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We investigate the Rayleigh-Stokes problem for a general-
ized second-grade fluid with a fractional time derivative. Our
study aims to prove the existence and regularity of classical
solutions using fixed point techniques and asymptotic esti-
mates of the resolvent operator.
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Chung t6i nghién cttu bai toan véi phuong trinh Rayleigh-
Stokes bac hai tdng quét cho chuyén dong ciia chat 16ng véi
dao ham phan s6 theo thoi gian. Nghién ctu tap trung vio
sit ton tai va tinh chinh quy ciia nghiem c6 dién, st dung ki

thuat diém bat dong va cac wde luong tiem can clia toén ti

giai thic.

Twu khéa:

Su  tom  tai  nghiém, Tinh  chinh
quy, Nghiém tich phdan, Bai todn
Rayleigh—Stokes, Dao ham Rie-

mann—Liouville.

1 INTRODUCTION

The article studies the following general Cauchy
problem

{ Oyu = — (14 kd%) Au+ g(t),t > 0 a1

u(0) = ug

arises from the Rayleigh-Stokes problem for the fol-
lowing general second-order fluid model:

O — (1 + kog) Au = f(t,u), =€,
u(t, x) =0, z e o, (1.2)
u(0, z) = ug(x), z e

with ¢t € (0,7), where & > 0 is a parameter, )
is a bounded domain of R¢ with a smooth bound-

ary, T € (0,00), and 9§ is the Riemann-Liouville
fractional derivative of order av € (0,1) defined by
(Kilbas, 2006; Y. Zhou, 2014):

O u(t, o)

_ % (ﬁ /Ot(ts)_“u(s,z)ds> (1.3)

with the right-hand side defined at each point in
(0,T). Here, I'(+) is the Gamma function, that is,
I(z) = [, t* te~'dt. Let A= —A in L*(Q) with
D(A) = H?(Q) N HF(Q). Then, we rewrite (1.2)
in the form (1.1), where wg is the initial value in
L2(Q) and f : [0,T] x L?>(2) — L3(Q) is a given
function satisfying certain assumptions.

Recently, the Rayleigh-Stokes problem for some
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non-Newtonian fluids, such as Oldroyd-B fluids,
Maxwell fluids, and second-order fluids, has at-
tracted significant attention due to their physi-
cal importance (Fetecau, 2003). This unstable flow
problem considers the motion of the fluid flow
caused by a sudden displacement of the boundary.
The mathematical model is derived by combining
the laws of conservation in physics with the consti-

tutive relationship of second-order viscoelastic flu-

ids.
dV
p <E - (V- V)V> =V (—pl+ poAy
+Oé1A2 + O(QA.%)

where p is the density of the fluid, V is the velocity,
p is the hydrostatic pressure, pg > 0, a; > 0, and
a1 +az =0. A and Ay are the kinematic tensors
defined by:

A, =VV +(VV)T,

_dA,

A, = +AL(VV) + (VV)TA;.

dt

2 PRELIMINARIES

We introduce some notation. For any Banach space
X, we denote B(X) as the space of all bounded
linear operators on X. The special beta function
B : (0,00) x (0,00) = (0,00) is defined by:

1
B(a,b) = / (1—s)2"ts"1ds
0

We have
I'(a)(b)

B(a,b) = Tath)

In the rest of this section, we first introduce a fam-
ily of operators and then use representation formu-
las to prove the main estimates for this family of
operators, which will be used throughout the pa-

per.

Using the (Bazhlekova, 2015;
W. J. Zhou Y., 2021), we introduce a family of
operators {Pq(t)},~ defined by

results from

Pa(tlv =D Sula,t) (v, on) on,

n=1

(2.1)

with v € L2(€2), where

1
—_— e
21 Br

/ e, (r)dr
0

1 d
S
z+ kA z® + A\,

zt

Sn(a,t)

(2.2)
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where B, = {z: Rez = 0,0 > 0} is the Bromwich
contour and

k
T 2 + (A\pkre sinam)®’

Ap 7@ sin am

Kn(r) = (2.3)
with ¢ = (—r + A\, kr®cos(arm) + A,,). Since o €
(0,1) and A,k > 0, we have K, (r) > 0 for all
r > 0.

Lemma 2.1. The functions S,(a,t), n=1,2,...,
have the following properties:

(i) Sp(a,0) =1;

(i) There exists a constant C = C(k,a) > 0 such
that

Sn(a,t) <

— 1+ /\ntl—a'

Proof. Property (i) has been proven in (Bazhlekova,
2015, Theorem 2.2), and Property (ii) has been
proven in (W. J. Zhou Y., 2021, Lemma 3.1). O

From Lemma 2.1(ii), it can be seen that P,(t) is
bounded in L?(Q2) for all ¢ > 0.

Lemma 2.2. Let {Po(t)},5q be a family of linear
operators defined by (2.1). Then:

(i) Pa(t) is strongly continuous on Ry. Further-

more, for all § > 0, the continuity is uniform on
[0, 00);

(i) For every v € D(A) and t > 0,
t
Po(t)v=v— /

0

n(t — s)APq(s)v ds,

where n(t) =1+ ﬁt‘a.

Lemma 2.3. For every § > 0 and v € L?(Q),
PL(t)v and AP, (t)v are Lipschitz continuous on
0 <t <T. Moreover, for 0 < s <t < T, we have

the following estimates:

t—s

<2
st ’

1P6(t) = Pa(s) Br2a))

and
t—s
st

HAPa(t) -

AP ()| 5120y < Cr T

where Cy is a constant dependent on the problem

parameters.

Lemma 2.4. For 0 < ~v < 1, for the family
{Pa(t)};>o defined by (2.1), we have the following
results:

||A’Y,Pa(t)”B(L2(Q)) < Ct(a_lh, t>0,

where C is a constant depending on the problem

parameters.
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Moreover, for every v € L2()),

lim (=97 [ A7P,, (t)o]| = 0.
t—0

3 MAIN RESULTS

To provide a suitable definition for the solutions of

(1.1), we study the following linear problem:

{ A+ (1 + kd2) Au = g(t),t > 0 51)

u(0) = ug

By integrating both sides of the equation (3.1), we
obtain:

u(t) = ug 7/0 n(tfs)Au(s)der/o g(s)ds (3.2)

Note that n(t) =1 + ﬁt‘“. Before presenting

the definition of the integral solution to (3.1), we
state the following lemma.

Lemma 3.1. If

u(t) = uo—/o n(t—s)Au(s)ds+/O g(s)ds,t € [0,T)

then
u(t) = Pal(t)uo + /0 Puolt — s)g(s)ds. (3.3)

Proof. Using the Laplace transform for the equation
(3.2), we obtain:

AN = A Yug — GNATN) + A1),
It means
(I +73NA)TN) = A rug + 271G\
We have
a(\) = (I +9(NA) " (A rug +A71g(N))

_ /O Y <Pa(t)uo+ /0 tPa(t—s)g(s)ds> dt

the proof is complete. a

From the above discussions, we use the following
concept of an integral solution for the problem
(3.1).

Definition 3.1. The function u : [0,T] — L*(Q)
is called an integral solution of (3.1) if u €
C ([0,T),L*(2)) and satisfies (3.3).

Assume that ug € L?(Q) and g € L* (0, T, L*(12)).
Lemma 3.1 shows that the problem (3.1) has a
unique integral solution. We are interested in im-
posing additional conditions on ¢ so that the inte-

gral solution becomes a classical solution.

Definition 3.2. The function u 0, 7] —
L2(Q) is called a classical solution of (3.1) if
u € C([0,T]; L2()) with d,u € C ((0,T]; L*()),
u(t) € D(A) for all t € (0,7], 0fAu €
C ((0,T); L*(52)), and satisfies (3.1).

In this paper, we assume the following:

(H) The function g¢(t) is Holder continuous with
exponent 6 € (0,1), meaning that

lg(t) = g(s)|| < La|t —s|°, forall 0 <s,t<T,

where L; is a constant.

Lemma 3.2. Assume that the assumption (H) is
satisfied. If

w(t) = / Pt — )(g(s) — g(t))ds, te (0.T],

then w(t) € C? ((0,T]; L*(%)).
Proof. For 0 < t <t +h < T, we have:
w(t+h) — w(t)
= [ Pt =Pt - ) 006) - st

+ /0 PLt+h—s)(g(t) —g(t+h))ds

t+h
+ ) PLt+h—s)(g(s) —g(t+h))ds

=L+DL+1;

We estimate each component in the three compo-
nents separately. For I, based on

o0

Pe(t)v Sn(a,t) (v, ¢n) n, HP(;(t)HB(L?(Q))
=1

3

IN
| =

(3.4)
With ¢ > 0 and (H), we have:

[Pe (t+h—s)(g(s) —g(®))]l
< Li(t+h—s)"t—s)?
S Ll(t — S)a_l

for all 0 < h < T — t, the Dominated Con-

vergence Theorem (Lebesgue’s Dominated Conver-
gence Theorem) implies that I; — 0 as h — 0.

29



Nguyen Nhu Quan/Vol 10.

Furthermore, using Lemma 2.3, we obtain:

t
1] s/o (Pt +h— )

=Pt = s)) (g(s) -

K 1
<h [ eyt -

t 8971
< Llh/ ds
0 S+h

h
h s
<L $971q Lh/—
_1/0 Sth s+ 1L . s+h

h9
< —_—
= L19(1 —9)

g9(®)ll ds
9(t)llds

s972ds

Similarly, I3 is estimated as follows:

t+h
1) < / (t+ B — ) |(g(s) — glt + h))|lds

t+h
< I / (t+h—s)"1ds
t

h&
< L1?
The boundedness of P, (t) implies that:
[ 2] = |(Palt + h) = Palh)) (g(t) — gt + )|l
< 20L 1’

By combining the estimates for I, I, and I3, we

obtain the desired result. O

Now we prove the main result of this paper in the

following theorem:

Theorem 3.3. Let ug € L*(Q) and (H) be sat-

isfied. Then, the integral solution of (3.1) is a

classical solution. Moreover, we have dyu,0f Au €

CY((0,T); L*(%)).

Proof. Let u be the integral solution of the problem
(3.1). Note that

u(t) = Pa(t)uo +/0 Pu(t —s)g(s)ds,t € [0,T]

With uy € L2(f), Lemma 2.2(ii) implies that
Pa(t)ug, for t > 0, is the classical solution of the

following problem:

Ou = — (1 + kop) Au,t > 0
u(0) = ug

Let us recall that

O(t) = /0 Paolt —s)g(s)ds

is a classical solution of the following problem:

Ou+ (1 + ko) Au= g(t),t >0
u(0) =0
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For a fixed ¢ € (0,T], we prove that ®(¢) is con-
tinuously differentiable at ¢. Let 0 < h < T — ¢,
then:

h h

- /Ot Po(t — s)g(s)ds>

_ ["Pat+h—s) = Palt—s)
_/ )

t+h
O(t+h)—2(t) _1 ( i Po(t +h —s)g(s)ds
0

g(s)ds

t+h

+ - Palt+h—s)g(s)ds

h Ji
s)(g(s)—
By applying
the Dominated Convergence Theorem (Lebesgue’s

From (3.4) and (H), the integral fot PL(t—
g(t))ds is absolutely convergent.

Dominated Convergence Theorem), we obtain:

" Pa(t+h—s)—
iHo h

/P’tfs (s) —

From Lemma 2.2(i), we have:

Pao(t—s) os

/P t+h—s — Palt —s) o(t)ds

1 t+h

_ﬁ . P dS_*/P
1 t+h

_ﬁ ; P S_*/P

— (Pa(t) = 1) g(t) khi b — 0

By combining these estimates and using the iden-
tity jg PL(t —s)g(s)ds = (Pa(t) — I) g(t), we ob-

tain:

. [T Pa(t+h—s)—Pu(t—s)
hm/ Y g(s)ds

h—0 0
t
=/ PL(t—s)g(s)ds
0

Moreover

/P gt +h—s)ds =
/7:
+E/0 Pa(s)g(t)ds

Thanks to the assumption on the function g, we

g(t+h—s)—g(t))ds

have:

h
i [ Paota

t+h—s)—g(t)ds| < CL1h® =0,
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as h — 0. From Lemma 2.2(i), we deduce that
limp, 0 foh Pu(s)g(t) ds = g(t). Therefore

t+h

fim < [ Put+h— s)g(s)ds = g(t).
h—0 t

This means that ®(t) is continuously differentiable

at ¢t and its derivative, denoted ®’, (t), satisfies:

(1) =/O Pt — s)g(s)ds + g(t).

By reasoning as above, assuming that 0 < h < ¢,
we can easily deduce that ®(t) is differentiable at
t_ and @/, (t) = @’ (t). From Lemma 3.2 and (H),

we obtain:

<I>’(t):/0. Pi(t = s)g(s)ds + g(t)
_ /0 PL(t = 5)(g(s) — g(t))ds

+ /0 Po(t — s)g(t)ds + g(t)

= w(t) + Pu(t)g(t) € C ((0,T]; LX) -

Now we show that ®(t) € D(A) for all 0 <t <T.
To achieve this, we rewrite:

AD(t) = Ay (t) + APy (1)
- /O AP(t - 5)(g(s) — g(t))ds

—|—/O AP (t — s)g(t)ds

For a fixed ¢ € (0,77, from Lemma 2.4 and
(H), these two integrals converge absolutely. There-
fore, ®(t) € D(A). By repeating the reasoning
used in the proof of Lemma 3.2, we have A®; €
C ((0,T); L*(£2)). To prove a similar conclusion for
Ay (t), choose h such that e <t <t+h < T, and
note that

ADy(t + h) — ADy(t)

h
= / APy (t+h —s)g(t+ h)ds
0

t+h
APy (t+h —s)g(t+ h)ds

t AP, (t — s)g(t)ds

| +
o— 5

h
= / APy (t+h —s)g(t+ h)ds
0

+ [ APt = s)(alt+ ) - gl0)ds
0

From Lemma 2.4 and (H), it is easy to deduce that
[[ADo(t + h) — Ao (1)

h
§C||g(t+h)||/ (t+h—)°Lds
0
t
+C’L1h9/ (t—s)*"'ds
0

TC!
< C sup |g(s)|e*th+ CL1hY —. (3.5)
s€le,T) «
This means that A®y € C ([¢,T]; L*(2)). There-
fore, A®y € C ((0,T); L*(2)) because € is arbitrary.
Next, we prove that 0FAP € C((O,T];Lz(Q)).

From Lemma 2.2(ii), we have:

(14 kD) AB(1) = — o (0= AD(1)

='(t) — g(1).

Here, * denotes the convolution operator. Since
AD = APy + AP, € C((0,T);L3 ()
has been proven, we conclude that 0fA® €
C ((0,T]; L*(£2)). Moreover, u(t) = Pa(t)ug + ®(t)
is a classical solution of (3.1).

According to Lemma 2.3, we obtain that P/, (t)uo
and AP, (t)up are Lipschitz continuous on (0,77.
From Lemma 3.2 and (H), we have:

P (1) = /0 PGt — )(g(s) — g(t))ds
+Pat)g(t) € O ((0,T); L(9)

This follows from similar reasoning used in the
proof of Lemma 3.2 and equation (3.5), which
shows that A® = A® + A®y € CY ((0,T]; L*(1)).
Therefore, u, Au € C?((0,T];L*()), and
kog Au = g(t) — dyu—Au € C? ((0,T); L*(£2)). This
completes the proof. 0

4 CONCLUSION

The Rayleigh-Stokes problem for certain non-
Newtonian fluids has received considerable atten-
tion due to its practical importance. This unsteady
flow problem examines the motion of a fluid flow
caused by a sudden displacement of the boundary.
The mathematical models are derived by consider-
ing the constitutive relationship of viscoelastic flu-

ids with fractional derivatives.

In this paper, we have studied the Rayleigh-Stokes
problem for generalized second-order fluids. Our

31



Nguyen Nhu Quan/Vol 10. No 4_August 2024| p.26-32

goal is to establish the fundamental theory of so-
lutions to this equation. In particular, the exis-
tence and regularity of classical solutions are in-
vestigated. The proof of the main results relies on
the fixed-point technique and estimates for the re-

solvent operator.
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