

TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO

ISSN: 2354 - 1431

http://tckh.daihoctantrao.edu.vn/

TAP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO LOCAL HOMOLOGY WITH RESPECT TO A PAIR OF IDEALS

Second The FINITENESS OF COASSOCIATED PRIMES OF

LOCAL HOMOLOGY WITH RESPECT TO A PAIR OF IDEALS

Second The Second The Second Technology with the Second Technology of the S

Abstract:

MAD UNIVERSED MANUSCRIPT ON THE FINITENES

Do Ngoc Yen^{1,∗}

Posts and Telecommunications Institute of Tech

Email address: yendn@ptit.edu.vn 1 Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Viet Nam Telecommunications Institute of Technology, Ho Chi Minh City, Viet Nam $^{}Email$ and Telecommunications Institute of Technology, Ho Chi Minh A RESULT ON THE FINITENESS OF
LOCAL HOMOLOGY WITH RESPE
Do Ngoc Yen^{1,*}
¹ Posts and Telecommunications Institute of Technology,
*Email address: yendn@ptit.edu.vn
https//doi.org.10.51453/2354-1431/2024/1195 https//doi.org.10.51453/2354-1431/2024/1195 A RESULT ON THE FINITENES

LOCAL HOMOLOGY WITH R

Do Ngoc Yen^{1,*}

¹ Posts and Telecommunications Institute of Tec

^{*E}mail address: yendn@ptit.edu.vn

https//doi.org.10.51453/2354-1431/2024/1195

Article info

Abs

R

Keywords:

modules.

Recieved: 25/6/2024 We introduce the concept local homology with respect to a Revised: 15/7/2024 bair of ideals, which is dual to the generalized local coho-Accepted: 25/8/2024 mology in (Takahashi, Yoshino, & Yoshizawa, 2009) and exlinearly compact modules, local homology Article info

Necieved: 25/6/2024

Necieved: 15/7/2024

Necepted: 25/8/2024

Meeting in (Takahashi, Yoshino, tension from the local homology

Neywords: 2001). We also study about some

linearly compact modules, local homol Technology, Ho Chi Minh City, Viet Nam
Technology, Ho Chi Minh City, Viet Nam
Abstract:
We introduce the concept local homology with respect to a
pair of ideals, which is dual to the generalized local coho-
mology in (Taka Technology, Ho Chi Minh City, Viet Nam
 Abstract:

We introduce the concept local homology with respect to a

pair of ideals, which is dual to the generalized local coho-

mology in (Takahashi, Yoshino, & Yoshizawa, 2009 Technology, Ho Chi Minh City, Viet Nam

Mology in (Takahashi, Yoshino, & Yoshizawa, 2009) and ex-

mology in (Takahashi, Yoshino, & Yoshizawa, 2009) and ex-

tension from the local homology module in (Cuong & Nam,

2001). Technology, Ho Chi Minh City, Viet Nam

Mobstract:

We introduce the concept local homology with respect to a

pair of ideals, which is dual to the generalized local coho-

mology in (Takahashi, Yoshino, & Yoshizawa, 2009) Abstract:

We introduce the concept local homology with respect to a

pair of ideals, which is dual to the generalized local coho-

mology in (Takahashi, Yoshino, & Yoshizawa, 2009) and ex-

tension from the local homology Abstract:
We introduce the concept local homology with respect to a
pair of ideals, which is dual to the generalized local coho-
mology in (Takahashi, Yoshino, & Yoshizawa, 2009) and ex-
tension from the local homology mod Abstract:
We introduce the concept local homology wit
pair of ideals, which is dual to the generaliz
mology in (Takahashi, Yoshino, & Yoshizawa,
tension from the local homology module in (C
2001). We also study about some

TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO

ISSN: 2354 - 1431

http://tckh.daihoctantrao.edu.vn/

TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO

ISSN: 2354 - 1431

http://tckh.daihoctantrao.edu.vn/

MỘT KẾT QUẢ VỀ TÍNH HỮU HẠN CỦA TẬP IĐÊAN NGUYÊN TỐ

DỐI LIÊN KẾT CỦA MÔĐUN ĐỒNG ĐIỀU ĐỊA PHƯƠNG THEO MỘT

CẶP IĐÊAN THE CHEMICAL HORT (SSN: 2354 - 1431

ISSN: 2354 - 1431

http://tckh.daihoctantrao.edu.vn/

MỘT KẾT QUẢ VỀ TÍNH HỮU HẠN CỦA TẬP IĐÊAN NGUYÊN TỐ

ĐỐI LIÊN KẾT CỦA MÔĐUN ĐỒNG ĐIỀU ĐỊA PHƯƠNG THEO MỘT

CẶP IĐÊAN MỘT KẾT QUẢ VỀ TÍNH HỮU HẠN CỦA TẬP IĐÊAN NGUYÊN TỐ
ĐỐI LIÊN KẾT CỦA MÔĐUN ĐỒNG ĐIỀU ĐỊA PHƯƠNG THEO MỘT
CẶP IĐÊAN
 $D\delta$ Ngọc Yến^{1,*}
 1 Học viện Công nghệ Bưu chính Viễn thông, Hồ Chí Minh, Việt Nam $\begin{array}{lll} \hline \textbf{MQ} & \text{http://tckh.d} \\ \hline \textbf{MQ} & \textbf{WQ} & \textbf{MQ} & \textbf{MQ} \\ \end{array}$ $\begin{array}{lll} \textbf{MQ} & \textbf{MQ} & \textbf{MQ} & \textbf{MQ} \\ \end{array} \end{array}$ $\begin{array}{lll} \textbf{D} & \textbf{MQ} & \textbf{MQ} & \textbf{MQ} \\ \end{array}$ $\begin{array}{lll} \textbf{D} & \textbf{MQ} & \textbf{MQ} & \textbf{MQ} \\ \end{array}$ $\begin{array}{l} {\displaystyle {\rm \bf M} \hat{Q} {\rm T} \; {\rm K} \hat{\mathbf{E}} {\rm T} \; {\rm Q} {\rm U} \hat{\mathbf{A}} \; {\rm V} \hat{\mathbf{E}} \; {\rm T} {\rm f} {\rm N} {\rm H} \; {\rm H} \tilde{{\rm U}} {\rm U} \; {\rm H} {\rm A} {\rm N} \; {\rm C} \tilde{{\rm U}} {\rm A} \; {\rm T} \hat{\mathbf{A}} {\rm P} \; {\rm I} {\rm D} \hat{{\rm E}} {\rm A} {\rm N} \; {\rm N} {\rm G} {\rm U} {\rm Y} \hat{{\rm E}} {\rm N} \; {\rm T$ **MỘT KẾT QUẢ VỀ TÍNH HỮU HẠN
ĐỐI LIÊN KẾT CỦA MÔĐUN ĐỒNG HT CẶP TĐẾA
CẶP IĐẾA
** $D\delta$ **Ngọc Yến^{1,*}
¹ Học viện Công nghệ Bưu chính Viễn thông, Hồ Chí M
^{*Đ}ịa chỉ email: yendn@ptit.edu.vn
https//doi.org.10.51453/2354-1431**

https//doi.org.10.51453/2354-1431/2023/1195

*Do Ngoc Yen/*Vol 10.
1 INTRODUCTION
The theory of local cohomology has existed and de-*Do Ngoc Yen/*Vol 10. No 4_August 2024| p.33-37
1 INTRODUCTION 2 MAIN RESULTS
The theory of local cohomology has existed and de-
1 Throughout this paper, *R* will a veloped strongly for more than 50 years and proved mutati *Do Ngoc Yen/Vol 10.* No 4_August 2024| p.33-37
1 INTRODUCTION 2 MAIN RESULTS
The theory of local cohomology has existed and de-
1 Throughout this paper, R wiveloped strongly for more than 50 years and proved mutative noet *Do Ngoc Yen/*Vol 10. No 4_August 2024| p.33-37
1 INTRODUCTION 2 MAIN RESULTS
The theory of local cohomology has existed and de-
1 Throughout this paper, *R* will
veloped strongly for more than 50 years and proved mutative *Do Ngoc Yen/Vol* 10. No 4_August 2024| p.33-37
1 INTRODUCTION 2 MAIN RESULTS
2 MAIN RESULTS
1 weloped strongly for *Do Ngoc Yen/*Vol 10. No 4_August 2024| p.33-37
1 INTRODUCTION 2 MAIN RESULTS
2 MAIN RESULTS
2 MAIN RESULTS
12 MAIN RESULTS
2 MAIN RESULTS
2 MAIN RESULTS
2 MAIN RESULTS
2 MAIN RESULTS
12 MAIN RESULTS
12 MAIN RESULTS
12 MA *Do Ngoc Yen/Nol* 10. No 4_August 2024| p.33-37

1 INTRODUCTION 2 MAIN RESULTS

2 MAIN RESULT **EXECUTE 20** Figure 10. To a pair of ideals, which is a paper of ideals of a pair of local cohomology has existed and de-
Throughout this paper veloped strongly for more than 50 years and proved mutative noetherian r to b 1 INTRODUCTION 2 MAIN RESULTS

The theory of local cohomology has existed and de-

Throughout this paper, R will a

veloped strongly for more than 50 years and proved mutative noetherian ring with

to be a very importan The theory of local cohomology has existed and de-

Throughout this paper, R will a

veloped strongly for more than 50 years and proved mutative noetherian ring with 1

to be a very important tool in commutative alge-

Fi The theory of local cohomology has existed and de

a veloped strongly for more than 50 years and proved mutative noetherian ring with

to be a very important tool in commutative alge-

Firstly, we recall the concept of br veloped strongly for more than 50 years and proved mutative noetherian ring with
to be a very important tool in commutative alge-
Firstly, we recall the concept of
pair content tool in commutative alge-
Firstly, we recall to be a very important tool in commutative alge-

bra. There have been many extensions from this modules by

theory. Takahashi, Yoshino and Yoshizawa (2009) donald (Ma

introduced the definition of local cohomology with R % in X Yoshino and Yoshizawa (2009) donald (M

definition of local cohomology with R-module

cof ideals, which is a generalization the zero of logy modules of Grothendieck. Let is a base

i communicative ring, I, J are id % of local cohomology modules of Grothendieck. Let is a base for the
 R is a notherian communicative ring, *I*, *J* are ide-

als of *R* and *M* is an *R*-module. The *i*-th local

in *M* and *M*/*N*

cohomology module

$$
H^i_{I,J}(M) = R^i \Gamma_{I,J}(M) \tag{1}
$$

found the relation between $H^i_{I,J}(M)$ and $H^i_I(M)$ = submodules) in M which has the finite intersection
local cohomology for a ideal through the isomor-
property, then the cosets in $\mathcal F$ have a non-empty phism $H_{I,J}^i(M) = R^i \Gamma_{I,J}(M)$ clear base consisting of submod

linearly topologized R-module M

that $I^n x \subseteq Jx$ for some integer n. Moreover, they \mathcal{F} is a family of closed cosets (i.

found the relation between $H_{I,J}^i(M$ Insearly topologized *R*-module *M*

Insearly topologized *R*-module *M*

Insearly compact if *M* has the follow

that $I^n x \subseteq Jx$ for some integer *n*. Moreover, they \mathcal{F} is a family of closed cosets (i.e.

found the

$$
H_{I,J}^i(M) \cong \varinjlim_{\mathfrak{a} \in \widetilde{W}(I,J)} H_{\mathfrak{a}}^i(M) \qquad \text{Next, let } I, J
$$

 $R \text{ and } M \text{ an}$

where $\Gamma_{I,J}(M)$ is the set of elements x of M such early compact if M has the follow
that $I^n x \subseteq Jx$ for some integer n. Moreover, they \mathcal{F} is a family of closed cosets (i.e
found the relation between $H^i_{I,J}(M)$ and $H_i^{I,J}(M)$, as follow conomology for a fideal through the isomor-
 $H_{I,J}^i(M) \cong \varinjlim_{\mathfrak{a} \in \widetilde{W}(I,J)} H_{\mathfrak{a}}^i(M)$

iich $\widetilde{W}(I,J)$ the set of ideals \mathfrak{a} of R such that
 $\mathfrak{a}+J$ for some integer n and partial order on
 J $H_I, J(M) = \frac{\ln(A \cap H)}{\ln(B \cap H)} H_a(M)$
 R and R
 (R, J) the set of ideals **a** of *R* such that set of ideals or some integer *n* and partial order on integer *s*

etting **a** \leq **b** if **b** \subseteq **a** for **a**, **b** $\in \widetilde{W}(I, J$ *R* and *M* a

a∈w(*I*,*J*)

a∈w(*I*,*J*)

a∈w(*I*,*J*)

a∈e and partial order on integer *n* ('
 \leq b if $\mathfrak{b} \subseteq \mathfrak{a}$ for $\mathfrak{a}, \mathfrak{b} \in \widetilde{W}(I, J)$. We define

roduce the definition of local

air of ideals $\label{eq:2.1} \begin{aligned} I^n&\subseteq \mathfrak{a}+J \text{ for some integer n and partial order on} & &\text{integer n (Takahashi, Yoshi;}\\ \widetilde{W}(I,J) \text{ by letting $\mathfrak{a}\leq\mathfrak{b}$ if $\mathfrak{b}\subseteq \mathfrak{a}$ for $\mathfrak{a},\mathfrak{b}\in \widetilde{W}(I,J)$,} &\text{ We define a partial order \mathfrak{c}}\\ \text{By duality, we introduce the definition of local} & &\mathfrak{a}\leq\mathfrak{b}$ if $\mathfrak{b}\subseteq \mathfrak{a}$ for $\mathfrak{a},\mathfrak{b}\in \mathrm{$

$$
H_i^{I,J}(M) = \varprojlim_{\mathfrak{a} \in \widetilde{W}(I,J)} \mathrm{Tor}_i^R(R/\mathfrak{a},M).
$$

 $\begin{aligned} &\widetilde{W}(I,J) \text{ by letting $\mathfrak a \leq \mathfrak b$ if $\mathfrak b \subseteq \mathfrak a$ for $\mathfrak a$, $\mathfrak b = \mathfrak b$ if $\mathfrak b \subseteq \mathfrak a$ for $\mathfrak a$, $\mathfrak b = \mathfrak b$ if $\mathfrak b \subseteq \mathfrak a$ for $\mathfrak a$, $\mathfrak b = \mathfrak b$ if $\mathfrak b \subseteq \mathfrak a$ for $\mathfrak a$, $\mathfrak b = \mathfrak b$ if $\mathfrak b \subseteq \mathfrak a$ for $\mathfrak a$, $\mathfrak b = \mathfrak b$ if $\mathfrak b \subseteq \mathfrak a$ for $\mathfrak a$ By duality, we introduce the definition of local $\mathfrak{a} \leq \mathfrak{b}$ if $\mathfrak{b} \subseteq \mathfrak{a}$ for $\mathfrak{a}, \mathfrak{b}$
homology for a pair of ideals (I, J) , denote by we have the homomorphis $H_i^{I,J}(M)$, as follow
 $H_i^{I,J}(M) = \varprojlim_{$ $\begin{array}{lllllllllllllllllll} H_i^{I,J}(M) & \mbox{as follow} & \mbox{for a pair of ideals } (I,J), \mbox{ denote by} & \mbox{we have the homomorphisms.} \label{eq:2.1} & \mbox{Tor}_i^{R_i}(R/\mathfrak{a}^t,M) & \mbox{for all } t>0 \mbox{ are } t\leq T\mbox{ and } t>0 \mbox{ are } t\leq T\mbox{ and } t>0 \mbox{ and } t>0 \mbox{ are } t\leq T\mbox{ and } t>0 \mbox{ and } t>0 \mbox{ are } t\leq T\mbox{ and } t\leq T\mbox{ and } t\$ $\label{eq:1.1} \begin{array}{ll} \mbox{duces a homomorphism of local} \\ H_i^{I,J}(M) = \displaystyle \varprojlim_{\mathfrak{a} \in \widetilde{W}(I,J)} \mathrm{Tor}_i^R(R/\mathfrak{a},M). & H_i^{\mathfrak{b}}(M) \longrightarrow H_i^{\mathfrak{a}}(M). \mbox{ Hence we} \\ \mbox{tem of modules } \{H_i^{\mathfrak{a}}(M)\}_{\mathfrak{a} \in \widetilde{W}(I)} \} & \mbox{dences a homomorphism of local \\ \mbox{models of linearly compact modules. An interest-} \\ \mbox{modules of linearly compact modules. An interest-} \\ \mbox{in module }$ $H_i^{I,J}(M) = \underbrace{\lim}_{\mathfrak{a} \in \widetilde{W}(I,J)} \text{Tor}_i^{\text{rt}}(R/\mathfrak{a},M).$ $H_i^{\mathfrak{b}}(M) \longrightarrow H_i^{\mathfrak{a}}(M).$ Here of modules $\{H_i^{\mathfrak{a}}(M) \longrightarrow H_i^{\mathfrak{a}}(M)\}$. Here of modules $\{H_i^{\mathfrak{a}}(M) \longrightarrow H_i^{\mathfrak{a}}(M)\}$ are modules of linearly compa Essides, we show some basic properties of these following definition.

modules of linearly compact modules. An interest-

ing problem in commutative algebra is the finite-

mess of coassociated primes of local homology.
 Besides, we show some basic properties of these following definition.

modules of linearly compact modules. An interest-

ing problem in commutative algebra is the finite-

ness of coassociated primes of local homology.
 modules of linearly compact modules. An interest-

ing problem in commutative algebra is the finite-

ness of coassociated primes of local homology.

Yassemi (Yassemi, 1995) defined the set of coas-

sociated prime ideals ing problem in commutative algebra is the finite-
ness of coassociated primes of local homology.
Tassemi (Yassemi, 1995) defined the set of coas-
nodule $H_i^{I,J}(M)$ of M with res
sociated prime ideals of an R-module M, and ness of coassociated primes of local homology.

Yassemi (Yassemi, 1995) defined the set of coas-

sociated prime ideals of an R-module M, and de-

noted by $\text{Coass}_R(M)$, to be the set of prime ideals
 $\mathbf{p}_i^{I,J}(M) = \lim_{\substack$ Yassemi (Yassemi, 1995) defined the set of coas-

sociated prime ideals of an R-module M, and de-

noted by $\text{Coass}_R(M)$, to be the set of prime ideals
 \mathbf{p} such that there exists a cocyclic homomorphic

image L of M sociated prime ideals of an R-module M, and denoted by Coass_R(M), to be the set of prime ideals $H_i^{I,J}(M) = \lim_{\alpha \in W(I,J)} H_i^{I}$
 P such that there exists a cocyclic homomorphic image L of M with Ann_R L = **p**. N. M. Tri noted by Coass_R(*M*), to be the set of prime ideals
 P such that there exists a cocyclic homomorphic

image *L* of *M* with Ann_R *L* = **P**. N. M. Tri (Tri,

2021) gave the concept of CFA modules and used it
 R-mo **p** such that there exists a cocyclic homomorphic
image L of M with Ann_R L = **p**. N. M. Tri (Tri, **Proposition 2.2.** Let M be
2021) gave the concept of CFA modules and used it R -module. Then for all $i \ge$
as a tool to image L of M with Ann_R L = \mathfrak{p} . N. M. Tri (Tri, **Proposition 2.2.** Let M be a 2021) gave the concept of CFA modules and used it R —module. Then for all $i \geq 0$, as a tool to study about the fininess of coassocia 2021) gave the concept of CFA modules and
as a tool to study about the fininess of coase
primes of local homology modules. An R-me
is called CFA if there is a submodule N st
Cosupp_RN is a finite set and M/N is an
 R -m

introduced the definition of local cohomology with
 R-module. A *nucleus* of *M*

respect to a pair of ideals, which is a generalization the zero element of *M*, and

of local cohomology modules of Grothendieck. Let is respect to a pair of ideals, which is a generalization

of local cohomology modules of Grothendieck. Let is a base for the nuclei of M . If
 R is a notherian communicative ring, I, J are ide-

ule of M which contain R is a notherian communicative ring, I, J are ide-

als of R and M is an R-module. The *i*-th local

in M and M/N is discrete. I

cohomology module with respect to a pair of ideals

only if the intersection of all
 $(I, J$ 2 MAIN RESULTS
2 MAIN RESULTS
Throughout this paper, R will always be a com-4_August 2024| p.33-37
2 MAIN RESULTS
Throughout this paper, R will always be a com-
mutative noetherian ring with non-zero identity.
Firstly, we recall the concept of linearly compact 4_August 2024| p.33-37
2 MAIN RESULTS
Throughout this paper, R will always be a com-
mutative noetherian ring with non-zero identity.
Firstly, we recall the concept of linearly compact
modules by using the terminology of I 4_August 2024| p.33-37

2 MAIN RESULTS

Throughout this paper, R will always be a com-

mutative noetherian ring with non-zero identity.

Firstly, we recall the concept of linearly compact

modules by using the terminol 4_August 2024| p.33-37

2 MAIN RESULTS

Throughout this paper, R will always be a com-

mutative noetherian ring with non-zero identity.

Firstly, we recall the concept of linearly compact

modules by using the terminol 4_August 2024| p.33-37

2 MAIN RESULTS

Throughout this paper, R will always be a com-

mutative noetherian ring with non-zero identity.

Firstly, we recall the concept of linearly compact

modules by using the terminolog 4_August 2024| p.33-37

2 MAIN RESULTS

Throughout this paper, R will always be a com-

mutative noetherian ring with non-zero identity.

Firstly, we recall the concept of linearly compact

modules by using the terminolog 2 MAIN RESULTS
Throughout this paper, R will always be a com-
mutative noetherian ring with non-zero identity.
Firstly, we recall the concept of linearly compact
modules by using the terminology of I. G. Mac-
donald (Macd 2 MAIN RESULTS
Throughout this paper, R will always be a com-
mutative noetherian ring with non-zero identity.
Firstly, we recall the concept of linearly compact
modules by using the terminology of I. G. Mac-
donald (Ma Throughout this paper, R will always be a com-
mutative noetherian ring with non-zero identity.
Firstly, we recall the concept of linearly compact
modules by using the terminology of I. G. Mac-
donald (Macdonald, 1962). Throughout this paper, R will always be a com-
mutative noetherian ring with non-zero identity.
Firstly, we recall the concept of linearly compact
modules by using the terminology of I. G. Mac-
donald (Macdonald, 1962). mutative noetherian ring with non-zero identity.
Firstly, we recall the concept of linearly compact
modules by using the terminology of I. G. Mac-
donald (Macdonald, 1962). Let M be a topological
 R -module. A *nucleus* modules by using the terminology of I. G. Mac-
donald (Macdonald, 1962). Let M be a topological
 R -module. A nucleus of M is a neighborhood of
the zero element of M , and a nuclear base of M
is a base for the nucl donald (Macdonald, 1962). Let M be a topological R -module. A nucleus of M is a neighborhood of the zero element of M , and a nuclear base of M is a submodule of M which contains a nucleus then N is open in M R-module. A *nucleus* of M is a neighborhood of
the zero element of M, and a *nuclear base* of M
is a base for the nuclei of M. If N is a submod-
ule of M which contains a nucleus then N is open
in M and M/N is discrete. the zero element of M , and a *nuclear base* of M
is a base for the nuclei of M . If N is a submod-
ule of M which contains a nucleus then N is open
in M and M/N is discrete. M is Hausdorff if and
only if t is a base for the nuclei of M . If N is a submodule of M which contains a nucleus then N is open in M and M/N is discrete. M is Hausdorff if and only if the intersection of all the nuclei of M is 0. M is s ule of M which contains a nucleus then N is open
in M and M/N is discrete. M is Hausdorff if and
only if the intersection of all the nuclei of M is 0.
 M is said to be *linearly topologized* if M has a nu-
c intersection. only if the intersection of all the nuclei of M is 0.
 M is said to be *linearly topologized* if M has a nu-

clear base consisting of submodules. A Hausdorff

linearly topologized R -module M is said to be *lin-*M is said to be *linearly topologized* if M has a nu-
clear base consisting of submodules. A Hausdorff
linearly topologized R-module M is said to be *lin-*
early compact if M has the following property: if
 $\mathcal F$ is a fam clear base consisting of submodules. A Hausdorff
linearly topologized R-module M is said to be *lin-*
early compact if M has the following property: if
 $\mathcal F$ is a family of closed cosets (i.e. cosets of closed
submodules

For $\widetilde{W}(I,J)$ and $H^i_I(M)$ and $H^i_I(M)$ is a pair of ideal through the isomor-

hocal cohomology for a ideal through the isomor-

property, then the cosets in F has

phism
 $H^i_{I,J}(M) \cong \lim_{\alpha \in \widetilde{W}(I,J)} H^i_{\mathfrak{a}}(M)$ $\text{Tor}_{i}^{R}(R/\mathfrak{a},M).$ $H_{i}^{\mathfrak{b}}(M) \longrightarrow H_{i}^{\mathfrak{a}}(M).$ Hence we have an inverse sys $H_i^{(M)}(M) = \lim_{\substack{\alpha \in \widetilde{W}(I,J)}} H_{\alpha}(M)$

For some integer n and partial order on integer n (Takahashi, Yoshino, $\widetilde{W}(I,J)$ by letting $\alpha \leq b$ if $b \subseteq \alpha$ for $\alpha, b \in \widetilde{W}(I,J)$. We define a partial order on $\widetilde{W}(I,J)$ linearly topologized *R*-module *M* is said to be *lin-*
early compact if *M* has the following property: if
 $\mathcal F$ is a family of closed cosets (i.e. cosets of closed
submodules) in *M* which has the finite intersection
 early compact if M has the following property: if
 $\mathcal F$ is a family of closed cosets (i.e. cosets of closed

submodules) in M which has the finite intersection

property, then the cosets in $\mathcal F$ have a non-empty

inte submodules) in M which has the finite intersection
property, then the cosets in F have a non-empty
intersection.
Next, let I, J be two ideals of the noetherian ring
 R and M an R -module. Denote by $\widetilde{W}(I, J)$ the
set submodules) in M which has the finite intersection
property, then the cosets in F have a non-empty
intersection.
Next, let I, J be two ideals of the noetherian ring
 R and M an R -module. Denote by $\widetilde{W}(I, J)$ the
set $_{i}^{R}(R/\mathfrak{b}^{t},M)\longrightarrow$ on-empty

irian ring
 (I, J) the

for some

a, 2009).

y letting

f **a** ≤ **b**

, *M*) →

0. It in-

modules

werse sys- $\operatorname{Tor}^R_i(R/\mathfrak{a}^t,M)$ for all $t > 0$ and i hen the cosets in $\mathcal F$ have a non-empty

1.

1. J be two ideals of the noetherian ring

an R -module. Denote by $\widetilde{W}(I, J)$ the

s **a** of R such that $I^n \subseteq \mathfrak a + J$ for some

Takahashi, Yoshino, Yoshizawa, 2009).
 intersection.

Next, let I, J be two ideals of the noetherian ring

R and M an R-module. Denote by $\widetilde{W}(I, J)$ the

set of ideals **a** of R such that $I^n \subseteq \mathfrak{a}+J$ for some

integer n (Takahashi, Yoshino, Yoshizawa, 20 e two ideals of the noetherian ring
 R -module. Denote by $\widetilde{W}(I, J)$ the

of R such that $I^n \subseteq \mathfrak{a}+J$ for some

thashi, Yoshino, Yoshizawa, 2009).

urtial order on $\widetilde{W}(I, J)$ by letting
 \mathfrak{a} for $\mathfrak{a},$ R and M an R-module. Denote by $\widetilde{W}(I, J)$
set of ideals **a** of R such that $I^n \subseteq \mathfrak{a} + J$ for so
integer n (Takahashi, Yoshino, Yoshizawa, 200
We define a partial order on $\widetilde{W}(I, J)$ by lett
 $\mathfrak{a} \leq \mathfrak{b}$ if $\left\{ \prod_{\mathfrak{a}\in \widetilde{W}(I,J)}\right\}$. We suggest the by $\widetilde{W}(I, J)$ the
 \subseteq $\mathfrak{a} + J$ for some

oshizawa, 2009).
 (I, J) by letting
 I, J). If $\mathfrak{a} \leq \mathfrak{b}$
 $R_{i}^{R}(R/\mathfrak{b}^{t}, M) \longrightarrow$

d $i \geq 0$. It in-

omology modules

we an inverse sys-

We suggest the

deal set of ideals $\mathfrak a$ of R such that $I^n \subseteq \mathfrak a+J$ for som-
integer n (Takahashi, Yoshino, Yoshizawa, 2009)
We define a partial order on $\widetilde{W}(I,J)$ by letting
 $\mathfrak a \leq \mathfrak b$ if $\mathfrak b \subseteq \mathfrak a$ for $\mathfrak a, \mathfrak b \in \widetilde$ Integer *n* (Takanashi, Toshino, Toshizawa, 2009).

We define a partial order on $\widetilde{W}(I,J)$ by letting
 $\mathfrak{a} \leq \mathfrak{b}$ if $\mathfrak{b} \subseteq \mathfrak{a}$ for $\mathfrak{a}, \mathfrak{b} \in \widetilde{W}(I,J)$. If $\mathfrak{a} \leq \mathfrak{b}$

we have the hom We define a partial order on $W(1, J)$ by letting
 $\mathfrak{a} \leq \mathfrak{b}$ if $\mathfrak{b} \subseteq \mathfrak{a}$ for $\mathfrak{a}, \mathfrak{b} \in \widetilde{W}(I, J)$. If $\mathfrak{a} \leq \mathfrak{b}$

we have the homomorphisms $\text{Tor}_i^R(R/\mathfrak{b}^t, M) \rightarrow$
 $\text{Tor}_i^R(R/\mathfrak{a$ be homomorphisms $\text{Tor}_i^R(R/\mathfrak{b}^t, M) \rightarrow$
the homomorphisms $\text{Tor}_i^R(R/\mathfrak{b}^t, M) \rightarrow$
 t, M for all $t > 0$ and $i \geq 0$. It in-
momorphism of local homology modules
 $\rightarrow H_i^{\mathfrak{a}}(M)$. Hence we have an inverse sys-
dules \subseteq **u** for **u**, **b** \in *W* (*t*, *J*). If **u** \subseteq **b**
homomorphisms $\text{Tor}_i^R(R/\mathfrak{b}^t, M) \longrightarrow$
A) for all $t > 0$ and $i \ge 0$. It in-
morphism of local homology modules
 $H_i^{\mathfrak{a}}(M)$. Hence we have an inverse sys-
 we have the homomorphisms $\text{Io}'_i(\Lambda/\mathfrak{b}, M) \rightarrow$
 $\text{Tor}_i^R(R/\mathfrak{a}^t, M)$ for all $t > 0$ and $i \geq 0$. It induces a homomorphism of local homology modules $H_i^{\mathfrak{b}}(M) \longrightarrow H_i^{\mathfrak{a}}(M)$. Hence we have an inverse system of

module $H_i^{I,J}(M)$ of M with respect to (*M*). Hence we have an inverse sys-
 ${H_i^{\mathfrak{a}}(M)}_{\mathfrak{a}\in \widetilde{W}(I,J)}$. We suggest the

ion.

. Let *I*, *J* be two ideals of the ring--module. The *i*-th local homology
 I) of *M* with respect to a pair of

lefined tem of modules $\{H_i^{\mathfrak{a}}(M)\}_{{\mathfrak{a}}\in \widetilde{W}(I,J)}$. We suggest the following definition.
 Definition 2.1. Let I, J be two ideals of the ring R and M an R -module. The i -th local homology module $H_i^{I,J}(M)$ of following definition.
 Definition 2.1. Let I, J be two ideals of the ring R and M an R -module. The i -th local homology

module $H_i^{I,J}(M)$ of M with respect to a pair of

ideals (I, J) is defined by
 $H_i^{I,J}(M)$ wo ideals of the ring
 i—th local homology

respect to a pair of
 $H_i^{\mathfrak{a}}(M)$.
 j)
 i a linearly compact

0, $H_i^{I,J}(M)$ is a lin-

g & Nam, 2008) that (a) is of the ring

(cal homology

to a pair of

(b).

(cal homology

(*M*) is a lin-

(m) (0.2008) that **Definition 2.1.** Let *I*, *J* be two ideals of the
 R and *M* an *R*-module. The *i*-th local home

module $H_i^{I,J}(M)$ of *M* with respect to a pa

ideals (I, J) is defined by
 $H_i^{I,J}(M) = \lim_{a \in \overline{W}(I,J)} H_i^a(M)$.
 Propos

$$
H_i^{I,J}(M) = \varprojlim_{\mathfrak{a} \in \widetilde{W}(I,J)} H_i^{\mathfrak{a}}(M).
$$

R-module. Then for all $i \geqslant 0$, $H_i^{I,J}(M)$ is a lin-

H and *M* an *H*-module. Ine *i*-th local nomology

module $H_i^{I,J}(M)$ of *M* with respect to a pair of

ideals (I, J) is defined by
 $H_i^{I,J}(M) = \lim_{\substack{\alpha \in W(I,J)}} H_i^a(M)$.
 Proposition 2.2. Let *M* be a linearly compact
 R ${H_i^{\mathfrak{a}}(M)}_{a \in \widetilde{W}(I,J)}$ forms an inverse or M with respect to a pair or

and by
 $f(x) = \lim_{\alpha \in W(I,J)} H_i^{\alpha}(M).$

Let M be a linearly compact

for all $i \geq 0$, $H_i^{I,J}(M)$ is a lin-

module.

com (Cuong & Nam, 2008) that

forms an inverse system of lin-

dules wit ideals (I, J) is defined by
 $H_i^{I,J}(M) = \lim_{\alpha \in \widetilde{W}(I,J)} H_i^{\alpha}(M)$.
 Proposition 2.2. Let M be a linearly compact
 R -module. Then for all $i \geq 0$, $H_i^{I,J}(M)$ is a lin-

early compact R -module.
 Proof. It follows $H_i^{I,J}(M) = \underbrace{\lim}_{\mathfrak{a} \in \widetilde{W}(I,J)} H_i^{\mathfrak{a}}(M).$
 Proposition 2.2. Let *M* be a linearly compa
 R-module. Then for all $i \ge 0$, $H_i^{I,J}(M)$ is a li

early compact *R*-module.
 Proof. It follows from (Cuong & Nam, $i^{I,J}(M)$ is also a linearly co = $\lim_{\alpha \in \widetilde{W}(I,J)} H_i^{\alpha}(M)$.

Let *M* be a linearly compact

or all $i \geq 0$, $H_i^{I,J}(M)$ is a lin-

odule.

om (Cuong & Nam, 2008) that

orms an inverse system of lin-

ules with continuos homomor-

(*M*) is also a line **Proposition 2.2.** Let M be a linearly compact R –module. Then for all $i \geq 0$, $H_i^{I,J}(M)$ is a linearly compact R –module.
Proof. It follows from (Cuong & Nam, 2008) that $\{H_i^a(M)\}_{a \in \widetilde{W}(I,J)}$ forms an inverse **Proposition 2.2.** Let M be a linearly compact R –module. Then for all $i \ge 0$, $H_i^{I,J}(M)$ is a linearly compact R –module.
 Proof. It follows from (Cuong & Nam, 2008) that $\{H_i^{\mathfrak{a}}(M)\}_{a \in \widetilde{W}(I,J)}$ forms an i *R*–module. Then for all $i \ge 0$, $H_i^{I,J}(M)$ is a lin-
early compact *R*–module.

Proof. It follows from (Cuong & Nam, 2008) that
 $\{H_i^{\mathfrak{a}}(M)\}_{{a \in \widetilde{W}(I,J)}}$ forms an inverse system of lin-
early compact modules

Do Ngoc Yen/Vol 10. No 4_August 2024| p.33-37
commuted with inverse limits of inverse systems of and
linearly compact R-modules.
Proposition 2.3. Let $\{M_t\}$ be an inverse system $\qquad \qquad \sum_{t=0}^{\lfloor t\rfloor} H_i(\underline{x}(t), \text{Tor}_j$ $Do Ngoc$ Yen/Vol 1
commuted with inverse limits of inverse systems
linearly compact R−modules.
Proposition 2.3. Let $\{M_t\}$ be an inverse syste
of linearly compact R−modules with the contin

Do Ngoc Yen/Vol 10. No 4_August 2024| p.33-37

commuted with inverse limits of inverse systems of and

linearly compact R -modules.
 Proposition 2.3. Let $\{M_t\}$ be an inverse system of linearly compact R -modules $Do Ngoc Yen/Vol 10. No 4_August 2024 | p.33-37$
commuted with inverse limits of inverse systems of and
linearly compact R−modules.
Proposition 2.3. Let $\{M_t\}$ be an inverse system of linearly compact R−modules with the continu-
ous *Do Ngoc Yen/*Vol 10. No 4_Augu

commuted with inverse limits of inverse systems of and

linearly compact R -modules.
 Proposition 2.3. Let $\{M_t\}$ be an inverse system of linearly compact R -modules with the continu commuted with inverse limits of inverse systems of and

linearly compact R -modules.
 Proposition 2.3. Let $\{M_t\}$ be an inverse system

of linearly compact R -modules with the continu-

ous homomorphisms. Then

when

$$
H_i^{I,J}(\varprojlim_t M_t) \cong \varprojlim_t H_i^{I,J}(M_t).
$$
 for all \mathfrak{b}
 \varprojlim

Proposition 2.3. Let
$$
\{M_t\}
$$
 be an inverse system
\nof linearly compact R -modules with the continu-
\nous homomorphisms. Then
\n $H_i^{I,J}(\underbrace{\lim}_{t} M_t) \cong \underbrace{\lim}_{t} H_i^{I,J}(M_t).$
\n**Proof.** Note that inverse limits are commuted and
\n $H_i^{I,J}(\underbrace{\lim}_{t} M_t) = \underbrace{\lim}_{\substack{\alpha \in \widetilde{W}(I,J) \\ \beta \in \widetilde{W}(I,J)}} H_i^{q}(M_t).$
\nby (Cuang & Nam, 2008) we have
\n $H_i^{I,J}(\underbrace{\lim}_{t} M_t) = \underbrace{\lim}_{\substack{\alpha \in \widetilde{W}(I,J) \\ \alpha \in \widetilde{W}(I,J)}} H_i^{q}(\underbrace{\lim}_{t} M_t)$
\n $\cong \underbrace{\lim}_{\substack{\alpha \in \widetilde{W}(I,J) \\ \beta \in \widetilde{W}(I,J)}} H_i^{q}(\underbrace{\lim}_{t} M_t)$
\n $\cong \underbrace{\lim}_{\substack{\alpha \in \widetilde{W}(I,J) \\ \beta \in \widetilde{W}(I,J)}} H_i^{q}(M_t)$
\n $\cong \underbrace{\lim}_{\substack{\alpha \in \widetilde{W}(I,J) \\ \beta \in \widetilde{W}(I,J)}} H_i^{q}(M_t)$
\n $\cong \underbrace{\lim}_{t} H_i^{I,J}(M_t).$
\n**Lemma 2.4.** Let M be an linearly compact for all $t > 0$, because $\{a^tM\} \in \widetilde{W}(I, J)$
\n $H_i^{I,J}(H_j^{I,J}(M)) \cong \begin{cases} H_j^{I,J}(M), & i = 0 \\ 0, & i > 0 \end{cases}$ we have a short exact sequence
\n $H_i^{I,J}(H_j^{I,J}(M)) \cong \begin{cases} H_j^{I,J}(M), & i = 0 \\ 0, & i > 0 \end{cases}$ we have a short exact sequence

 R -module. Then for all $j \ge 0$, early compact modules, by (Cuong & Nam, 2008)

$$
H_i^{I,J}(H_j^{I,J}(M)) \cong \begin{cases} H_j^{I,J}(M), & i = 0 \\ 0, & i > 0 \end{cases}
$$

Example 1. $H_i^u(M_t)$
 $=\varprojlim_t H_i^{I,J}(M_t).$
 Lemma 2.4. Let *M* be an linearly compact for all $t > 0$, because
 R-module. Then for all $j \ge 0$,
 $H_i^{I,J}(H_j^{I,J}(M)) \cong \begin{cases} H_j^{I,J}(M), & i = 0 \\ 0, & i > 0 \end{cases}$ we have a short example $j^{\mathfrak{a}}(M)$ is Lemma 2.4. Let M be an linearly compact for all $t > 0$, because $\{a^tM\}$ is in
 R -module. Then for all $j \ge 0$,
 $H_i^{I,J}(H_j^{I,J}(M)) \cong \begin{cases} H_j^{I,J}(M), & i = 0 \\ 0, & i > 0 \end{cases}$ we have a short exact sequence of $H_i^{I,J}(H_j^{I,J}(M)) \con$ **Lemma 2.4.** Let *M* be an linearly compact for all
 R-module. Then for all $j \ge 0$, early compact for all R -module. Then for all $j \ge 0$, early compact for all $j \ge 0$, early compact $H_i^{I,J}(H_j^{I,J}(M)) \cong \begin{cases} H_j^{I,J}(M), &$

Lemma 2.4. Let *M* be an linearly compact for all
$$
t > 0
$$
, because $\{a$
\n
$$
H_i^{I,J}(H_j^{I,J}(M)) \cong \begin{cases} H_j^{I,J}(M), & i = 0 \\ 0, & i > 0 \end{cases}
$$
 we have a short exact s
\n*Proof.* By the (Cuang & Nam, 2008), $H_j^{\alpha}(M)$ is
\nlinearly compact for all $\mathfrak{a} \in \widetilde{W}(I, J)$. Then we have
\nby (Cuang & Nam, 2008)
\n
$$
H_i^{I,J}(H_j^{I,J}(M)) = \lim_{\mathfrak{b} \in \widetilde{W}(I, J)} H_j^{\alpha}(M)
$$
 for $\mathfrak{b} \in \widetilde{W}(I, J)$ for $\mathfrak{b} \in \widetilde{W}(I, J)$
\n
$$
\cong \lim_{\mathfrak{b} \in \widetilde{W}(I, J)} \lim_{\mathfrak{a} \in \widetilde{W}(I, J)} H_i^{\alpha}(H_j^{\alpha}(M))
$$
 Hence we get a long ex-
\n
$$
\cong \lim_{\mathfrak{b} \in \widetilde{W}(I, J)} \lim_{\mathfrak{a} \in \widetilde{W}(I, J)} H_i^{\alpha}(H_j^{\alpha}(M))
$$
 Hence we get a long ex-
\n
$$
\cong \lim_{\mathfrak{a} \in \widetilde{W}(I, J)} \lim_{\mathfrak{a} \in \widetilde{W}(I, J)} H_i^{\alpha}(H_j^{\alpha}(M))
$$
 $\cdots \to H_{i+1}^{I,J}(\Lambda_{I,J}(M))$
\nFrom 2.7 (Cuong & Nam, 2008), we have
\n
$$
H_i^{\alpha}(H_j^{\alpha}(M)) = \lim_{\substack{\mathfrak{a} \in \widetilde{W}(I, J)} \operatorname{Tor}_i^R(R/\mathfrak{b}^t, \lim_{\substack{\mathfrak{b} \in \widetilde{W}(I, J)} \operatorname{Tor}_j^R(R/R(\mathfrak{a}^s, M))} \to H_1(\Lambda_{I,J}(M)) \to
$$

\n
$$
\cong \lim_{\substack{\mathfrak{b} \in \widetilde{V}(I, J
$$

H^b i (H a j i (R/b t , lim ←−^s j (R/a^s lim←−^s Tor^R i (R/b t , Tor^R j (R/a^s lim←−^t Tor^R i (R/b t , Tor^R j (R/a^s Let ^x = (^x1, . . . , xr) is a system of generator of ^b and ^x(t) = (^x , . . . , xtr Nam, 2008) that Then for all ^b ^a, we have ^x(t) [⊆] ^b

and $x(t) = (x_1^t, \ldots, x_r^t)$. It follows from (Cuong &

$$
H_i^{\mathfrak{b}}(H_j^{\mathfrak{a}}(M)) \cong \varprojlim_s \varprojlim_t H_i(\underline{x}(t), \operatorname{Tor}_j^R(R/\mathfrak{a}^s, M)) \qquad \textbf{Theorem 2.6.}
$$

Then for all $\mathfrak{h} \geq a$, we have $\underline{x}(t) \subseteq \mathfrak{b}^t \subseteq \mathfrak{a}^t \subseteq \mathfrak{a}^s$, for $H_i^{r,\infty}(M)$ are CFA for all i
all $t > s$. Hence $x(t) \text{Tor}^R(R/\mathfrak{a}^s | M) = 0 \forall t > s$, ideal $\mathfrak{a} \in \widetilde{W}(I, J)$ such that all $t \geqslant s$. Hence $\underline{x}(t) \text{Tor}_j^R(R/\mathfrak{a}^s, M) = 0, \forall t \geqslant s$. ideal $\begin{aligned}\n&\equiv \varprojlim_{s} \varprojlim_{t} \text{Tor}_{i}^{r}(R/\mathfrak{b}^{r}, \text{Tor}_{j}^{r}(R/\mathfrak{a}^{r}, M))\n\end{aligned}$ The lemma now follows

Let $\underline{x} = (x_{1}, \ldots, x_{r})$ is a system of generator of \mathfrak{b} The following result gi

and $\underline{x}(t) = (x_{1}^{t}, \ldots, x_{r}^{t})$ It follows from (Cuong & finiteness of coass

with respect to a
 $H_i(\underline{x}(t), \text{Tor}_j^R(R/\mathfrak{a}^s, M))$
 $\begin{array}{ll}\n\text{Theorem 2.6.} \\
\text{Theorem 2.6.} \\
\text{R-modele and } t \\
\text{We } \underline{x}(t) \subseteq \mathfrak{b}^t \subseteq \mathfrak{a}^t \subseteq \mathfrak{a}^s, \text{ for } H_i^{I,J}(M) \text{ are } \text{CF}_i^R(R/\mathfrak{a}^$

$$
\varprojlim_{t} H_0(\underline{x}(t), \operatorname{Tor}_j^R(R/\mathfrak{a}^s, M)) \cong \operatorname{Tor}_j^R(R/\mathfrak{a}^s, M)
$$

and

$$
\varprojlim_t H_i(\underline{x}(t), \operatorname{Tor}_j^R(R/\mathfrak{a}^s, M)) = 0, \forall i > 0.
$$

 $I,J(M_t)$, for all $\mathfrak{b} \geqslant \mathfrak{a}$. Therefore, $H_0^{I,J}(H_j^{I,J}(M)) \cong$ commuted with inverse limits of inverse systems of

linearly compact R -modules.
 Proposition 2.3. Let $\{M_t\}$ be an inverse system

of linearly compact R -modules with the continu-

ous homomorphisms. Then
 $H_i^{I,J}(H$ 4_August 2024| p.33-37

and
 $\lim_{t \to t} H_i(\underline{x}(t), \text{Tor}_j^R(R/\mathfrak{a}^s, M)) = 0, \forall i > 0.$ So we have $H_i^{I,J}(H_j^{I,J}(M)) = 0$ for all $i > 0$.

When $i = 0$, we proved $H_0^{\mathfrak{h}}(H_j^{\mathfrak{a}}(M)) \cong H_j^{\mathfrak{a}}(M)$

for all $\mathfrak{b} \geq \mathfrak{a$ $I_i^{I,J}(H_j^{I,J}(M)) = 0$ for all $i > 0$. 4_August 2024| p.33-37

and
 $\varprojlim_t H_i(\underline{x}(t), \text{Tor}_j^R(R/\mathfrak{a}^s, M)) = 0, \forall i > 0.$ So we have $H_i^{I,J}(H_j^{I,J}(M)) = 0$ for all $i > 0$.

When $i = 0$, we proved $H_0^{\mathfrak{h}}(H_j^{\mathfrak{a}}(M)) \cong H_j^{\mathfrak{a}}(M)$

for all $\mathfrak{b} \geq \mathfrak{a}$. $\Gamma_0^{\mathfrak{b}}(H_j^{\mathfrak{a}}(M)) \cong H_j^{\mathfrak{a}}(M)$ 4_August 2024| p.33-37

and
 $\varprojlim_t H_i(\underline{x}(t), \text{Tor}_j^R(R/\mathfrak{a}^s, M)) = 0, \forall i > 0$ So we have $H_i^{I,J}(H_j^{I,J}(M)) = 0$ for all i

When $i = 0$, we proved $H_0^{\mathfrak{b}}(H_j^{\mathfrak{a}}(M)) \cong L$

for all $\mathfrak{b} \geqslant \mathfrak{a}$. Therefore, $H_$ $\lim_{\substack{\longrightarrow \\ \widetilde{\mathcal{M}}(I,J)\in\widetilde{\mathcal{M}}(I,J)}} H_j^{\mathfrak{a}}(M) = H_j^{I,J}(M).$ and
 $\lim_{t \to 0} H_i(\underline{x}(t), \text{Tor}_j^R(R/\mathfrak{a}^s, M)) = 0, \forall i > 0.$

So we have $H_i^{I,J}(H_j^{I,J}(M)) = 0$ for all i

When $i = 0$, we proved $H_0^{\mathfrak{b}}(H_j^{\mathfrak{a}}(M)) \cong H_j^{\mathfrak{a}}$

for all $\mathfrak{b} \geqslant \mathfrak{a}$. Therefore, $H_0^{I,J}(H_j^{I$ $\mathfrak{a}\in \stackrel{\sim}{W}(I,J)$ b∈ $\stackrel{\sim}{W}(I,J)$ 3-37
 $\binom{R}{j}(R/\mathfrak{a}^s, M)) = 0, \forall i > 0.$
 $\binom{I, J}{j}(M) = 0$ for all $i > 0.$

coved $H_0^{\mathfrak{b}}(H_j^{\mathfrak{a}}(M)) \cong H_j^{\mathfrak{a}}(M)$

herefore, $H_0^{I, J}(H_j^{I, J}(M)) \cong$
 $(M) = H_j^{I, J}(M)$.
 M be an linearly compact and
 $\lim_{t \to i} H_i(\underline{x}(t), \text{Tor}_j^R(R/\mathfrak{a}^s, M)) = 0, \forall i > 0.$

So we have $H_i^{I,J}(H_j^{I,J}(M)) = 0$ for all $i > 0$.

When $i = 0$, we proved $H_0^b(H_j^{\mathfrak{a}}(M)) \cong H_j^{\mathfrak{a}}(M)$

for all $\mathfrak{b} \geq \mathfrak{a}$. Therefore, $H_0^{I,J}(H_j^{I,J}(M$ $\begin{aligned} &\varprojlim_{t}H_{i}(\underline{x}(t),\text{Tor}_{j}^{R}(R/\mathfrak{a}^{s},M))=0,\forall i>0.\\ \text{So we have } H_{i}^{I,J}(H_{j}^{I,J}(M))=0\text{ for all }i>0.\\ \text{When }i=0,\text{ we proved }H_{0}^{\mathfrak{b}}(H_{j}^{\mathfrak{a}}(M))\cong H_{j}^{\mathfrak{a}}(M)\\ \text{for all }\mathfrak{b}\ \geqslant\ \mathfrak{a}. \text{ Therefore, }H_{0}^{I,J}(H_{j}^{I,J}(M))\cong\\ &\varprojlim_{\mathfrak{a}\$ $(0, \int_0^b (H_j^{\mathfrak{a}}(M)) \cong H_j^{\mathfrak{a}}(M)$
 $(0, \int_0^b H_j^{I,J}(H_j^{I,J}(M)) \cong H_j^{I,J}(M).$

an linearly compact
 $(0, \int_0^b H_i^{I,J}(M), i > 0)$
 $(0, \int_0^b H_i^{I,J}(M), i > 0)$ 0 for all $i > 0$.
 $\binom{n}{M} \cong H_j^a(M)$
 $\binom{I,J}{0}(H_j^{I,J}(M)) \cong M$.
 $\binom{n}{M}$.

linearly compact
 $i = 0$
 $(M), i > 0$.

have short exact for all $\mathfrak{b} \geq \mathfrak{a}$. Therefore, $H_0^{I,J}(H_j^{I,J}(M)) \cong \lim_{\mathfrak{a} \in \widetilde{W}(I,J)} \lim_{\mathfrak{b} \in \widetilde{W}(I,J)} H_j^{\mathfrak{a}}(M) = H_j^{I,J}(M).$
 Lemma 2.5. Let M be an linearly compact R -module. Then
 $H_i^{I,J}(\bigcap_{\mathfrak{a} \in \widetilde{W}(I,J)} \$

$$
\lim_{\substack{\mathfrak{a}\in W(I,J)\text{ is commuted and}\\{\left(\varprojlim M_t\right)}}} \frac{\varprojlim}{\mathfrak{a}\in \widetilde{W}(I,J)} H_j^{\mathfrak{a}}(M) = H_j^{I,J}(M).
$$
\n
$$
\text{Lemma 2.5. Let } M \text{ be an linearly compact}
$$
\n
$$
\lim_{\substack{\mathfrak{a}\in W(I,J)\text{ is a \text{ odd}}} H_i^{I,J}(\bigcap_{\mathfrak{a}\in \widetilde{W}(I,J)} \mathfrak{a} M) \cong \left\{ \begin{array}{ll} 0, & i=0\\ H_i^{I,J}(M), & i>0 \end{array} \right. \cdot
$$
\n
$$
H_i^{\mathfrak{a}}(M_t) \qquad \text{Proof. For each } \mathfrak{a} \in \widetilde{W}(I,J), \text{ we have short exact}
$$
\n
$$
\text{sequence of linearly compact } R-\text{module}
$$
\n
$$
t).
$$
\n
$$
0 \to \mathfrak{a}^t M \to M \to M/\mathfrak{a}^t M \to 0,
$$

sequence of linearly compact R-module

$$
0 \to \mathfrak{a}^t M \to M \to M/\mathfrak{a}^t M \to 0,
$$

 $\frac{\text{im}(H_i^{\mathfrak{a}}(M_t))}{t}$ $\frac{\text{im}(H_i^{\mathfrak{a}}(M_t))}{t}$ $\frac{\text{Proof. For each } \mathfrak{a} \in \widetilde{W}(I,J)}{\text{sequence of linearly compact}}$
 M_t .
 M_t .
 $0 \to \mathfrak{a}^t M \to M \to M$
 $\frac{\text{linearly compact}}{\text{empty compact}}$ for all $t > 0$, because $\{\mathfrak{a}^t M\}$ is
 $\frac{\text{early compact modules, by (we have a short exact sequence}}{\text{modules}}$
 (*I,J*) $\iint_{\mathbb{R}^n} H_i^{\mathfrak{a}}(M_t)$ **Proof.** For each $\mathfrak{a} \in \widetilde{W}(I, J)$

sequence of linearly compare $H_i^{I,J}(M_t)$. $0 \to \mathfrak{a}^t M \to M -$

i an linearly compact for all $t > 0$, because $\{\mathfrak{a}^t M\}$
 ≥ 0 , early linearly compact for all $t > 0$, because {

early compact modul

(*M*), $i = 0$ we have a short exact
 $i > 0$ modules

., 2008), $H_j^{\mathfrak{a}}(M)$ is
 $\left(\begin{array}{cc} 2008 \\ j \end{array}\right)$, $H_j^{\mathfrak{a}}(M)$ is

From that, we have s

($\$ R -module. Then
 $H_i^{I,J}(\bigcap_{\mathfrak{a}\in \widetilde{W}(I,J)}\mathfrak{a} M)\cong \left\{ \begin{array}{ll} 0, & i=0\\ H_i^{I,J}(M), & i>0 \end{array} \right.$
 Proof. For each $\mathfrak{a}\in \widetilde{W}(I,J)$, we have short exact

sequence of linearly compact R -module
 $0 \to \mathfrak{a}^t M \to M \to$ $\cong \left\{ \begin{array}{ll} 0, & i=0 \ H_{i}^{I,J}(M), & i>0 \end{array} \right.$
 $\tilde{M}(I,J),$ we have short exact

mpact R -module
 $M \to M/\mathfrak{a}^{t}M \to 0,$
 $M^{t}M$ is inverse system of lin-
 k , by (Cuong & Nam, 2008)

equence of linearly compact $H_i^{I,J}(\bigcap_{\mathfrak{a}\in \widetilde{W}(I,J)}\mathfrak{a}\,M)\cong \left\{\begin{array}{ll} 0, & i=0\\ H_i^{I,J}(M), & i>0 \end{array}\right..$
 Proof. For each $\mathfrak{a}\in \widetilde{W}(I,J)$, we have short exact sequence of linearly compact R —module
 $0\to \mathfrak{a}^tM\to M\to M/\mathfrak{a}^tM\to 0,$ fo $H_i^{I,J}(\bigcap_{\mathfrak{a}\in\widetilde{W}(I,J)}\mathfrak{a} M)\cong\begin{cases} 0, & i=0 \ H_i^{I,J}(M), & i>0 \end{cases}.$
 Proof. For each $\mathfrak{a}\in\widetilde{W}(I,J)$, we have short exact sequence of linearly compact R —module
 $0 \to \mathfrak{a}^t M \to M \to M/\mathfrak{a}^t M \to 0,$

for all modules $0 \to \mathfrak{a}^t M \to M \to M/\mathfrak{a}^t M \to 0,$
for all $t > 0$, because $\{\mathfrak{a}^t M\}$ is inverse system of lin-
early compact modules, by (Cuong & Nam, 2008)
we have a short exact sequence of linearly compact
modules
 $0 \to \bigcap_{t>0} \$ pact modules, by (Cuong & Nam, 2008)

short exact sequence of linearly compact

→ $\bigcap_{t>0}$ $\mathfrak{a}^t M \to M \to \Lambda_{\mathfrak{a}}(M) \to 0$.

t, we have sequence
 $\bigcap_{\mathfrak{b} \in \widetilde{W}(I,J)} \mathfrak{b} M \to M \to \Lambda_{I,J}(M) \to 0$.

get a long exact b M → $M \rightarrow M \rightarrow \Lambda_{\mathfrak{a}}(M) \rightarrow 0$.

From that, we have sequence
 $0 \rightarrow \bigcap_{t>0} \mathfrak{a}^t M \rightarrow M \rightarrow \Lambda_{\mathfrak{a}}(M) \rightarrow 0$.

From that, we have sequence
 $0 \rightarrow \bigcap_{\mathfrak{b} \in \widetilde{W}(I,J)} \mathfrak{b} M \rightarrow M \rightarrow \Lambda_{I,J}(M) \rightarrow 0$.

Hence we get a long exact

$$
0 \to \bigcap_{t>0} \mathfrak{a}^t M \to M \to \Lambda_{\mathfrak{a}}(M) \to 0.
$$

= 0
\n= 0
\n= 0
\n= 0
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 is
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 is
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (1)
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (2)
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (3)
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (4)
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (5)
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (6)
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (5)
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (6)
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (7)
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (8)
\n
$$
H_j^{\mathfrak{a}}(M)
$$
 (9)
\n
$$
\cdots \rightarrow H_{i+1}^{I,J}(\Lambda_{I,J}(M)) \rightarrow H_i^{I,J}(\bigcap_{h \in \widetilde{W}(I, I)} \mathfrak{b}(M) \rightarrow
$$

 $\lim_{\substack{\longleftarrow \\ \overline{\omega}(I,I)}} H_i^{\mathfrak{b}}(H_j^{\mathfrak{a}}(M))$ Hence we get a long

$$
M)) = \lim_{b \in \overline{W}(I,J)} H_{i}^{b}(\lim_{\alpha \in \overline{W}(I,J)} H_{i}^{a}(M)) \longrightarrow 0 \longrightarrow \bigcap_{b \in \overline{W}(I,J)} bM \rightarrow M \rightarrow \Lambda_{I,J}(M) \rightarrow 0.
$$

\n
$$
\cong \lim_{b \in \overline{W}(I,J)} \lim_{\alpha \in \overline{W}(I,J)} H_{i}^{b}(H_{j}^{a}(M)) \longrightarrow H_{i+1}^{I,J}(\Lambda_{I,J}(M)) \rightarrow H_{i}^{I,J}(\bigcap_{b \in \overline{W}(I,J)} bM) \rightarrow
$$

\n
$$
\cong \lim_{\alpha \in \overline{W}(I,J)} \lim_{b \in \overline{W}(I,J)} H_{i}^{b}(H_{j}^{a}(M)) \longrightarrow H_{i+1}^{I,J}(\Lambda_{I,J}(M)) \rightarrow H_{i}^{I,J}(\bigcap_{b \in \overline{W}(I,J)} bM) \rightarrow
$$

\n
$$
\cong \lim_{\alpha \in \overline{W}(I,J)} \text{Tor}_{i}^{R}(R/b^{t}, \lim_{\alpha \in \overline{W}(I)} (\text{Tor}_{j}^{R}(R/\mathfrak{a}^{s}, M))) \longrightarrow H_{1}(\Lambda_{I,J}(M)) \rightarrow H_{0}^{I,J}(\bigcap_{b \in \overline{W}(I,J)} bM) \rightarrow
$$

\n
$$
\cong \lim_{\overline{t} \to \overline{t}} \text{Tor}_{i}^{R}(R/b^{t}, \lim_{\alpha \in \overline{X}} (R/\mathfrak{a}^{s}, M)) \longrightarrow H_{0}^{I,J}(M) \rightarrow H_{0}^{I,J}(\Lambda_{I,J}(M)) \rightarrow 0.
$$

\n
$$
\cong \lim_{\overline{t} \to \overline{t}} \text{Tor}_{i}^{R}(R/b^{t}, \text{Tor}_{j}^{R}(R/\mathfrak{a}^{s}, M)) \longrightarrow H_{0}^{I,J}(M) \rightarrow H_{0}^{I,J}(\Lambda_{I,J}(M)) \rightarrow 0.
$$

\n
$$
\cong \lim_{\alpha \in \overline{t} \to \overline{t}} \text{Im } \text{Tor}_{i}^{R}(R/b^{t}, \text{Tor}_{j}^{R}(R/\mathfrak{a}^{s}, M)) \longrightarrow H_{0}^{I,J}(M) \rightarrow H_{0}^{I,J}(\Lambda_{I,J}(
$$

 $\rightarrow H_1(\Lambda_{I,J}(M)) \rightarrow H_0$ (
 \star^s, M)) $\rightarrow H_0^{I,J}(M) \rightarrow H_0^{I,J}(\Lambda_I$
 \star^s, M)) The lemma now follows from L

or of b The following result gives us

finiteness of coassociated prime

with respect to a pair of ideals
 (M) Theore $t \subseteq \mathfrak{a}^s$, for $H_i^{I,J}(M)$ are CFA for all $i < t$, (*M*) $\rightarrow H_0^{I,J}(M) \rightarrow H_0^{I,J}(\Lambda_{I,J}(M))$

The lemma now follows from Lem

of b The following result gives us a c

finiteness of coassociated primes o

with respect to a pair of ideals.

(*I*) **Theorem 2.6.** Let *M* be a li
 t, Tor_j^t(R/ \mathfrak{a}^s , M)) The lemma now follows from

of generator of \mathfrak{b} The following result gives

vs from (Cuong & finiteness of coassociated p

with respect to a pair of id

Tor_j^R(R/ \mathfrak{a}^s , M)) ong & finiteness of coassociated primes
with respect to a pair of ideals.
M)
Theorem 2.6. Let M be a
 R -module and t a non-negative
 \mathfrak{a}^s , for $H_i^{I,J}(M)$ are CFA for all $i <$
 $t \geqslant s$. ideal $\mathfrak{a} \in \widetilde{W}(I,J$ $\rightarrow H_1(M_1, J(M)) \rightarrow H_0$ (| | 0 M) \rightarrow
 $\downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow$ $\rightarrow H_0^{I,J}(M) \rightarrow H_0^{I,J}(\Lambda_{I,J}(M)) \rightarrow 0$.

The lemma now follows from Lemma 2.4.

The following result gives us a condition for the

finiteness of coassoci $\rightarrow H_0^{I,J}(M) \rightarrow H_0^{I,J}(\Lambda_{I,J}(M)) \rightarrow 0.$
lemma now follows from Lemma 2.4.
following result gives us a condition for the
mess of coassociated primes of local homology
respect to a pair of ideals.
orem 2.6. Let M be a linea $\rightarrow H_0^{(1)}(M) \rightarrow H_0^{(1)}(\Lambda_{I,J}(M)) \rightarrow 0.$
The lemma now follows from Lemma 2.4.
The following result gives us a condition for the
finiteness of coassociated primes of local homology
with respect to a pair of ideals.
Theorem 2 finiteness of coassociated primes of local homology
with respect to a pair of ideals.
Theorem 2.6. Let M be a linearly compact
 R -module and t a non-negative integer. If M and
 $H_i^{I,J}(M)$ are CFA for all $i < t$, th (b) is finite.

(M)) is finite.

$$
R/\mathfrak{a}\mathop{{\otimes}_R}H_t^{I,J}(M)
$$

 $j(R/\mathfrak{a}^s, M)$ is CFA. In particular, $\text{Coass}_R(H_t^{I,J}(M))$ is finite.

*Do Ngoc Yen/*Vol 10. No 4_August 2024| p.33-37
 Proof. The proof is by induction on t. Let $t = 0$. of these modules and gave a result

There is an ideal $\mathfrak{a} \in \tilde{W}(I, J)$ such that ∩ $\mathfrak{a} M = \begin{array}{c}$ of coassocia *Do Ngoc Yen/Vol* 10. No 4_Augu
 Proof. The proof is by induction on t. Let $t = 0$. of these

There is an ideal $\mathfrak{a} \in \tilde{W}(I, J)$ such that $\cap \mathfrak{a} M =$ of coasse
 $\mathfrak{a} M$. The short exact sequence
 $0 \to \mathfrak{a} M$ *Do Ngoc Yen/*Vol 10. No 4_August 20.
 Proof. The proof is by induction on t. Let $t = 0$. of these modu

There is an ideal $\mathfrak{a} \in \tilde{W}(I, J)$ such that $\cap \mathfrak{a} M =$ of coassociate
 $\mathfrak{a} M$. The short exact sequen

$$
0 \to \mathfrak{a} \, M \to M \to H_0^{1,J}(M) \to 0
$$

$$
R/\mathfrak{a}\otimes_R \mathfrak{a} M \to R/\mathfrak{a}\otimes_R M \to R/\mathfrak{a}\otimes_R H_0^{I,J}(M) \to 0.
$$

Proof. The proof is by induction on t. Let $t = 0$. of these modules and gave a result

There is an ideal $\mathfrak{a} \in \tilde{W}(I, J)$ such that $\cap \mathfrak{a} M$ = of coassociated primes of these modules and
 $\mathfrak{a} M$. The short $_{0}^{I,J}(M)$ is CFA. by induction on *t*. Let $t = 0$. of these module
 $\tilde{W}(I, J)$ such that $\cap \mathfrak{a} M =$ of coassociated

sequence
 $M \rightarrow H_0^{I, J}(M) \rightarrow 0$ funded by the H

tude of Techno

exact sequence
 $\otimes_R M \rightarrow R/\mathfrak{a} \otimes_R H_0^{I, J}(M) \rightarrow 0$.
 There is an ideal $\mathfrak{a} \in W(I, J)$ such that $\cap \mathfrak{a} M =$
 $\mathfrak{a} M$. The short exact sequence
 $0 \to \mathfrak{a} M \to M \to H_0^{I, J}(M) \to 0$

induces the following exact sequence
 $R/\mathfrak{a} \otimes_R \mathfrak{a} M \to R/\mathfrak{a} \otimes_R M \to R/\mathfrak{a} \otimes_R H$ $H_t^{I,J}(M) \cong H_t^{I,J}(\cap \mathfrak{a} M) =$ Cuong N. 1 $H_t^{I,J}(\mathfrak{a} M)$, we can replace M by The short exact sequence
 $0 \rightarrow a \, M \rightarrow M \rightarrow H_0^{I,J}(M) \rightarrow 0$

funded by the Posts and Telecomm
 $0 \rightarrow a \, M \rightarrow M \rightarrow H_0^{I,J}(M) \rightarrow 0$

funded by the Posts and Telecomm
 $\otimes_R a \, M \rightarrow R/\mathfrak{a} \otimes_R M \rightarrow R/\mathfrak{a} \otimes_R H_0^{I,J}(M) \rightarrow 0$.

REFERENCES

11 plants that $\alpha N \rightarrow M \rightarrow M + H_0^{I,J}(M) \rightarrow 0$

induces the following exact sequence
 $R/\mathfrak{a} \otimes_R \mathfrak{a} M \rightarrow R/\mathfrak{a} \otimes_R M \rightarrow R/\mathfrak{a} \otimes_R H_0^{I,J}(M) \rightarrow 0$.

R/ $\mathfrak{a} \otimes_R \mathfrak{a} M \rightarrow R/\mathfrak{a} \otimes_R H_0^{I,J}(M)$ is CFA.

Let $t > 0$. Since H $I \to R/\mathfrak{a} \otimes_R M \to R/\mathfrak{a} \otimes_R H_0^{I,J}(M) \to 0.$
 $\mathfrak{a} \otimes_R H_0^{I,J}(M)$ is CFA.
 \therefore Since $H_t^{I,J}(M) \cong H_t^{I,J}(\cap \mathfrak{a} M) = \text{Comp}$

we can replace M by $N = \mathfrak{a} M$. It im-
 $\mathfrak{a} \vee N = N$. Hence, there is an element

hat $R/\mathfrak{a}\otimes_R \mathfrak{a} M \to R/\mathfrak{a}\otimes_R M \to R/\mathfrak{a}\otimes_R H_0^{I,J}(M) \to 0.$

By [11], $R/\mathfrak{a}\otimes_R H_0^{I,J}(M)$ is CFA.

Let $t > 0$. Since $H_t^{I,J}(M) \cong H_t^{I,J}(\cap \mathfrak{a} M) =$
 $H_t^{I,J}(\mathfrak{a} M)$, we can replace M by $N = \mathfrak{a} M$. It im-

pl

$$
0 \to 0 :_N x \to N \xrightarrow{x} N \to 0
$$

\n plies that
$$
\mathfrak{a} N = N
$$
. Hence, there is an element $x \in \mathfrak{a}$ such that $xN = N$. The short exact sequence\n $0 \rightarrow 0:_{N} x \rightarrow N \xrightarrow{y} N \rightarrow 0$ \n

\n\n induces a long exact sequence $\cdots \rightarrow H_{t}^{I,J}(N) \xrightarrow{y} H_{t}^{I,J}(N) \xrightarrow{y} H_{t-1}^{I,J}(0:_{N} x) \rightarrow$ \n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is $\mathfrak{a} \cup \mathfrak{a}$.\n

\n\n The first term is <

By the assumption, $H_i^{I,J}(0:_{N} x)$ is CFA for all $\Rightarrow H_{t-1}^{I,J}(N) \rightarrow \cdots \rightarrow H_0^{I,J}(N) \rightarrow 0.$
By the assumption, $H_i^{I,J}(0 :_N x)$ is CFA for all
 $i < t - 1$. The exact sequences
 $H_t^{I,J}(N) \xrightarrow{x} H_t^{I,J}(N) \rightarrow \text{Im }\alpha \rightarrow 0$
and
 $0 \rightarrow \text{Im }\alpha \rightarrow H_{t-1}^{I,J}(0 :_N x) \rightarrow \text{Im }\beta \rightarrow 0$
lead the isomorphism

$$
H_t^{I,J}(N) \xrightarrow{x} H_t^{I,J}(N) \to \text{Im}\,\alpha \to 0
$$

and

$$
0 \to \operatorname{Im} \alpha \to H_{t-1}^{I,J}(0:_N x) \to \operatorname{Im} \beta \to 0
$$

$$
R/\mathfrak{a}\mathop{\otimes} H_t^{I,J}(N)\cong R/\mathfrak{a}\mathop{\otimes} \operatorname{Im}\alpha
$$

$$
H_t^{I,J}(N) \xrightarrow{x} H_t^{I,J}(N) \to \text{Im }\alpha \to 0 \qquad \text{and}
$$

\nand
\n
$$
0 \to \text{Im }\alpha \to H_{t-1}^{I,J}(0:_N x) \to \text{Im }\beta \to 0 \qquad \text{Mac}
$$

\nlead the isomorphism
\n
$$
R/\mathfrak{a} \otimes H_t^{I,J}(N) \cong R/\mathfrak{a} \otimes \text{Im }\alpha \qquad \text{for}
$$

\nand the long exact sequence
\n
$$
\text{Tor}_1^R(R/\mathfrak{a}, \text{Im }\beta) \to R/\mathfrak{a} \otimes \text{Im }\alpha \to \text{for}
$$

\n
$$
\to R/\mathfrak{a} \otimes H_{t-1}^{I,J}(0:_N x).
$$
 Take

 $\begin{array}{lllllllllllllll} 0\to \mbox{Im}\,\alpha\to H^{I,J}_{t-1}(0:_Nx)\to \mbox{Im}\,\beta\to 0 & & & \mbox{Macdonald I. G. (1962). D} \\ & \mbox{lead the isomorphism} & & \mbox{Macdonald I. G. (1973).} \end{array} \begin{array}{lllllllllllllll} \end{array}$ R/ $\frak{a}\otimes H^{I,J}_t(N)\cong R/\frak{a}\otimes \mbox{Im}\,\alpha & & \mbox{tation of modules over a } \\ & \mbox{Equation of modules over a } Symposia Mathematica 11 \\ & \mbox{and the long exact sequence} & &$ lead the isomorphism
 $R/\mathfrak{a} \otimes H_t^{I,J}(N) \cong R/\mathfrak{a} \otimes \text{Im }\alpha$

and the long exact sequence
 $\text{Tor}_1^R(R/\mathfrak{a}, \text{Im }\beta) \to R/\mathfrak{a} \otimes \text{Im }\alpha \to$
 $\to R/\mathfrak{a} \otimes H_{t-1}^{I,J}(0:_N x).$

It follows from (Tri, 2021) that $\text{Im }\beta$ is CF fore, so is $\text{Tor}^R_1(R/\mathfrak{a}, \text{Im }\beta)$. The inductive hypoth- $\begin{array}{lllllllllllll} \mbox{phism} & \mbox{Macdonald I. G. (1973).} \\ \otimes H_t^{I,J}(N) \cong R/\mathfrak{a} \otimes \operatorname{Im}\alpha & \mbox{fational d. C. (1973).} \\ \mbox{factor sequence} & \mbox{Rotman J. J. (2009).} \hbox{ } An \mbox{d}n & \mbox{mological algebra, Spring} \\ \mbox{R/\mathfrak{a},\operatorname{Im}\beta)} \rightarrow R/\mathfrak{a} \otimes \operatorname{Im}\alpha \rightarrow & \mbox{mological algebra, Spring} \\ \mbox{R/\mathfrak{a} \otimes H_{t-1}^{I,J}($ $R/\mathfrak{a} \otimes H_t^{I,J}(N) \cong R/\mathfrak{a} \otimes \text{Im }\alpha$

and the long exact sequence
 $\text{Tor}_1^R(R/\mathfrak{a}, \text{Im }\beta) \to R/\mathfrak{a} \otimes \text{Im }\alpha \to$
 $\to R/\mathfrak{a} \otimes H_{t-1}^{I,J}(0:_N x).$

It follows from (Tri, 2021) that $\text{Im }\beta$ is CFA. There-

fore, so is $I_{t-1}^{I,J}(0:_{N}x)$ is a CFA mod- $R/\mathfrak{a} \otimes H_t^{t,s'}(N) \cong R/\mathfrak{a} \otimes \text{Im }\alpha$ Symposia Mathematica 11, 2

and the long exact sequence
 $\text{Tor}_1^R(R/\mathfrak{a}, \text{Im }\beta) \to R/\mathfrak{a} \otimes \text{Im }\alpha \to \text{modgical algebra, Springer I}$
 $\to R/\mathfrak{a} \otimes H_{t-1}^{t, J}(0:_{N} x).$

It follows from (Tri, 2021) and the long exact sequence
 $\text{Tor}_1^R(R/\mathfrak{a}, \text{Im }\beta) \to R/\mathfrak{a} \otimes \text{Im }\alpha \to$
 $\to R/\mathfrak{a} \otimes H_{t-1}^{I,J}(0:_N x).$

It follows from (Tri, 2021) that $\text{Im }\beta$ is CFA. There-

fore, so is $\text{Tor}_1^R(R/\mathfrak{a}, \text{Im }\beta)$. The inductive h $\text{Tor}_1^R(R/\mathfrak{a}, \text{Im }\beta) \to R/\mathfrak{a} \otimes \text{Im }\alpha \to$
 $\to R/\mathfrak{a} \otimes H_{t-1}^{I,J}(0:_N x).$

It follows from (Tri, 2021) that $\text{Im }\beta$ is CFA. The

fore, so is $\text{Tor}_1^R(R/\mathfrak{a}, \text{Im }\beta)$. The inductive hype

esis shows that $R/\mathfrak{a} \ot$ It follows from (Tri, 2021) that Im β is CFA. There-
fore, so is Tor ${}^{R}_{1}$ (R/ \mathfrak{a} , Im β). The inductive hypoth-
esis shows that $R/\mathfrak{a} \otimes H_{L-1}^{I,J}(0:_{N} x)$ is a CFA mod-
ule. Therefore, we have $R/\mathfrak{a} \ot$ It follows from (Tri, 2021) that Im β is CFA. There-
fore, so is Tor₁^R(R / α , Im β). The inductive hypoth-
esis shows that $R/\mathfrak{a} \otimes H_{t-1}^{L,1}(0:_{N} x)$ is a CFA mod-
ule. Therefore, we have $R/\mathfrak{a} \otimes \text{$ fore, so is Tor¹²(R / \mathfrak{a} , Im β). The inductive hypoth-
esis shows that $R / \mathfrak{a} \otimes H_{t-1}^{I,0}$ ($0 \cdot_N x$) is a CFA mod-
ule. Therefore, we have $R / \mathfrak{a} \otimes \text{Im }\alpha$ is CFA and this Yassemi S. (1995). Coasso
com

because the research of a GFA module. Therefore, we have $R/\mathfrak{a} \otimes \text{Im }\alpha$ is CFA and this Yassemi S. (1995).

completes the proof. Comm. Algebra 23, 14

3 CONCLUSION Zöschinger H. (1983). I uln über Noethersche

In thi

of these modules and gave a result on the finitness
of these modules and gave a result on the finitness
of coassociated primes of these modules.
Acknowledgements. This work was supported and

 $0 \to \mathfrak{a} M \to M \to H_0^{1,0}(M) \to 0$ tude of Technology (PT $Do Ngoc \text{ Yen/Vol } 10. \text{ No } 4_August 2024$

tion on t. Let $t = 0$. of these modules

) such that $\cap \mathfrak{a} M =$ of coassociated p
 $Acknowledgement$
 $I,J(M) \rightarrow 0$
 $I(M) \rightarrow 0$
 $I(M)$ at ∩ a M = of coassociated primes of these move Acknowledgements. This work was
funded by the Posts and Telecommu
tude of Technology (PTIT), Vietna
No.04-2024-HV-CB2.
 $H_0^{I,J}(M) \rightarrow 0$.
REFERENCES
(∩ a M) = Cuong N. T., Na of these modules and gave a result on the finitness
of coassociated primes of these modules.
Acknowledgements. This work was supported and
funded by the Posts and Telecommunications Insti-4_August 2024| p.33-37

of these modules and gave a result on the finitness

of coassociated primes of these modules.

Acknowledgements. This work was supported and

funded by the Posts and Telecommunications Insti-

tude 4_August 2024| p.33-37
of these modules and gave a result on the finitness
of coassociated primes of these modules.
Acknowledgements. This work was supported and
funded by the Posts and Telecommunications Insti-
tude of Te 4_August 2024| p.33-37
of these modules and gave a result on the finitness
of coassociated primes of these modules.
Acknowledgements. This work was supported and
funded by the Posts and Telecommunications Insti-
tude of Te No.04-2024-HV-CB2. f these modules and gave a result on the finitness
f coassociated primes of these modules.
 $1cknowledgements$. This work was supported and

unded by the Posts and Telecommunications Insti-

ude of Technology (PTIT), Vietnam under Gr associated primes of these modules.
 cowledgements. This work was supported and

ed by the Posts and Telecommunications Insti-

of Technology (PTIT), Vietnam under Grant

4-2024-HV-CB2.

REFERENCES

ong N. T., Nam T. T. nowledgements. This work was supported and
ed by the Posts and Telecommunications Insti-
of Technology (PTIT), Vietnam under Grant
4-2024-HV-CB2.
REFERENCES
pag N. T., Nam T. T. (2001). The *I*-adic
completion and local ho

REFERENCES

- $J(\cap \mathfrak{a} M)$ = Cuong N. T., Nam T. T. (20

e **a** M. It im-

an element and local homo

an element 61-72.

O Cuong N. T., Nam T. T. (20

mology theory for linearly completion and 10cal homo

61-72.

O mology N. T., Nam 61-72. Cuong N. T., Nam T. T. (2001). The I -adic

completion and local homology for Artinian

modules. *Math. Proc. Camb. Phil. Soc.* 131,

61-72.

Cuong N. T., Nam T. T. (2008). A Local ho-

mology theory for linearly compact REFERENCES

ong N. T., Nam T. T. (2001). The *I*-adic

completion and local homology for Artinian

modules. *Math. Proc. Camb. Phil. Soc.* 131,

61-72.

ong N. T., Nam T. T. (2008). A Local ho-
 J. Algebra. 319, 4712-473 REFERENCES

ong N. T., Nam T. T. (2001). The *I*-adic

completion and local homology for Artinian

modules. *Math. Proc. Camb. Phil. Soc.* 131,

61-72.

ong N. T., Nam T. T. (2008). A Local ho-

mology theory for linearly Cuong N. T., Nam T. T. (2001). The I -adic
completion and local homology for Artinian
modules. *Math. Proc. Camb. Phil. Soc.* 131,
61-72.
Cuong N. T., Nam T. T. (2008). A Local ho-
mology theory for linearly compact modu ompletion and local homology for Artinian
modules. *Math. Proc. Camb. Phil. Soc.* 131,
61-72.
mg N. T., Nam T. T. (2008). A Local ho-
mology theory for linearly compact modules.
J. Algebra. 319, 4712-4737.
ong N. T, Nhan
	- Cuong N. T., Nam T. T. (2008). A Local homology theory for linearly compact modules. completion and local homology for Artinian
modules. *Math. Proc. Camb. Phil. Soc.* 131,
61-72.
pmg N. T., Nam T. T. (2008). A Local ho-
mology theory for linearly compact modules.
J. Algebra. 319, 4712-4737.
ong N. T., N
	-
- The short exact sequence

The short exact sequence
 $N \xrightarrow{x} N \rightarrow 0$

Cuong N. T., Nam T. T. (2008

mology theory for linearly co
 $N \xrightarrow{\alpha} H_{t-1}^{I,J}(0 :_{N} x) \rightarrow$

[Cuong N. T, Nam L. T. (2008
 M) $\xrightarrow{\alpha} H_{t-1}^{I,J}(0 :_{N} x) \rightarrow$
 ules. Springer-Verlag, Berlin-Heidelberg-New (1) $\rightarrow H_0^{I,J}(N) \rightarrow 0$.
 $\rightarrow H_0^{I,J}(N) \rightarrow 0$.
 $\downarrow \text{inter}$ moetherian dimension
 $\downarrow \text{inter}$
 $\downarrow \text{inter}$
 61-72.

Cuong N. T., Nam T. T. (2008). A Local homology theory for linearly compact modules.
 J. Algebra. 319, 4712-4737.

[Cuong N. T, Nhan L. T. (2002). On the

noetherian dimension of artinian modules.
 Vietnam Jour lim et leurs Applications en Théorie des Modong N. T., Nam T. T. (2008). A Local homology theory for linearly compact modules.
 J. Algebra. 319, 4712-4737.

ong N. T., Nhan L. T. (2002). On the

noetherian dimension of artinian modules.
 Vietnam Journal of Mathe ing N. 1., Nain 1. 1. (2006). A Locar in-
mology theory for linearly compact modules.
J. Algebra. 319, 4712-4737.
ong N. T, Nhan L. T. (2002). On the
noetherian dimension of artinian modules.
Vietnam Journal of Mathematic York. [Cuong N. T, Nhan L. T. (2002). On the
noetherian dimension of artinian modules.
Vietnam Journal of Mathematics 30, 121-130.
Jensen C. U. (1972). Les Foncteurs Dérivés de
 \varprojlim_{t} et leurs Applications en Théorie des Mod ong N. 1, Nhan L. 1. (2002). On the
noetherian dimension of artinian modules.
Vietnam Journal of Mathematics 30, 121-130.
sen C. U. (1972). Les Foncteurs Dérivés de
 $\lim_{t \to t}$ et leurs Applications en Théorie des Mod-
ule Vietnam Journal of Mathematics 30, 121-130.

Jensen C. U. (1972). Les Foncteurs Dérivés de
 \varprojlim_{t} et leurs Applications en Théorie des Mod-

ules. Springer-Verlag, Berlin-Heidelberg-New

York.

Macdonald I. G. (1962). sen C. U. (1972). Les Foncteurs Dérivés de
 $\frac{\text{Im}}{\epsilon}$ et leurs Applications en Théorie des Mod-
 $\frac{\text{Im}}{\epsilon}$. Springer-Verlag, Berlin-Heidelberg-New

York.

cdonald I. G. (1962). Duality over complete

local rings. To Sen C. O. (1972). Les Foncteurs Derives de
 $\frac{\text{Im}}{t}$ et leurs Applications en Théorie des Mod-

ules. Springer-Verlag, Berlin-Heidelberg-New

York.

cdonald I. G. (1962). Duality over complete

local rings. Topology 1
	-
	- tation of modules over a commutative ring.
Symposia Mathematica 11, 23-43. *ules.* Springer-Verlag, Berlin-Heidelberg-New
York.
Macdonald I. G. (1962). Duality over complete
local rings. Topology 1, 213-235.
Macdonald I. G. (1973). Secondary represen-
tation of modules over a commuatative ring.
S York.

	Edonald I. G. (1962). Duality over complete

	local rings. Topology 1, 213-235.

	Edonald I. G. (1973). Secondary represen-

	tation of modules over a commutative ring.

	Symposia Mathematica 11, 23-43.

	man J. J. (2009
	- mological algebra, Springer Press.
	- $\begin{aligned}\n\cong R/\mathfrak{a}\otimes \text{Im}\,\alpha & \text{station of modules over a c} \\
	\cong R/\mathfrak{a}\otimes \text{Im}\,\alpha &\text{Symposia Mathematica 11}, \\
	\in & \text{Rotman J. J. (2009). } An \text{ in } n\n\end{aligned}$ $\begin{aligned}\n\cong R/\mathfrak{a}\otimes \text{Im}\,\alpha \rightarrow & \text{mological algebra, Springer} \\
	\cong \mathfrak{a} \text{Hom}_{\mathfrak{a}} \to & \text{mological algebra, Springer} \\
	\cong \mathfrak{a} \text{Hom}_{\mathfrak{a}} \to & \text{Rakahashi R., Yoshino Y} \\$ Macdonald I. G. (1962). Duality over complete
local rings. Topology 1, 213-235.
Macdonald I. G. (1973). Secondary represen-
tation of modules over a commutative ring.
Symposia Mathematica 11, 23-43.
Rotman J. J. (2009). An local rings. *Topology* 1, 213-235.

	cdonald I. G. (1973). Secondary represen-

	tation of modules over a commutative ring.
 Symposia Mathematica 11, 23-43.

	man J. J. (2009). An introduction to ho-

	mological algebra, Sp closed I. G. (1973). Secondary represen-
tation of modules over a commutative ring.
Symposia Mathematica 11, 23-43.
man J. J. (2009). An introduction to ho-
mological algebra, Springer Press.
ahashi R., Yoshino Y., Yoshiza cdonald I. G. (1973). Secondary representation of modules over a commutative ring.

	Symposia Mathematica 11, 23-43.

	man J. J. (2009). An introduction to ho-

	mological algebra, Springer Press.

	ahashi R., Yoshino Y., Yosh Symposia Mathematica 11, 23-43.

	Rotman J. J. (2009). An introduction to homological algebra, Springer Press.

	Takahashi R., Yoshino Y., Yoshizawa T.

	(2009). Local cohomology based on a non-

	closed support defined by a p man J. J. (2009). An introduction to ho-
mological algebra, Springer Press.
ahashi R., Yoshino Y., Yoshizawa T.
(2009). Local cohomology based on a non-
closed support defined by a pair of ideals. J.
Pure Appl. Algebra 213 mological algebra, Springer Press.

	Takahashi R., Yoshino Y., Yoshizawa T.

	(2009). Local cohomology based on a non-

	closed support defined by a pair of ideals. J.

	Pure Appl. Algebra 213, 582-600.

	Yassemi S. (1995). Coa ahashi R., Yoshino Y., Yoshizawa

	(2009). Local cohomology based on a no

	closed support defined by a pair of ideals.
 Pure Appl. Algebra 213, 582-600.

	semi S. (1995). Coassociated prime
 Comm. Algebra 23, 1473-1498.

		-
		-
		- closed support defined by a pair of ideals. *J.*
 Pure Appl. Algebra 213, 582-600.

		Yassemi S. (1995). Coassociated primes.
 Comm. Algebra 23, 1473-1498.

		Zöschinger H. (1983). Linear-Kompakte Mod-

		uln über Noethersch Pure Appl. Algebra 213, 582-600.

		semi S. (1995). Coassociated primes.

		Comm. Algebra 23, 1473-1498.

		hinger H. (1983). Linear-Kompakte Mod-

		uln über Noetherschen Ringen. *Arch. Math.*

		41, 121-130.

		N. M. (2021). CFA mod modules. (1995). Coassociated primes.

		Comm. Algebra 23, 1473-1498.

		hinger H. (1983). Linear-Kompakte Mod-

		uln über Noetherschen Ringen. Arch. Math.

		41, 121-130.

		N. M. (2021). CFA modules and the finite-

		ness of coass