),$
 $U_{\text{PMNS}} =$
 $\begin{pmatrix} 0.817 & 0.558 & 0.036 + 0.145i \\ -0.389 + 0.091i & 0.521 + 0.062i & 0.752 \\ 0.409 + 0.078i & -0.641 + 0.053i & 0.642 \end{pmatrix}$ = diag $\left(\sqrt{m_{n_2}^2 - \Delta m_{21}^2}$, m_{n_2} , $\sqrt{m_{n_2}^2 + \Delta m_{32}^2}\right)$,
 U_{PMNS} =
 $\left(-0.389 + 0.091i \t 0.521 + 0.062i \t 0.752 \t 0.409 + 0.078i \t -0.641 + 0.053i \t 0.642 \right)$

where U_{PMNS} is chosen at the best-fit poi $U_{\text{PMNS}} =$
 $\begin{pmatrix} 0.817 & 0.558 & 0.036 + 0.145i \\ -0.389 + 0.091i & 0.521 + 0.062i & 0.752 \\ 0.409 + 0.078i & -0.641 + 0.053i & 0.642 \end{pmatrix}$

(12)

where U_{PMNS} is chosen at the best-fit point, while

three active neutrino masse $U_{\text{PMNS}} =$
 $\begin{pmatrix}\n0.817 & 0.558 & 0.036 + 0.145i \\
-0.389 + 0.091i & 0.521 + 0.062i & 0.752 \\
0.409 + 0.078i & -0.641 + 0.053i & 0.642\n\end{pmatrix}$

(12)

where U_{PMNS} is chosen at the best-fit point, while

three active neutrino masse $\sum_{i=a}^{3} m_{n_a} \leq 0.12$ eV and $m_{n_2}^2 \geq |\Delta m_{32}^2|$ derived $\begin{pmatrix} -0.389 + 0.091i & 0.521 + 0.062i & 0.752 \\ 0.409 + 0.078i & -0.641 + 0.053i & 0.642 \end{pmatrix}$

(12)

here U_{PMNS} is chosen at the best-fit point, while

rece active neutrino masses are functions of m_{n_2} -

heaviest. In addi (a.409 + 0.678i - -0.641 + 0.653i - 0.642)

(a.409 + 0.678i - -0.641 + 0.653i - 0.642)

(12)

where U_{PMNS} is chosen at the best-fit point, while

three active neutrino masses are functions of m_{n_2} -

the heaviest. heaviest $m_{n_2} \in [0.0505, 0.0526]$ eV. The depen-(12)

s chosen at the best-fit point, while

utrino masses are functions of m_{n_2} -

1 addition, values of m_{n_2} must sat-

ions including the constraint from

hanim, N. *et al.* [Planck], 2020) that

1.12 eV and $m_{$ where U_{PMNS} is chosen at the best-fit point, while
three active neutrino masses are functions of m_{n_2} -
the heaviest. In addition, values of m_{n_2} must sat-
isfy two conditions including the constraint from
Pla where U_{PMNS} is chosen at the best-fit point, while
three active neutrino masses are functions of m_{n_2} -
the heaviest. In addition, values of m_{n_2} must sat-
isfy two conditions including the constraint from
Plank2 three active neutrino masses are functions of m_{n_2} -
the heaviest. In addition, values of m_{n_2} must sat-
isfy two conditions including the constraint from
Plank2018 (Aghanim, N. *et al.* [Planck], 2020) that
 $\sum_{i=a$ left (right) panel relates to m_{n_2} (m_{n_3}). We can see tions of m_{n_2}
 n_{n_2} must sat-

astraint from

k], 2020) that
 m_{32}^2 derived

range of the

The depen-

inos on differ-

1, where the

). We can see

value. While

0.015 eV. Best. In addition, values of m_{n_2} must sat-
onditions including the constraint from
 $(Aghanim, N. et al.$ [Planck], 2020) that
 ≤ 0.12 eV and $m_{n_2}^2 \geq |\Delta m_{32}^2|$ derived
12), leading to the allowed range of the
 $n_{n_2} \in [$ isfy two conditions including the constraint from
Plank2018 (Aghanim, N. *et al.* [Planck], 2020) that
 $\sum_{i=a}^{3} m_{n_a} \leq 0.12$ eV and $m_{n_2}^2 \geq |\Delta m_{32}^2|$ derived
from Eq.(12), leading to the allowed range of the
heav Plank2018 (Aghanim, N. *et al.* [Planck], 2020) that $\sum_{i=a}^{3} m_{n_a} \leq 0.12$ eV and $m_{n_2}^2 \geq |\Delta m_{32}^2|$ derived from Eq.(12), leading to the allowed range of the heaviest $m_{n_2} \in [0.0505, 0.0526]$ eV. The dependence n, N. *et al.* [Planck], 2020) that
V and $m_{n_2}^2 \ge |\Delta m_{32}^2|$ derived
ag to the allowed range of the
.0505, 0.0526] eV. The depen-
three active neutrinos on differ-
is shown in Fig. 1, where the
ates to m_{n_2} ($m_{n_$ $\sum_{i=a}^{3} m_{n_a} \leq 0.12$ eV and $m_{n_2}^2 \geq |\Delta m_{32}^2|$ derived
from Eq.(12), leading to the allowed range of the
heaviest $m_{n_2} \in [0.0505, 0.0526]$ eV. The depen-
dence of the sum of three active neutrinos on differ-
en from Eq.(12), leading to the allowed range of the
heaviest $m_{n_2} \in [0.0505, 0.0526]$ eV. The depen-
dence of the sum of three active neutrinos on differ-
ent neutrino masses is shown in Fig. 1, where the
left (right) pan heaviest $m_{n_2} \in [0.0505, 0.0526]$ eV. The d
dence of the sum of three active neutrinos on
ent neutrino masses is shown in Fig. 1, whe
left (right) panel relates to m_{n_2} (m_{n_3}). We ca
that m_{n_3} can small down [0.0505, 0.0526] eV. The depen-
of three active neutrinos on differ-
ses is shown in Fig. 1, where the
relates to m_{n_2} (m_{n_3}). We can see
all down to the zero value. While
ximal one is about 0.015 eV. Be-
 n_3 as dence of the sum of three active neutrinos on differ-
ent neutrino masses is shown in Fig. 1, where the
left (right) panel relates to m_{n_2} (m_{n_3}). We can see
that m_{n_3} can small down to the zero value. While
t ent neutrino masses is shown in Fig. 1, where t
left (right) panel relates to m_{n_2} (m_{n_3}). We can s
that m_{n_3} can small down to the zero value. Wh
the respective maximal one is about 0.015 eV. I
cause if we us $I_3 - \frac{1}{2}RR^{\dagger}$ U_{PMNS} is constrained in Fig. 1, where the
 u_{n_2} (m_{n_3}). We can see

the zero value. While

is about 0.015 eV. Be-

about 0.015 eV. Be-

to define the inverse

al entry. Therefore, we

ence in numerical in-

of the active neutrino
 $U_{$ left (right) panel relates to m_{n_2} (m_{n_3}). We can see
that m_{n_3} can small down to the zero value. While
the respective maximal one is about 0.015 eV. Be-
cause if we use m_{n_3} as a variable to investigate, m_{n_2} (m_{n_3}). We can see

o the zero value. While

is about 0.015 eV. Be-

iable to investigate, the

lt to define the inverse

nal entry. Therefore, we

nience in numerical in-

y of the active neutrino
 U_{PMNS} that m_{n_3} can small down to the zero value. While
the respective maximal one is about 0.015 eV. Be-
cause if we use m_{n_3} as a variable to investigate, the
Eq.(8) will be more difficult to define the inverse
matrix the respective maximal one is about 0.015 eV. Be-
cause if we use m_{n_3} as a variable to investigate, the
Eq.(8) will be more difficult to define the inverse
matrix with one zero diagonal entry. Therefore, we
will choo cause if we use m_{n_3} as a variable to investigate, the
Eq.(8) will be more difficult to define the inverse
matrix with one zero diagonal entry. Therefore, we
will choose m_{n_2} for convenience in numerical in-
vesti matrix with one zero diagonal entry. Therefore, we

rill choose m_{n_2} for convenience in numerical in-

estigation. The non-unitary of the active neutrino

nixing matrix $(I_3 - \frac{1}{2}RR^{\dagger}) U_{PMNS}$ is constrained

ery str

$$
m_{n_2}
$$
, especially the quantity
\n $x_0 \equiv \frac{m_{n_2}}{\mu_0}$ (10) mixing matrix $(I_3 - \frac{1}{2}RR^{\dagger}) U_{PMNS}$ is constrained
\n $x_0 \equiv \frac{m_{n_2}}{\mu_0}$ (10) mixing matrix $(I_3 - \frac{1}{2}RR^{\dagger}) U_{PMNS}$ is constrained
\n $\text{defining the ratio between the active neutrino mass}$ framework (Mondal, T., Okada, H., 2022).
\nand the ISS scale μ_0 . To be consistent with the right
\n x_0 must be large enough, namely $x_0 > \mathcal{O}(10^{-7})$.
\n $y = 0.652$, $G_F = 1.1664 \times 10^{-5}$ GeV, $s_W^2 = 0.231$,
\n $\alpha_e = 1/137$, $e = \sqrt{4\pi\alpha_e}$, $m_W = 80.377$ GeV,
\n**THE IO SCHEME**
\n $\Gamma_h = 4.07 \times 10^{-3}$ GeV, $\Gamma_Z = 2.4955$ GeV,
\nIn the IO scheme corresponding to $m_{n_3} < m_{n_1} < m_e = 5 \times 10^{-4}$ GeV, $m_\mu = 0.105$ GeV,
\n m_{n_2} , we choose experimental data as follows $m_\tau = 1.776$ GeV. (13)

CONSISTED AND THE UP ON THE REVIDENT OF THE SAME OF THE SAME OF THE SAME OF THE SAME OF THE CONTROLL TO CONSULTER THE CRUDE CONSULTER THE CRUDE CONTROLL TO CONSTRUIT (Aghanim, N. *et al.* [Planck], 2020).

To constrain ef Figuer 1. The sum of three neutrino masses as functions of the heaviest (light
the left (right) panel. The dashed-red line shows the upper bound from Planl
(Aghanim, N. *et al.* [Planck], 2020).
To constrain effectively t Figuer 1. The sum of three neutrino masses as functions of
the left (right) panel. The dashed-red line shows the upper l
(Aghanim, N. *et al.* [Planck], 2020
To constrain effectively the most strict allowed work. We list $Br(\mu \rightarrow e\gamma)$ results in the suppressed $|y_{12}^d|$ and $|y_{21}^d|$, as indicated in previous works (T. T. Hong *et* iguer 1. The sum of three neutrino masses as functions of the heaviest

allelectively panel. The dashed-red line shows the upper bound from

(Aghanim, N. *et al.* [Planck], 2020).

b) constrain effectively the most strict the left (right) panel. The dashed-red

(Aghanim,

To constrain effectively the most strict

ranges of entries of the matrix y^d , we releas

conditions to determine the crude allowed

Firstly, the most strict experiment For the free parameters of the 2HDMN_{L,R} model,
the free parameters of the parameters of the matrix y^d , we release some ters that are more strict
conditions to determine the crude allowed ranges. ranges given in Eq.(1 To constrain effectively the most strict allowed work. We list here some allow

ranges of entries of the matrix y^d , we release some ters that are more strict than

conditions to determine the crude allowed ranges. rang To constrain effectively the most strict
ranges of entries of the matrix y^d , we relea
conditions to determine the crude allowed
Firstly, the most strict experimental const
 $Br(\mu \to e\gamma)$ results in the suppressed $|y_{21}^$ then the crude allowed ranges. Fanges given in

ly, the most strict experimental constraint of
 $\rightarrow e\gamma$ results in the suppressed $|y_{12}^d|$ and

as indicated in previous works (T. T. Hong *et*

In addition, the

leading

\n- 1. Isay, the most short experimental constraint of
$$
|y_{12}^d|
$$
 and $|y_{21}^d|$, as indicated in previous works (T. T. Hong *et al.*, 2024).
\n- 1. For the free parameters of the 2HDMN_{L,R} model, the numerical scanning ranges are chosen in general as follows:
\n- $m_{n_2} \in [0.051, 0525] \text{ eV}; M_0, m_{c_{1,2}} \in [1, 10]$ TeV; and $Br(\hbar \to \mu e) < 1.2 \times m_{n_2} \in [0.051, 0525] \text{ eV}; M_0, m_{c_{1,2}} \in [1, 10]$ TeV; and $Br(h \to \mu e) < 1.2 \times 2 \times 1$, $|\lambda_4|, |\lambda_5| \in [0, 4\pi]$; $t_\beta \in [5, 30]$; the LFVZ decay rate is $x_0 \in [10^{-5}, 5 \times 10^{-4}]$; $\phi \in [0, \pi]$;
\n- $|y_{ab}^d| \leq 3.5 \forall a, b = 1, 2, 3.$
\n- $|y_{ab}^d| \leq 3.5 \forall a, b = 1, 2, 3.$
\n- $|y_{ab}^d| \leq 3.5 \forall a, b = 1, 2, 3.$
\n- $|y_{ab}^d| \leq 3.5 \forall a, b = 1, 2, 3.$
\n- $|y_{ab}^d| \leq 3.5 \forall a, b = 1, 2, 3.$
\n- $|y_{ab}^d| \leq 3.5 \forall a, b = 1, 2, 3.$
\n- $|y_{ab}^d| \leq 3.5 \forall a, b = 1, 2, 3.$
\n- $|y_{ab}^d| \leq 3.5 \forall a, b = 1, 2, 3.$
\n- $|y_{ab}^d| \leq 3.5 \forall a, b = 1,$

able parameters of the 2HDM $N_{L,R}$ model, are predict

are predict

are predict

e numerical scanning ranges are chosen in general
 $\text{Br}(\tau \to e \gamma)$
 $\text{Br}(\hbar \to \mu e)$
 as follows
 $m_{n_2} \in [0.051, 0525]$ eV; $M_0, m_{c_{1,2}} \in [1, 10]$ TeV;
 $m_{n_1} \in [0.051, 0525]$ eV; $M_0, m_{c_{1,2}} \in [1, 10]$ TeV;
 $\text{snr}(h \to \mu e) < 1.2 \times 10^{-9}$, $\text{Br}(h \to \tau e)$, $\text{snr}(h \to \tau e)$, $\text{snr}(h \to \tau e)$, $\text{snr}(h \to \tau e$ $m_{n_2} \in [0.051, 0525]$ eV; $M_0, m_{c_{1,2}} \in [1, 10]$ TeV; and $Br(h \rightarrow \tau\mu) < 7.4 \times 10^{-6}$. On $\lambda_1, |\lambda_4|, |\lambda_5| \in [0, 4\pi]$; $t_\beta \in [5, 30]$; the LFVZ decay rate is large enot $x_0 \in [10^{-5}, 5 \times 10^{-4}]$; $\phi \in [0, \pi]$; expected sen $m_{n_2} \in [0.051, 0525]$ ev; $M_0, m_{c_{1,2}} \in [1, 10]$ Tev;
 $\lambda_1, |\lambda_4|, |\lambda_5| \in [0, 4\pi]$; $t_\beta \in [5, 30]$;
 $x_0 \in [10^{-5}, 5 \times 10^{-4}]$; $\phi \in [0, \pi]$;
 $|y_{ab}^d| \leq 3.5 \forall a, b = 1, 2, 3.$ (14)

In the numerical investigation, we re $x_0 \in [10^{-5}, 5 \times 10^{-4}]$; $\phi \in [0, \pi]$;
 $|y_{ab}^d| \leq 3.5 \forall a, b = 1, 2, 3.$ (

In the numerical investigation, we remind

Yukawa and Higgs self couplings must satisfy actional conditions of perturbative limits and Hi

potent

 $|y_{ab}^d| \leq 3.5 \,\forall a, b = 1, 2, 3.$ (14) 10^{-8} .

In the numerical investigation, we remind all The second nume

Yukawa and Higgs self couplings must satisfy addi-

(ab) ≠ (11), (22),

potential constraints indicated prec $|y_{ab}| \ge 3.5 \text{ v } a, \theta = 1, 2, 3.$ The second numerical results will The second numerical results will experimental investigation, we remind all gions with non-zero y_{ab}^d : $0 \le |y_{ab}^d|$ tional conditions of perturbative In the numerical investigation, we remind all

Yukawa and Higgs self couplings must satisfy addi-

Yukawa and Higgs self couplings must satisfy addi-
 $(ab) \neq (11), (22), (12), (21), (21).$

Itional conditions of perturbative limits Yukawa and Higgs self couplings must satisfy addi-

tional conditions of perturbative limits and Higgs

used in (T. T. Hong *et al.* 2024).

Hong *et al.* 2024).

Hong *et al.* 2024).

Firstly, we consider the simplest ca tional conditions of perturbative limits and Higgs
potential constraints indicated precisely in (T. T. T. numerical results are discussed
shows also the dependence of t allows also the dependence of t
Firstly, we cons potential constraints indicated precisely in (T. T.

Hong *et al*, 2024).

Firstly, we consider the simplest case that only two

decays on m_n . It

Firstly, we consider the simplest case that only two

ecays on m_n . It
 Hong *et al*, 2024).

Firstly, we consider the simplest case that only two $e_b \to e_a \gamma$ can reach the present

entries of y_{ab}^d are non-zeros, which are enough to ac-

experiments given in Table 1. The

commodate two $(g-$ Firstly, we consider the simplest case that only two
e $e_b \rightarrow e_a \gamma$ can reach the presentries of y_{ab}^d are non-zeros, which are enough to accommodate two
confindate two $(g-2)_{e,\mu}$ data, namely y_{11}^d , $y_{22}^d \neq 0$.
 entries of y_{ab}^d are non-zeros, which are enough to accommodate two $(g-2)_{e,\mu}$ data, namely y_{11}^d , $y_{22}^d \neq 0$. This case nearly satisfies the experimental constraints of cLFV decays $Br(e_b \rightarrow e_a \gamma)$, namely, $Br(Z-\text$ changes in the al-

change of LFVh and LFVZ decay rates pamely y_{11}^d , $y_{22}^d \neq 0$.

case are:

experimental con-
 $B_r(Z \to \mu^{\pm}e^{\mp}) \leq 4.12 \times 10^{-8}, B_r(Z \to \mu^{\pm}e^{\mp})$
 $\Rightarrow e_a \gamma$), namely,
 $B_r(Z \to \tau^{\pm} \mu^{\mp}) \leq 6.49 \times$ commodate two $(g-2)_{e,\mu}$ data, namely y_{11}^d , $y_{22}^d \neq 0$.

This case nearly satisfies the experimental con-

straints of cLFV decays Br($e_b \rightarrow e_a \gamma$), namely,

the experimental constraint from Br($\mu \rightarrow e_{\gamma}$) gives
 This case nearly satisfies the experimental con-
straints of cLFV decays $Br(e_b \to e_a \gamma)$, namely,
the experimental constraint from $Br(B \to e_b \gamma)$ gives
strictly allowed regions of parameter space, especially when it combines wi straints of cLFV decays $Br(e_b \to e_a \gamma)$, namely,

the experimental constraint from $Br(\mu \to e \gamma)$ gives

strictly allowed regions of parameter space, espe-

cially when it combines with two allowed 1 σ ranges

of $(g - 2)_{e,\mu}$ the experimental constraint from Br($\mu \to e\gamma$) gives
strictly allowed regions of parameter space, espe-
cially when it combines with two allowed 1*o* ranges
of $(g - 2)_{e,\mu}$. We confirm that all results are con-
sistent wi

Figure $\frac{1}{6. \times 10^{-4}}$ 0.001 0.005 0.010

Functions of the heaviest (lightest) mass in

vs the upper bound from Plank 2018 results

[Planck], 2020).

work. We list here some allowed ranges of parame-

ters that are more

$$
t_{\beta} \le 13.6; \ 0.02 \le |y_{11}^d| \le 0.12, \ 0.99 \le |y_{22}^d| \le 2.5. \tag{15}
$$

allowed ranges. ranges given in Eq.(14):

ial constraint of

ressed $|y_{12}^d|$ and
 $t_\beta \le 13.6$; $0.02 \le |y_{11}^d| \le 0.12$,

s (T. T. Hong *et*

In addition, the upper bounds

are predicted to be suppresse

with the futu revious works (T. T. Hong *et*

In addition, the up

rs of the 2HDMN_{L,R} model,

granges are chosen in general
 $\text{Br}(\tau \to e\gamma) < 4 \times$
 $\text{Br}(\tau \to e\gamma) < 4 \times$
 $\text{Br}(\hbar \to \mu e) < 1.2 \times$
 $\forall; M_0, m_{c_{1,2}} \in [1, 10] \text{ TeV};$ and $\$ For the free parameters of the 2HDM $N_{L,R}$ model,

the numerical scanning ranges are chosen in general

as follows

as follows
 $m_{n_2} \in [0.051, 0525]$ eV; $M_0, m_{c_{1,2}} \in [1, 10]$ TeV;
 $M_0, m_{c_{1,2}} \in [1, 10]$ TeV;
 $M_0,$ the numerical scanning ranges are chosen in general

as follows
 $Br(\tau \to e\gamma) < 4 \times 10^{-14}$, $Br($
 $m_{n_2} \in [0.051, 0525]$ eV; $M_0, m_{c_{1,2}} \in [1, 10]$ TeV;

and $Br(h \to \mu e) < 1.2 \times 10^{-9}$, $Br(h \to \tau e) < 7.4 \times 10^{-6}$.
 $\lambda_1, |\lambda_4|,$ functions of the heaviest (lightest) mass in

s the upper bound from Plank 2018 results

[Planck], 2020).

work. We list here some allowed ranges of parame-

ers that are more strict than the general scanning

anges given ome allowed ranges of parame-

rict than the general scanning

14):
 $\binom{d}{11} \leq 0.12, \ 0.99 \leq |y_{22}^d| \leq 2.5.$

(15)

er bounds of LFV decay rates

suppressed when comparing

nsitivities given in Table 1:
 $10^{-14}, \text$ of parame-

1 scanning
 $\left.\begin{array}{l}\n a_2 \\
 a_2\n \end{array}\right| \leq 2.5.$

(15)

ecay rates

comparing

Table 1:
 $\lt 10^{-12},$
 $3 \times 10^{-7},$ In addition, the upper bound from Plank 2018 results

[Planck], 2020).

Work. We list here some allowed ranges of parame-

ters that are more strict than the general scanning

ranges given in Eq.(14):
 $t_{\beta} \leq 13.6; 0.0$ [Planck], 2020).
work. We list here some allowed ranges of parame-
ters that are more strict than the general scanning
ranges given in Eq.(14):
 $t_{\beta} \le 13.6$; $0.02 \le |y_{11}^d| \le 0.12$, $0.99 \le |y_{22}^d| \le 2.5$.
(15)
In ad work. We list here some allowed ranges of parame-
ters that are more strict than the general scanning
ranges given in Eq.(14):
 $t_{\beta} \leq 13.6; 0.02 \leq |y_{11}^d| \leq 0.12, 0.99 \leq |y_{22}^d| \leq 2.5.$
(15)
In addition, the uppe work. We list here some allowed ranges of parame-
ters that are more strict than the general scanning
ranges given in Eq.(14):
 $t_{\beta} \leq 13.6$; $0.02 \leq |y_{11}^d| \leq 0.12$, $0.99 \leq |y_{22}^d| \leq 2.5$.
(15)
In addition, the , $Br(h \to \mu e) < 1.2 \times 10^{-9}$, $Br(h \to \tau e) < 3 \times 10^{-7}$,
and $Br(h \to \tau \mu) < 7.4 \times 10^{-6}$. On the other hand, than the general scanning
 $0.12, 0.99 \le |y_{22}^d| \le 2.5.$

(15)

bunds of LFV decay rates

pressed when comparing

vities given in Table 1:

4, Br($\tau \to \mu \gamma$) < 10⁻¹²,

Br($h \to \tau e$) < 3 × 10⁻⁷,

10⁻⁶. On the other h ranges given in Eq.(14):
 $t_{\beta} \leq 13.6$; $0.02 \leq |y_{11}^d| \leq 0.12$, $0.99 \leq |y_{22}^d| \leq 2.5$.

(15)

In addition, the upper bounds of LFV decay rates

are predicted to be suppressed when comparing

with the future sen $\begin{aligned} \text{2.}, \ 0.99 &\leq |y_{22}^d| \leq 2.5. \ \text{(15)}\ \text{s of LFV decay rates} \end{aligned}$
so f LFV decay rates
ed when comparing
given in Table 1:
 $\text{2.}(\tau \to \mu\gamma) < 10^{-12}, \ \text{h} \to \tau e) < 3 \times 10^{-7}, \ \text{2.} \text{On the other hand}, \ \text{enough to reach the} \to \mu e) < 1.2 \times 10^{-7}, \end{aligned$ $t_{\beta} \leq 13.6; 0.02 \leq |y_{11}^d| \leq 0.12, 0.99 \leq |y_{22}^d| \leq 2.5.$

(15)

In addition, the upper bounds of LFV decay rates

are predicted to be suppressed when comparing

with the future sensitivities given in Table 1:
 $t_{\beta} \leq 13.6; 0.02 \leq |y_{11}^{\mu}| \leq 0.12, 0.99 \leq |y_{22}^{\mu}| \leq 2.5.$ (15)
In addition, the upper bounds of LFV decay rates
are predicted to be suppressed when comparing
with the future sensitivities given in Table 1:
 Br In addition, the upper bounds of LFV decay rates
are predicted to be suppressed when comparing
with the future sensitivities given in Table 1:
 $Br(\tau \to e\gamma) < 4 \times 10^{-14}$, $Br(\tau \to \mu\gamma) < 10^{-12}$,
 $Br(h \to \mu e) < 1.2 \times 10^{-9}$, $Br(h \to \$ (15)

nds of LFV decay rates

ressed when comparing

ies given in Table 1:
 $Br(\tau \to \mu \gamma) < 10^{-12}$,
 $Br(h \to \tau e) < 3 \times 10^{-7}$,
 γ^{-6} . On the other hand,
 $g \to \mu e) < 1.2 \times 10^{-7}$,
 $Br(Z \to \tau \mu) < 5.3 \times$

Its will focus on the re 10^{-8} are predicted to be suppressed when comparing
with the future sensitivities given in Table 1:
 $Br(\tau \to e\gamma) < 4 \times 10^{-14}$, $Br(\tau \to \mu\gamma) < 10^{-12}$,
 $Br(h \to \mu e) < 1.2 \times 10^{-9}$, $Br(h \to \tau e) < 3 \times 10^{-7}$,
and $Br(h \to \tau \mu) < 7.4 \times 10^{-6}$. On with the future sensitivities given in Table 1:
 $Br(\tau \to e\gamma) < 4 \times 10^{-14}$, $Br(\tau \to \mu\gamma) < 10^{-12}$,
 $Br(h \to \mu e) < 1.2 \times 10^{-9}$, $Br(h \to \tau e) < 3 \times 10^{-7}$,

and $Br(h \to \tau \mu) < 7.4 \times 10^{-6}$. On the other hand,

the LFVZ decay rate is la Br($\tau \to e\gamma$) $\lt 4 \times 10^{-14}$, Br($\tau \to \mu\gamma$) $\lt 10^{-12}$,
Br($h \to \mu e$) $\lt 1.2 \times 10^{-9}$, Br($h \to \tau e$) $\lt 3 \times 10^{-7}$,
and Br($h \to \tau \mu$) $\lt 7.4 \times 10^{-6}$. On the other hand,
the LFVZ decay rate is large enough to reach th $Br(\tau \to e\gamma) < 4 \times 10^{-3}$, $Br(\tau \to \mu\gamma) < 10^{-3}$,
 $Br(h \to \mu e) < 1.2 \times 10^{-9}$, $Br(h \to \tau e) < 3 \times 10^{-7}$,

and $Br(h \to \tau \mu) < 7.4 \times 10^{-6}$. On the other hand,

the LFVZ decay rate is large enough to reach the

expected sensitivities: Br

A₁, $|A_4|$, $|A_5| \in [0, 4\pi]$; $l_{\beta} \in [0, \pi]$; expected sensitivities: $Br(Z \to \mu$
 $|y_{ab}^d| \leq 3.5 \,\forall a, b = 1, 2, 3.$ (14) $Br(Z \to \tau e) < 2.1 \times 10^{-9}$, $Br(Z \to \mu$

In the numerical investigation, we remind all The second numer able 11 and \mathbb{R}^n are non-zeros, which are enough to ac-

able to ac-

are non-zeros, which are enough to ac-

are two $(g-2)e_{,\mu}$ data, namely y_{11}^{d} , $y_{22}^{d} \neq 0$.
 \mathbb{R}^n are non-zeros, which are enough remind all The second numerical results

gions with non-zero y_{ab}^d : 0

atisfy addi-
 $(ab) \neq (11), (22), (12), (21)$. E

and Higgs used in (T. T. Hong *et al*, 2(

y in (T. T. numerical results are discuss

shows also the depe is large enough to reach the
 $Br(Z \to \mu e) < 1.2 \times 10^{-7}$,
 10^{-9} , $Br(Z \to \tau \mu) < 5.3 \times$

results will focus on the re-
 $d_a: 0 \le |y_{ab}^d| \le 0.5$ for all

(21). Different from the code
 t al, 2024), some interesting

discusse ven in Table 1:
 $\rightarrow \mu \gamma$ $\lt 10^{-12}$,
 $\rightarrow \tau e$ $\lt 3 \times 10^{-7}$,

in the other hand,

ough to reach the
 e $\gt 1.2 \times 10^{-7}$,
 $\rightarrow \tau \mu$ $\lt 5.3 \times$
 \rightarrow focus on the re-
 $\frac{d}{ab}$ ≤ 0.5 for all

ent from the code

so Br($h \to \mu e$) < 1.2 × 10⁻⁹, Br($h \to \tau e$) < 3 × 10⁻⁷,
and Br($h \to \tau \mu$) < 7.4 × 10⁻⁶. On the other hand,
the LFVZ decay rate is large enough to reach the
expected sensitivities: Br($Z \to \mu e$) < 1.2 × 10⁻⁷,
Br($Z \to \tau e$ and Br($h \to \tau\mu$) < 7.4 × 10⁻⁶. On the other hand,
the LFVZ decay rate is large enough to reach the
expected sensitivities: Br($Z \to \mu e$) < 1.2 × 10⁻⁷,
Br($Z \to \tau e$) < 2.1 × 10⁻⁹, Br($Z \to \tau\mu$) < 5.3 ×
10⁻⁸.
The sec the LFVZ decay rate is large enough to reach expected sensitivities: $Br(Z \rightarrow \mu e) < 1.2 \times 10$
Br($Z \rightarrow \tau e) < 2.1 \times 10^{-9}$, $Br(Z \rightarrow \tau \mu) < 5.3$
 10^{-8} .
The second numerical results will focus on the gions with non-zero y_{ab}^d : the LFVZ decay rate is large enough to reach the
expected sensitivities: $Br(Z \rightarrow \mu e) < 1.2 \times 10^{-7}$,
 $Br(Z \rightarrow \tau e) < 2.1 \times 10^{-9}$, $Br(Z \rightarrow \tau \mu) < 5.3 \times 10^{-8}$.
The second numerical results will focus on the re-
gions with non-zero expected sensitivities: $Br(Z \to \mu e) < 1.2 \times 10^{-7}$,
 $Br(Z \to \tau e) < 2.1 \times 10^{-9}$, $Br(Z \to \tau \mu) < 5.3 \times 10^{-8}$.

The second numerical results will focus on the regions with non-zero y_{ab}^d : $0 \le |y_{ab}^d| \le 0.5$ for all
 $(ab) \ne (11), (2$ Br($Z \rightarrow \tau e$) < 2.1 × 10⁻⁹, Br($Z \rightarrow \tau \mu$) < 5.3 × 10⁻⁸.
The second numerical results will focus on the regions with non-zero y_{ab}^{d} : 0 ≤ $|y_{ab}^{d}|$ ≤ 0.5 for all (ab) ≠ (11), (22), (12), (21). Different from the co decays on m_{n_2} . It is shown that all cLFV decays
 $e_b \rightarrow e_a \gamma$ can reach the present constraints from

experiments given in Table 1. The maximal values

of LFVh and LFVZ decay rates predicted in this

case are:
 $Br(Z \rightarrow \mu$

$$
Br(Z \to \mu^{\pm} e^{\mp}) \le 4.12 \times 10^{-8}, Br(Z \to \tau^{\pm} e^{\mp}) \le 2.08 \times 10^{-8},
$$

\n
$$
Br(Z \to \tau^{\pm} \mu^{\mp}) \le 6.49 \times 10^{-6}, Br(h \to \mu e) \le 2.6 \times 10^{-11},
$$

\n
$$
Br(h \to \tau e) \le 1.8 \times 10^{-3}, Br(h \to \tau \mu) \le 1.5 \times 10^{-3}.
$$

\n(16)

 $\langle e_a \gamma \rangle$, namely,
 $Br(Z \to \tau^{\pm} \mu^{\mp}) \leq 6.49 \times 10^{-6}$,

ter space, espe-

lowed 1 σ ranges

results are con-

This also means that only

in (T. T. Hong is still invisible in the incompase in the al-

stivities listed $e_b \rightarrow e_a \gamma$ can reach the present constraints from
experiments given in Table 1. The maximal values
of LFVh and LFVZ decay rates predicted in this
case are:
 $Br(Z \rightarrow \mu^{\pm}e^{\mp}) \leq 4.12 \times 10^{-8}, Br(Z \rightarrow \tau^{\pm}e^{\mp}) \leq 2.08 \times 10^{-8},$
 experiments given in Table 1. The maximal values
of LFVh and LFVZ decay rates predicted in this
case are:
 $Br(Z \to \mu^{\pm}e^{\mp}) \leq 4.12 \times 10^{-8}, Br(Z \to \tau^{\pm}e^{\mp}) \leq 2.08 \times 10^{-8},$
 $Br(Z \to \tau^{\pm}\mu^{\mp}) \leq 6.49 \times 10^{-6}, Br(h \to \mu e) \leq 2.6 \times$ case are:
 $Br(Z \to \mu^{\pm}e^{\mp}) \leq 4.12 \times 10^{-8}, Br(Z \to \tau^{\pm}e^{\mp}) \leq 2.08 \times 10^{-8},$
 $Br(Z \to \tau^{\pm}\mu^{\mp}) \leq 6.49 \times 10^{-6}, Br(h \to \mu e) \leq 2.6 \times 10^{-11},$
 $Br(h \to \tau e) \leq 1.8 \times 10^{-3}, Br(h \to \tau\mu) \leq 1.5 \times 10^{-3}.$

(16)

This also means that only th $Br(Z \to \mu^{\pm}e^{\mp}) \leq 4.12 \times 10^{-8}, Br(Z \to \tau^{\pm}e^{\mp}) \leq 2.08 \times 10^{-8},$
 $Br(Z \to \tau^{\pm}\mu^{\mp}) \leq 6.49 \times 10^{-6}, Br(h \to \mu e) \leq 2.6 \times 10^{-11},$
 $Br(h \to \tau e) \leq 1.8 \times 10^{-3}, Br(h \to \tau \mu) \leq 1.5 \times 10^{-3}.$

(16)

This also means that only the LFVh deca $Br(Z \to \tau^{\pm} \mu^{\mp}) \leq 6.49 \times 10^{-6}$, $Br(h \to \mu e) \leq 2.6 \times 10^{-6}$
 $Br(h \to \tau e) \leq 1.8 \times 10^{-3}$, $Br(h \to \tau \mu) \leq 1.5 \times 10^{-6}$

This also means that only the LFVh decay $h \to$

is still invisible in the incoming experimental s

siti $\leq 6.49 \times 10^{-6}$, $Br(h \rightarrow \mu e) \leq 2.6 \times 10^{-11}$,
 $\leq 1.8 \times 10^{-3}$, $Br(h \rightarrow \tau \mu) \leq 1.5 \times 10^{-3}$.

(16)

ans that only the LFVh decay $h \rightarrow \mu e$

e in the incoming experimental sen-

l in Table 1. To end this section, we

our $Br(h \to \tau e) \le 1.8 \times 10^{-3}$, $Br(h \to \tau \mu) \le 1.5 \times 10^{-3}$.

This also means that only the LFVh decay $h \to \mu e$

is still invisible in the incoming experimental sen-

sitivities listed in Table 1. To end this section, we

conclud do not depend strongly on m_{n_2} .

only $y_{11}^d, y_{22}^d \neq 0$.

 $y_{ab}^d \neq 0$ with two non-zero entries $(ab) \neq (12), (21)$.

Figuer 3. $(g-2)_{e,\mu}$ **anomalies and LFV decays as functions of** m_{n_2} in the general $y_{ab}^d \neq 0$ with two non-zero entries $(ab) \neq (12), (21)$.

4 **CONCLUSIONS** cusom the IO scheme with all the heaviest active neutrin Figuer 3. $(g - 2)_{e,\mu}$ anomalies and LFV decays as functions of m_{n_2} in the ger
 $y_{ab}^d \neq 0$ with two non-zero entries $(ab) \neq (12), (21)$.

4 CONCLUSIONS cus on the IO scheme with all the

line the heaviest active neu Figuer 3. $(g-2)_{e,\mu}$ anomalies and LFV decays as functions of m_{n_2} in the ger
 $y_{ab}^d \neq 0$ with two non-zero entries $(ab) \neq (12), (21)$.

4 CONCLUSIONS cus on the IO scheme with all the heaviest active neutrino masse
 $y_{ab}^d \neq 0$ with two non-zero entries $(ab) \neq (12), (21)$.

4 **CONCLUSIONS** cus on the IO scheme with all a

the heaviest active neutrino masses

In this work we investigate the allowed parameter that the two schemes IO and

that the two schemes IO and NO predict the same
results of LFV decay rates. In additional material control of m_{n_2} in the general ranges of
entries $(ab) \neq (12), (21)$.
cus on the IO scheme with all allowed ranges of
the results of LFV decay rates. In addition, they do not depend strongly on the particle number of m_{n_2} in the general ranges of entries $(ab) \neq (12), (21)$.
cus on the IO scheme with all allowed ranges of the heaviest active **ass functions of** m_{n_2} **in the general ranges of entries** $(ab) \neq (12), (21)$.
cus on the IO scheme with all allowed ranges of the heaviest active neutrino masses. We have shown that the two schemes IO and NO predict the s as functions of m_{n_2} in the general ranges of
entries $(ab) \neq (12), (21)$.
cus on the IO scheme with all allowed ranges of
the heaviest active neutrino masses. We have shown
that the two schemes IO and NO predict the same

ACKNOWLEDGMENTS

Nguyen Hua Thanh Nhond

ACKNOWLEDGMENTS

We would like to thank Dr. Le Tho Hue for

helpful comments.

REFERENCES

REFERENCES

- **ACKNOWLEDGMENTS**

doi:10.1016/j.physrep.2020.07.006

Nubert, Bernard *et al.* [BaBar] (20

We would like to thank Dr. Le Tho Hue for his

due of the *Lepton Flavor Violation in the D*

helpful comments.
 $and \tau^{\pm} \rightarrow \mu^{\pm}$ **ACKNOWLEDGMENTS**

doi:10.1016/j.physrep.2020.07.006

Nubert, Bernard *et al.* [BaBar] (201

helpful comments.

helpful comments.

helpful comments.

doi:10.1103/PhysRevLett.104.0218
 REFERENCES

Baldini, A. M. *e* **EXENOWLEDGMENTS** doi:10.1

We would like to thank Dr. Le Tho Hue for his $\begin{array}{l}\text{Aubert, E}\ \text{hepton}\ \text{helpful comments.}\end{array}$

Helpful comments. and τ^{\pm}

doi:10.1
 REFERENCES Baldini, A

ad, G. *et al.* [ATLAS] (2020). *Search for* We would like to thank Dr. Le Tho Hue for his

helpful comments.

helpful comments.

helpful comments.
 $and \tau^{\pm} \rightarrow \mu^{\pm} \gamma$, Phys. Rev

doi:10.1103/PhysRevLett.104
 REFERENCES

Baldini, A. M. *et al.* [MEG] (201

ad, G. Aad, G. et al. [ATLAS] (2022). Search for the de-

doi:10.1103/PhysRevLett.104.

Aad, G. et al. [ATLAS] (2020). Search for the de-

dataset of the MEG experime

cays of the Higgs boson $H \rightarrow ee$ and $H \rightarrow \gamma$
 γ or, no.8, 4 **FIGURE ERENCES**

FLAVORE BALCONIDE BALCONIDE AT A M. et al. [ME ton flavour violating d

ad, G. et al. [ATLAS] (2020). *Search for the de-*

cays of the Higgs boson $H \rightarrow ee$ and $H \rightarrow \gamma \mathcal{G}$, no.8, 434. doi:10.1

eµ in pp **REFERENCES** Baldini, A. M. et al. [MEG] (ton flavour violating decay
ad, G. et al. [ATLAS] (2020). Search for the de-
ataset of the MEG expercays of the Higgs boson $H \rightarrow ee$ and $H \rightarrow \gamma \epsilon$, no.8, 434. doi:10.1140
eµ in pp c Aad, G. et al. [ATLAS] (2020). Search for the activated of the MEG experiment,

cays of the Higgs boson $H \rightarrow ee$ and $H \rightarrow 76$, no.8, 434. doi:10.1140/epjc/s:

eµ in pp collisions at $\sqrt{s} = 13$ TeV with the Baldini, A. M. et
-
- charged-lepton-flavor-violating decay $Z \rightarrow e\mu$
and $\sqrt{s} = 13$ TeV with the Baldini, A. M. et al. [MEG II]
and C. et al. [ATLAS] (2022). Search for lepton-
and G. et al. [ATLAS] (2022). Search for lepton-
and G. et al. [AT ep in pp collisions at $\sqrt{s} = 15$ TeV with the Baldin ATLAS detector, Phys. Lett. B **801**, 135148. the Λ
doi.org/10.1016/j.physletb.2019.135148 380.
ad, G. et al. [ATLAS] (2022). Search for lepton-
flavor-violation in ATLAS detector, Phys. Lett. B 801, 153146.

doi.org/10.1016/j.physletb.2019.135148 380. doi:10.1140/epjc/s10052

ad, G. et al. [ATLAS] (2022). Search for lepton-

Barman, R. K., Dev, P. S. B

flavor-violation in Z-boson d doi:10.1103/PhysRevD.108.032015 Aad, G. et al. [ATLAS] (2022). Search for tepton.
 Havor-violation in Z-boson decays with τ -leptons
 vith the ATLAS detector, Phys. Rev. Lett. 127,

271801. doi:10.1103/PhysRevLett.127.271801

And, G. et al. [ATLAS platon-colution in Z -00son decays with 1-teptons
with the ATLAS detector, Phys. Rev. Lett. 127, plings at the HL-LHC in the
271801. doi:10.1103/PhysRevLett.127.271801
and, G. et al. [ATLAS] (2023). Search for the doi:10 whi the ATLAS detector, Fuys. Nev. Lett. 121, plings at the HL-LHC in the 271801. doi:10.1103/PhysRevLett.127.271801 sion channel, Phys. Rev. D 1
and, G. et al. [ATLAS] (2023). Search for the doi:10.1103/PhysRevD.107.0750 271801. doi:10.1103/PhysRevLett.127.271801 sion

and, G. et al. [ATLAS] (2023). Search for the doi:11

charged-lepton-flavor-violating decay $Z \rightarrow e\mu$ Branco

in pp collisions at $\sqrt{s} = 13$ TeV with the Rebel

ATLAS detect Abdesselam, A. et al. [Belle] (2021). Search for all the controllations for a large muon EDM,

Abdesselam, A. et al. [Belle] (2021). Search for all the controllations of a cuttor of the distributions of the distribution o
- charged-lepton-flavor-violating decay $Z \rightarrow e\mu$ Branco, G. C., Ferreira,

in pp collisions at $\sqrt{s} = 13$ TeV with the

doi:10.1103/PhysRevD.108.032015

doi:10.1103/PhysRevD.108.032015

hada, A. et al. [FCC], (2019). *FCC P In pp cotasions at* $\sqrt{s} = 15$ *TeV with the*

ATLAS detector, Phys. Rev. D 108, 032015. (2012). Theor

doi:10.1103/PhysRevD.108.032015 Higgs-doublet is

bada, A. et al. [FCC], (2019). *FCC Physics Oppor*-doi:10.1016/j.pl
 Abdah, A. et al. [PCC], (2012). From the emones and phenome and phenome and phenome and $Higgs-doublet$ models, $Phys.$ Ref Abdah, A. et al. [FCC], (2019). FCC Physics Opportion:10.1016/j.physrep.2012.02.002 tunities: Future Circul
-
- $Higgs-doublet$ models, Phys.

bada, A. et al. [FCC], (2019). FCC Physics Oppor-

tunities: Future Circular Collider Conceptual De-

sign Report Volume 1, Eur. Phys. J. C 79, no.6, (2018). Combined explanations

474. doi:10.1140/ bada, A. et al. [FCC], (2019). FCC Fngstes Oppor-

doi:10.1016/j.physrep

tunities: Future Circular Collider Conceptual De-

Sign Report Volume 1, Eur. Phys. J. C **79**, no.6, (2018). Combined exp

474. doi:10.1140/epjc/s1 tantities: Fature Circular Contaer Conceptual De-

2. Crivellin, A., 1

sign Report Volume 1, Eur. Phys. J. C 79, no.6, (2018). Com

474. doi:10.1140/epjc/s10052-019-6904-3 plications fo

bdesselam, A. et al. [Belle] (202 Abdesselam, A. *et al.* [Belle] (2021). *Search for* and any abdesselam, A. *et al.* [Belle] (2021). *Search for* anon.11, 113002. doi:1
 lepton-flavor-violating tau-lepton decays to $\ell \gamma$ at D am, M. (2019). *Tau*
 plications for a large muon is photons. At al. [Belle] (2021). Search for no.11, 113002. doi:10.1103/
lepton-flavor-violating tau-lepton decays to $\ell \gamma$ at Dam, M. (2019). Tau-lepton
Belle, JHEP 10, 19. doi:10.1007/JHEP1 Bottom-flavor-violating tau-lepton decays to $\ell \gamma$ at Dam, M. (2019). Tau-lepton Ph

lepton-flavor-violating tau-lepton decays to $\ell \gamma$ at Dam, M. (2019). Tau-lepton Ph

Belle, JHEP 10, 19. doi:10.1007/JHEP10(2021)019
 Lepton-jator-violating tau-lepton aecays to ty at Dam, M. (2
 Belle, JHEP **10**, 19. doi:10.1007/JHEP10(2021)019

ghanim, N. *et al.* [Planck] (2020). *Planck 2018 re* doi:10.214
 sults. VI. Cosmological parameters, A Example 2.1 Examp
-
- doi:10.1093/ptep/ptz106 Moment, Phys. Rev.
Aguillard, D. P. et al. [Muon g-2] (2023). Measure-
ment of the Positive Muon Anomalous Magnetic
ment to 0.20 ppm, Phys. Rev. Lett. 131, no.16,
Hue, L. T., Than, Q. 1
Moment to 0.20 ppm, Phys. Rev. Lett
- Ment b 0.20 ppm, Phys. Rev. Lett. **131**, no.16,

Moment to 0.20 ppm, Phys. Rev. Lett. **131**, no.16,

Hue, L. T., Nha, N. H.

161802. doi:10.1103/PhysRevLett.131.161802

anomalies and decays h -

altmannshofer, W. et al. [Moment to 0.20 ppm, r nys. Rev. Lett. **131**, no.10,

161802. doi:10.1103/PhysRevLett.131.161802

161802. doi:10.1103/PhysRevLett.131.161802
 Rev. Et al. [Belle-II] (2020). The $e_b \rightarrow e_a \gamma$ in a two Higgs de
 Relle II Phy doi:10.1103/PhysRevD.107.055037 Aonon Haven, W. et al. [Delle-H] (2020). The $e_b \rightarrow e_a \gamma$ in a two Higgs define II Physics Book, PTEP 2019 (2019) no.12, verse seesaw neutrinos, Eur.

123C01 [erratum: PTEP 2020, no.2, 029201]. 338 [erratum: Eur. Phys. J. C Bette II Physics Book, PTEP 2019 (2019) no.12, verse seesaw neutrinos, Eur. Phy

123C01 [erratum: PTEP 2020, no.2, 029201]. 338 [erratum: Eur. Phys. J. C 84,

doi:10.1093/ptep/ptz106 doi:10.1140/epjc/s10052-024-1269

bki, EXECT [FIRM TILE 2020, 10.2, 029201]. 338 [erratum: Eur. Phys. J. C 8
doi:10.1093/ptep/ptz106 doi:10.1140/epjc/s10052-024-1:
bki, M., Kanemura, S., Takeuchi, M., Zamakhsyari, Hue, L. T., Cárcamo Hernán
L. (2023). Probing
-

doi:10.1016/j.physrep.2020.07.006

- *Nguyen Hua Thanh Nha Vol 10.* No 4_August 2024| p.17-25
 ACKNOWLEDGMENTS doi:10.1016/j.physrep.2020.07.006

We would like to thank Dr. Le Tho Hue for his *Lepton Flavor Violation in the D*

helpful comments.
 $and \tau^{\pm} \$ **FS**

doi:10.1016/j.physrep.2020.07.006

Aubert, Bernard *et al.* [BaBar] (20

or. Le Tho Hue for his

Lepton Flavor Violation in the D

and $\tau^{\pm} \rightarrow \mu^{\pm} \gamma$, Phys. Rev. Le

doi:10.1103/PhysRevLett.104.021:

Baldini, A. 10. No 4_August 2024| p.17-25
doi:10.1016/j.physrep.2020.07.006
Aubert, Bernard *et al.* [BaBar] (2010). *Searches for*
Lepton Flavor Violation in the Decays $\tau^{\pm} \rightarrow e^{\pm} \gamma$
and $\tau^{\pm} \rightarrow \mu^{\pm} \gamma$, Phys. Rev. Lett. **104** 10. No 4_August 2024| p.17-25
doi:10.1016/j.physrep.2020.07.006
ubert, Bernard *et al.* [BaBar] (2010). *Searches for*
Lepton Flavor Violation in the Decays $\tau^{\pm} \to e^{\pm} \gamma$
and $\tau^{\pm} \to \mu^{\pm} \gamma$, Phys. Rev. Lett. **104** 10. No 4_August 2024| p.17-25
doi:10.1016/j.physrep.2020.07.006
ubert, Bernard *et al.* [BaBar] (2010). *Searches for*
Lepton Flavor Violation in the Decays $\tau^{\pm} \rightarrow e^{\pm} \gamma$
and $\tau^{\pm} \rightarrow \mu^{\pm} \gamma$, Phys. Rev. Lett. doi:10.1103/PhysRevLett.104.021802 1 10. No 4_August 2024| p.17-25

doi:10.1016/j.physrep.2020.07.006

Aubert, Bernard *et al.* [BaBar] (2010). *Searches for*
 Lepton Flavor Violation in the Decays $\tau^{\pm} \rightarrow e^{\pm} \gamma$
 and $\tau^{\pm} \rightarrow \mu^{\pm} \gamma$, Phys. Rev. 10. No 4_August 2024| p.17-25

doi:10.1016/j.physrep.2020.07.006

ubert, Bernard *et al.* [BaBar] (2010). *Searches for*
 Lepton Flavor Violation in the Decays $\tau^{\pm} \rightarrow e^{\pm} \gamma$

and $\tau^{\pm} \rightarrow \mu^{\pm} \gamma$, Phys. Rev. Lett. doi:10.1016/j.physrep.2020.07.006
ubert, Bernard *et al.* [BaBar] (2010). *Searches for*
Lepton Flavor Violation in the Decays $\tau^{\pm} \rightarrow e^{\pm} \gamma$
and $\tau^{\pm} \rightarrow \mu^{\pm} \gamma$, Phys. Rev. Lett. **104**, 021802.
doi:10.1103/PhysRevL doi:10.1016/j.physrep.2020.07.006

ubert, Bernard *et al.* [BaBar] (2010). *Searches for*
 Lepton Flavor Violation in the Decays $\tau^{\pm} \rightarrow e^{\pm} \gamma$

and $\tau^{\pm} \rightarrow \mu^{\pm} \gamma$, Phys. Rev. Lett. **104**, 021802.

doi:10.1103/Ph Aubert, Bernard *et al.* [BaBar] (2010). *Searches for*
 Lepton Flavor Violation in the Decays $\tau^{\pm} \rightarrow e^{\pm} \gamma$
 and $\tau^{\pm} \rightarrow \mu^{\pm} \gamma$, Phys. Rev. Lett. **104**, 021802.

doi:10.1103/PhysRevLett.104.021802

Baldini, A
	- the MEG II experiment, Eur. Phys. J. C 78, no.5,
 B_0 . doi:10.1103/PhysRevLett.104.021802.

	doi:10.1103/PhysRevLett.104.021802.

	addini, A. M. et al. [MEG] (2016). Search for the lep-

	the MEG of the MEG experiment, Eur doi:10.1103/PhysRevLett.104.021802
doi:10.1103/PhysRevLett.104.021802
Baldini, A. M. et al. [MEG] (2016). Search for the lep-
ton flavour violating decay $\mu^+ \rightarrow e^+ \gamma$ with the full
dataset of the MEG experiment, Eur. Phy
- $\frac{\text{HLL}}{\text{H}}$ detector, Figs. Lett. B **801**, 135148
doi.org/10.1016/j.physletb.2019.135148
 $\frac{\text{d}}{\text{d}}$ and 1140/cmin/10159.019.5945.6 380. doi:10.1140/epjc/s10052-018-5845-6
- \sqrt{s} = 13 TeV with the Baldini, A. M. et al. [MEG II] (2018).

Lett. B **801**, 135148. the MEG II experiment, Eur. Phy

tb.2019.135148 380. doi:10.1140/epjc/s10052-018.

(2022). Search for leptons Barman, R. K., Dev, P. and in A. M. et al. [MEG] (2016). Search for the lep-
ton flavour violating decay $\mu^+ \rightarrow e^+ \gamma$ with the full
dataset of the MEG experiment, Eur. Phys. J. C
76, no.8, 434. doi:10.1140/epjc/s10052-016-4271-x
aldini, A. M at the HL-LHC in the vector boson fu-

for flavour violating decay $\mu^+ \rightarrow e^+ \gamma$ with the full

dataset of the MEG experiment, Eur. Phys. J. C
 76, no.8, 434. doi:10.1140/epjc/s10052-016-4271-x

aldini, A. M. et al. [ME ton *javour violating decay* $\mu^+ \rightarrow e^+ \gamma$ with the *jau*
dataset of the MEG experiment, Eur. Phys. J. C
76, no.8, 434. doi:10.1140/epjc/s10052-016-4271-x
aldini, A. M. et al. [MEG II] (2018). The design of
the MEG II e doi:10.1103/PhysRevD.107.075018 Baldini, A. M. et al. [MEG II] (2018). The design of
the MEG II experiment, Eur. Phys. J. C 78, no.5,
 380 . doi:10.1140/epjc/s10052-018-5845-6
Barman, R. K., Dev, P. S. B., Thapa, A. (2023).
Constraining lepton flavor vi According A. M. et al. [NEG H] (2018). The aesign of
the MEG II experiment, Eur. Phys. J. C 78, no.5,
380. doi:10.1140/epjc/s10052-018-5845-6
arman, R. K., Dev, P. S. B., Thapa, A. (2023).
Constraining lepton flavor violat
	- *Ine MEG IT experiment, Eur. Fnys. J. C* 76, *no.3*,

	380. doi:10.1140/epjc/s10052-018-5845-6

	arman, R. K., Dev, P. S. B., Thapa, A. (2023).
 Constraining lepton flavor violating Higgs couplings at the HL-LHC in the vect 380. Goi:10.1140/epjc/s10032-016-3643-0

	arman, R. K., Dev, P. S. B., Thapa, A. (2023).

	Constraining lepton flavor violating Higgs cou-

	plings at the HL-LHC in the vector boson fu-

	sion channel, Phys. Rev. D 107 no.7, 0 doi:10.1016/j.physrep.2012.02.002 Constraining tepton Jator violating Higgs coaplings at the HL-LHC in the vector boson fu-
sion channel, Phys. Rev. D 107 no.7, 075018.
doi:10.1103/PhysRevD.107.075018
Branco, G. C., Ferreira, P. M., Lavoura, L.,
Rebelo, M parings at the HL-LHC in the vector boson ju-
sion channel, Phys. Rev. D 107 no.7, 075018.
doi:10.1103/PhysRevD.107.075018
Branco, G. C., Ferreira, P. M., Lavoura, L.,
Rebelo, M. N., Sher, Marc, Silva, Joao P.
(2012). The ston channet, Fnys. Nev. D 107 no.1, 013016.
doi:10.1103/PhysRevD.107.075018
Branco, G. C., Ferreira, P. M., Lavoura, L.,
Rebelo, M. N., Sher, Marc, Silva, Joao P.
(2012). *Theory and phenomenology of two-
Higgs-doublet m* Dranco, G. C., Ferrenta, F. M., Lavoura, L.,

	Rebelo, M. N., Sher, Marc, Silva, Joao P.

	(2012). *Theory and phenomenology of two-

	Higgs-doublet models, Phys. Rept.* 516, 1-102.

	doi:10.1016/j.physrep.2012.02.002

	Crivel
	- Rebelo, M. N., Sher, Matc, Shva, Joao F.
(2012). *Theory and phenomenology of two-
Higgs-doublet models, Phys. Rept.* 516, 1-102.
doi:10.1016/j.physrep.2012.02.002
rivellin, A., Hoferichter M., Schmidt-Wellenburg, P.
(201 Fan, A., Hoferichter M., Schmidt-Wellenburg, P.

	(2018). Combined explanations of $(g-2)_{\mu,e}$ and implications for a large muon EDM, Phys. Rev. D 98,

	no.11, 113002. doi:10.1103/PhysRevD.98.113002

	Dam, M. (2019). Tau-lep
	- doi:10.21468/SciPostPhysProc.1.041
	- rivellin, A., Hoferichter M., Schmidt-Wellenburg, P.
(2018). Combined explanations of $(g-2)_{\mu,e}$ and im-
plications for a large muon EDM, Phys. Rev. D 98,
no.11, 113002. doi:10.1103/PhysRevD.98.113002
am, M. (2019). Tau-Fremin, A., Holerichter M., Schinlai-Wellenburg, F.

	(2018). *Combined explanations of* $(g-2)_{\mu,e}$ and im-

	plications for a large muon EDM, Phys. Rev. D **98**,

	no.11, 113002. doi:10.1103/PhysRevD.98.113002

	am, M. (2019 doi:10.1103/PhysRevLett.130.071801 no.11, 113002. doi:10.1103/PhysRevD.98.113002
Dam, M. (2019). Tau-lepton Physics at the FCC-ee
circular e^+e^- Collider, SciPost Phys. Proc. 1, 041.
doi:10.21468/SciPostPhysProc.1.041
Fan, X., Myers, T. G., Sukra, B. A.
- gnamin, ist. et al. [Franck] (2020). *Franck 2018* re-

doi:10.21468/SciPostPhysProc

sults. VI. Cosmological parameters, Astron. Astro-

fran, X., Myers, T. G., Sukra, 1

phys. **641**, A6 [erratum: Astron. Astrophys. **652** saus. VI. Cosmological parameters, Astron. Astro-

phys. 641, A6 [erratum: Astron. Astrophys. 652 G. (2023). Measurement of

(2021), C4]. doi:10.1051/0004-6361/201833910 Moment, Phys. Rev. Lett.

guillard, D. P. et al. [M gunard, D. F. et at. [Nulon g-2] (2023). *Measure* doi:10.1103/PhysRevLett.130.0718

ment of the Positive Muon Anomalous Magnetic Hong, T. T., Tran, Q. Duyet, Ng

Moment to 0.20 ppm, Phys. Rev. Lett. **131**, no.16, Hue, L. Huer, H. (2019). Tau-lepton Physics at the FCC-ee
circular e^+e^- Collider, SciPost Phys. Proc. 1, 041.
doi:10.21468/SciPostPhysProc.1.041
an, X., Myers, T. G., Sukra, B. A. D., Gabrielse,
G. (2023). Measurement of the E anomalies and decays h → eaeb, Z → eaeb, and decays h → eaes are epi-
eircular e⁺ e⁻ Collider, SciPost Phys. Proc. 1, 041.
doi:10.21468/SciPostPhysProc.1.041
an, X., Myers, T. G., Sukra, B. A. D., Gabrielse,
G. (2023) erretuar e^{-e} Cotataer, setrost Fuys. Froc. 1, 041.
doi:10.21468/SciPostPhysProc.1.041
an, X., Myers, T. G., Sukra, B. A. D., Gabrielse,
G. (2023). *Measurement of the Electron Magnetic
Moment, Phys. Rev. Lett.* **130**, n verse seesaw neutrinos, Eur. Phys. J. C 84, no.3,

338 [erratum: Eur. Phys. State, Eur. Phys. 2011
 $W_0 = e^{i\omega t}$, T. T., Tran, Q. Duyet, Nguyen, T. Phong,
 $W_0 = e^{i\omega t}$, T. T., Tran, Q. Duyet, Nguyen, T. Phong,
 $W_0 = 1$ an, X., Myers, T. G., Sukra, B. A. D., Gabrielse,

G. (2023). *Measurement of the Electron Magnetic

Moment, Phys. Rev. Lett.* **130**, no.7, 071801.

doi:10.1103/PhysRevLett.130.071801

ong, T. T., Tran, Q. Duyet, Nguyen, doi:10.1140/epjc/s10052-024-12692-y Moment, Thys. Nev. Lett. 130, no.1, 011601.

doi:10.1103/PhysRevLett.130.071801

Hong, T. T., Tran, Q. Duyet, Nguyen, T. Phong,

Hue, L. T., Nha, N. H. T. (2024). $(g - 2)_{e,\mu}$

anomalies and decays $h \rightarrow e_a e_b$, $Z \rightarrow e_a e_b$, a dof.10.1103/PhyshevLett.150.071501

long, T. T., Tran, Q. Duyet, Nguyen, T. Phong,

Hue, L. T., Nha, N. H. T. (2024). $(g - 2)_{e,\mu}$

anomalies and decays $h \rightarrow e_a e_b$, $Z \rightarrow e_a e_b$, and
 $e_b \rightarrow e_a \gamma$ in a two Higgs doublet model w ong, T. T., Tran, Q. Duyet, Nguyen, T. Phong,
Hue, L. T., Nha, N. H. T. (2024). $(g - 2)_{e,\mu}$
anomalies and decays $h \rightarrow e_a e_b$, $Z \rightarrow e_a e_b$, and
 $e_b \rightarrow e_a \gamma$ in a two Higgs doublet model with in-
verse seesaw neutrinos, Eur. Phy
	- Hue, L. T., Nha, N. H. T. (2024). $(g 2)_{e,\mu}$
anomalies and decays $h \rightarrow e_a e_b$, $Z \rightarrow e_a e_b$, and
 $e_b \rightarrow e_a \gamma$ in a two Higgs doublet model with in-
verse seesaw neutrinos, Eur. Phys. J. C 84, no.3,
338 [erratum: Eur. Phys. J. anomalies and decays $h \rightarrow e_a e_b$, $Z \rightarrow e_a e_b$, and
 $e_b \rightarrow e_a \gamma$ in a two Higgs doublet model with in-

	verse seesaw neutrinos, Eur. Phys. J. C 84, no.3,

	338 [erratum: Eur. Phys. J. C 84, no.5, 454 (2024)].

	doi:10.1140/epjc/s doi:10.1016/j.nuclphysb.2022.115962 verse seesaw neutrinos, Eur. Filys. J. C **84**, no.5, 338 [erratum: Eur. Phys. J. C **84**, no.5, 454 (2024)].
doi:10.1140/epjc/s10052-024-12692-y
Hue, L. T., Cárcamo Hernández, A. E., Long,
H. N., Hong, T. T. (2022). *Heavy* 358 [erratum: Eur. Friys. J. C 84, 10.3, 434 (2024)].
doi:10.1140/epjc/s10052-024-12692-y
Hue, L. T., Cárcamo Hernández, A. E., Long,
H. N., Hong, T. T. (2022). *Heavy singly*
charged Higgs bosons and inverse seesaw neu-

	-

Nguyen Hua Thanh Nha Vol 10. No 4_Augus
tions to decays $e_b \rightarrow e_a \gamma$ and $(g - 2)_{e_a}$ anomilies, doi:10.1016/j.nt
and Ward indentity, Nucl. Phys. B **992**, 116244. Qin, Q., Li, Q.,
doi:10.1016/j.nuclphysb.2023.116244 (2018). tions to decays $e_b \rightarrow e_a \gamma$ and $(g-2)_{e_a}$ anomilies, Aguyen Hua Thanh Nha Vol 10. No 4_August 2024| p.17-2

tions to decays $e_b \rightarrow e_a \gamma$ and $(g-2)_{e_a}$ anomilies, doi:10.1016/j.nuclphysb.2022

and Ward indentity, Nucl. Phys. B **992**, 116244. Qin, Q., Li, Q., Lü, C. D., Yi

do

Nguyen Hua Thanh Nha Vol 10. No 4_August 2024| p.17-25

tions to decays $e_b \rightarrow e_a \gamma$ and $(g - 2)_{e_a}$ anomilies, doi:10.1016/j.nuclphysb.2022.1157

and Ward indentity, Nucl. Phys. B **992**, 116244. Qin, Q., Li, Q., Lü, C. D., *Nguyen Hua Thanh Nha* Vol 10. No 4_August 2024| p.17-2:

tions to decays $e_b \rightarrow e_a \gamma$ and $(g - 2)_{e_a}$ anomilies, doi:10.1016/j.nuclphysb.2022.

and Ward indentity, Nucl. Phys. B **992**, 116244. Qin, Q., Li, Q., Lü, C. D., Y *Nguyen Hua Thanh Nha* Vol 10. No 4_August 2024| p.17-25

tions to decays $e_b \rightarrow e_a \gamma$ and $(g - 2)_{e_a}$ anomilies, doi:10.1016/j.nuclphysb.2022.115

and Ward indentity, Nucl. Phys. B **992**, 116244. Qin, Q., Li, Q., Lü, C. D. tions to decays $e_b \rightarrow e_a \gamma$ and $(g - 2)_{e_a}$ anomilies, doi:10.1016/j.nuclphysb.2022.1157
and Ward indentity, Nucl. Phys. B **992**, 116244. Qin, Q., Li, Q., Lü, C. D., Yu, F.
doi:10.1016/j.nuclphysb.2023.116244 (2018). *Char* fions to decays $e_b \rightarrow e_a \gamma$ and $(g - 2)_{e_a}$ anomilies, doi:10.1016/j.nuclphysb.2022
and Ward indentity, Nucl. Phys. B **992**, 116244 Qin, Q., Li, Q., Lü, C. D., Y
doi:10.1016/j.nuclphysb.2023.116244 (2018). *Charged lepton* doi:10.1016/j.nuclphysb.2023.116244

(2018). Charged lepton flavor

Hue, L. T., Ninh, L. D., Thuc, T. T., Dat, N. T. cays at future e^+e^- colliders,

T. (2018). Exact one-loop results for $l_i \rightarrow l_j \gamma$ no.10, 835. doi:10.1 and (g − 2) anomalies in B − L extended two Review of Particle Datand (g − 2) anomalies in B − L extended two Review of Particle Physics, PTE Higgs doublet model, Nucl. Phys. B 976, 115716. doi:10.1093/ptep/ptac097
and th de, L. 1, Ninn, L. D., Thuc, 1. 1, Dat, N. 1. cays at juture $e \cdot e$ coursers,
T. (2018). Exact one-loop results for $l_i \rightarrow l_j \gamma$ no.10, 835. doi:10.1140/epjc/
in 3-3-1 models, Eur. Phys. J. C 78, no.2, 128. Sirunyan, A. M.

doi:10.1140/epjc/s2003-01212-7

doi:10.1016/j.nuclphysb.2022.115716

- doi:10.1016/j.nuclphysb.2023.116244 (2018). Charged lepton flavor violating Higgs de-Qin, Q., Li, Q., Lü, C. D., Yu, F. S., Zhou, S. H. (2018). Charged lepton flavor violating Higgs decays at future e^+e^- colliders, Eur. Phys. J. Charged depton flavor violating Higgs decays at future e^+e^- colliders, Eur. Phys. J. C 78, no.10, 835. doi:10.1140/epjc/s1 0. No 4_August 2024| p.17-25
doi:10.1016/j.nuclphysb.2022.115716
in, Q., Li, Q., Lü, C. D., Yu, F. S., Zhou, S. H.
(2018). *Charged lepton flavor violating Higgs de-*
cays at future e^+e^- colliders, Eur. Phys. J. C **78** 10. No 4_August 2024| p.17-25
doi:10.1016/j.nuclphysb.2022.115716
Qin, Q., Li, Q., Lü, C. D., Yu, F. S., Zhou, S. H.
(2018). *Charged lepton flavor violating Higgs de-*
cays at future e^+e^- colliders, Eur. Phys. J. C 78
- doi:10.1140/epjc/s10052-018-5589-3
lepton-flavor violating decays of the Higgs boson in 0. No 4_August 2024| p.17-25
doi:10.1016/j.nuclphysb.2022.115716
in, Q., Li, Q., Lü, C. D., Yu, F. S., Zhou, S. H.
(2018). *Charged lepton flavor violating Higgs de-*
cays at future e^+e^- colliders, Eur. Phys. J. C 78,
 doi:10.1016/j.nuclphysb.2022.115716
in, Q., Li, Q., Lü, C. D., Yu, F. S., Zhou, S. H.
(2018). *Charged lepton flavor violating Higgs de-*
cays at future e^+e^- colliders, Eur. Phys. J. C 78,
no.10, 835. doi:10.1140/epjc/ doi:10.1016/j.nuclphysb.2022.115716
in, Q., Li, Q., Lü, C. D., Yu, F. S., Zhou, S
(2018). *Charged lepton flavor violating Higgs*
cays at future e^+e^- colliders, Eur. Phys. J. C
no.10, 835. doi:10.1140/epjc/s10052-018-6 i/j.nuclphysb.2022.115716

Q., Lü, C. D., Yu, F. S., Zhou, S. H.

arged lepton flavor violating Higgs de-

ure e^+e^- colliders, Eur. Phys. J. C 78,

doi:10.1140/epjc/s10052-018-6298-7

.. M. et al. [CMS] (2021). Search doi:10.1016/j.nuctphysb.2022.113716
in, Q., Li, Q., Lü, C. D., Yu, F. S., Zhou, S. H.
(2018). *Charged lepton flavor violating Higgs de-*
cays at future e^+e^- colliders, Eur. Phys. J. C 78,
no.10, 835. doi:10.1140/epjc/ Qm, Q., Li, Q., Lu, C. D., 1u, F. S., Znou, S. H.

(2018). *Charged lepton flavor violating Higgs decays at future* e^+e^- colliders, Eur. Phys. J. C 78,

no.10, 835. doi:10.1140/epjc/s10052-018-6298-7

Sirunyan, A. M. e (2018). Charged tepton javor violating Higgs accogs at future e^+e^- colliders, Eur. Phys. J. C 78, no.10, 835. doi:10.1140/epjc/s10052-018-6298-7
irunyan, A. M. et al. [CMS] (2021). *Search for* lepton-flavor violating
	- doi:10.1093/ptep/ptac097