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Article info Abstract:
In this work, the anharmonic extended X-ray absorption fine structure
Recieved: (EXAFS) oscillation of crystalline silicon (c-Si) is presented in terms of the
16/9/2020 Debye-Waller factor using the cumulant expansion approach up to the fourth-
order. The first four EXAFS cumulant has been calculated based on the
Accepted: classical anharmonic correlated Einstein (ACE) model and suitable analysis
10/12/2020 procedure, in which thermodynamic parameters are derived from the
anharmonic effective potential obtained using the first shell near-neighbor
contribution approach. The analysis of the temperature dependence of the
EXAFS oscillation is performed via evaluating the influence of the cumulants
Keywords:

on the amplitude reduction and the phase shift of the anharmonic EXAFS
oscillation. The numerical results are found to be in good agreement with those
obtained using the quantum ACE model and experiments at various
temperatures. The obtained results are useful in analyzing the experimental
EXAFS data of c-Si.
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1. Introduction non-negligible errors in the structural parameters.

. . The use of the moments of the radial distribution
The extended X-ray absorption fine structure ] ] ) )
function (or cumulants) to investigate local disorder
of EXAFS spectra was introduced by Rehr [3] who
showed that the Debye-Waller (DW) factor of

EXAFS spectra has a natural cumulant expansion in

(EXAFS) has been developed into a powerful
technique and is widely used to determine many
structural parameters and dynamic properties of

materials [1]. However, the position of atoms is not
powers of the photoelectron wavenumber. The

connection between the DW factor and the EXAFS
cumulants was described in detail in the cumulant

stationary, and their interatomic distance always
changes due to thermal vibrations that were
detected by Beni & Platzman [2]. They cause
anharmonic effects on crystal vibrations and smear
out the EXAFS oscillations. The anharmonicity of
the potential yields additional terms in the EXAFS
oscillation, so if ignoring these terms, can lead to

expansion approach (ratio method) by Bunker [4].
The ratio method is particularly appealing because
it summarizes the relevant structural and dynamic
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information that is easily obtained from the
experimental EXAFS spectra.

Recently, a classical anharmonic correlated
Einstein (ACE) model [5] was developed based on
the anharmonic effective (AE) potential [6] and the
classical statistical theory [7]. This model has the
advantage that the expressions of the first four
EXAFS cumulants are obtained in explicit and
simple forms, so it is very convenient for
anharmonic EXAFS data analysis in the range of
temperatures not too low. It has also been
successfully applied to investigate the anharmonic
EXAFS oscillation for diamond crystals by Tien et
al. [8]. However, the temperature dependence of
anharmonic EXAFS amplitude and phase has not
been discussed in detail. Besides, it has been
applied to successfully investigate crystalline
germanium but has not yet been investigated
crystalline silicon (c-Si). Therefore, the analysis of
the temperature dependence of anharmonic EXAFS
oscillation for c-Si will be a necessary addition to
evaluate the effectiveness of the classical ACE
model in the EXAFS technique.

M (k,T,.T,) 0 =2k* {o* (T,) — o (T,)} + =~

(KT, T,)0 2k o (T,)- o (T, )} - 4k {_+_

(n)

where o’ are Nth-order cumulants and can

be expressed in terms of the power moments of the

true RD function p(T, I‘) )

2.2.  Thermodynamic  parameters  and

anharmonic effective potential of c-Si

To determine the thermodynamic parameters of
a system, it is necessary to specify its AE potential
and force constants [10]. One considers a
monatomic system with an anharmonic effective
potential (ignored the constant contribution) is
extended up to the fourth-order:

V. (X) = % kox® =K x° +Kk,x*, (4)
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2. Basic formulae of EXAFS function and
anharmonic effective potential of c-Si

2.1. Basic formulae of EXAFS function

The EXAFS oscillation for a single coordination
shell, including thermal disorders has the form:

2(kT)=A(KT)sin®dKk,T), @

where A(k,T) and ®(k,T) are the EXAFS

amplitude and phase, respectively, and K is the

photoelectron ~ wavenumber, and Tis the
temperature.

The K-edge EXAFS oscillation for the distribution
of identical atoms is described within the framework
of single-scattering and plane-wave approximations.
Following the approach proposed by Tien [9], the
logarithm of amplitude ratio

M(k,T,T,)= In[A(k,TZ)/A(k,Tl)] and the linear
phase difference A(I)(k,Tl,Tz)=d)(k,T2)—<D(k,T1)

between temperatures T, and T, in the cumulant

expansion approach up to the fourth-order, which are
given as follows:

{ ) (T2 ) e C) (Tl )} , )

s

}{62 (T2 ) —o? (Tl)} —?{0'(3) (T2 ) % (Tl)} )

where X=r—I, is the deviation of the
interatomic distance from the potential minimum
position, K, is the effective force constant, ks and

ks are local force constants giving asymmetry of
potential due to the inclusion of anharmonicity.

The Morse potential is assumed to describe the
interatomic interaction model for the potential
energy of a diatomic molecule. Applying the Morse
potential to calculate the interaction energy between
each pair of atoms in cubic metals was proposed by
Girifalco and Weizer [11]. In the present study, we
expand the Morse potential to the fourth-order:
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V(x)=D(e**-2e)=-D+Da’x’

where x is the same previously defined value,
o describes the width of the potential, and D is the
dissociation energy.

In the relative vibrations of absorbing (A) and

@ =V)+ D DV

i=A,B j=A,B

where  ©=M,Mg/(M,+M;) is the

reduced mass of the absorber and backscatterer

with masses Ma and Mg, respectively, R is a unit

—Da’x® +12 Dax*. (5)

backscattering (B) atoms, including correlation
effects and taking into account only the nearest-
neighbor interactions, the AE potential [6] is given

by

( xR, g RIJ j (6)

vector, the sum i is the over absorbers (i = A) and

backscatterers (I = B), and the sum j is over the
nearest neighbors.

®

Fig. 1. Structural model of c-Si.

Applying Egs. (5) and (6) to the structure of c-
Si with a mass of atoms is M, =M; =m, as seen

in Fig. 1, the AE potential is written as

(x)— a’x’ — 35 Da3x3+@a4x4.
36 2592

()

The local force constants K,, ks, and ks are

deduced from Eq. (7) as follows:

where kg is the Boltzmann constant, 7 is the
reduced Planck constant.

Consequently, the correlated Einstein frequency

@g and temperature @, and force constants

_hay

Comparing Eq. (4) with Eq. (7), we deduce the

local force constants k0 , ks, and k4 as follows:

K, =ZDa2, K, =%Da3, K, =%Da4.

(®)

The thermal vibration of atoms is characterized
by the correlated Einstein frequency g and
temperature 6., which are calculated from the
effective force constantk, in the following forms:

ha [10D
6 kVm @

B B m
Ko, K,, and K, are expressed in terms of the Morse

potential parameters via Egs. (8) and (9).
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The analysis of the EXAFS spectra usually uses the
first four EXAFS cumulants [10]. The expressions
of the first four cumulants of diamond crystals

3. Temperature dependence of EXAFS
oscillation within the classical ACE model
The EXAFS cumulants are explicitly related to

o . within the classical ACE model are given as
low-order moments of the distribution function.

follows [8]:
¥ 1ok T :5_050_21 (10)
28Da 4
c? 3y T= 2k T=0o%, (11)

7Da’  ma?

b

2 90 5\2
98D%° | _“??(a ). 12

3 2
(4) . 687kB 3 229 23
o T = o). (13)
686D*a* 18 ( )
Substituting the anharmonic EXAFS cumulants from Egs. (10)-(13) into Egs. (2) and (3) to calculated the

logarithm of amplitude ratio M (k,Tl,Tz) and the linear phase difference ACD(k,Tl,Tz) , the results are obtained as

6k 229k}
M (kT T,) 0 =k (T, =Ty + ek (T -5, (14)
15k 12k, [1 1 30ks
AD(K,T,T,)L . DBO[k(T2 _Tl)_F;Z r_+1}k(T2 _Tl)_49D2;3 k3(T22 _le), (15)
0

Thus, the EXAFS cumulants using the CACE
model can be expressed in the explicit and simple
forms of the mean-square relative displacement

(MSRD) o or temperature T . Consequently, the
logarithm of amplitude ratio and the phase
difference of the EXAFS oscillation is also
expressed in simple forms of temperature via the
EXAFS cumulants. These obtained results can
describe the influence of anharmonic effects on the
classical limit at high temperatures, and show that
the cumulants are very useful for the quantitative
treatment of the anharmonic EXAFS oscillation.

4. Numerical results and discussions

To discuss the effectiveness of the classical
ACE model for the analysis of the EXAFS
oscillation of ¢-Si in this work, we apply Egs. (8)-
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(9) in Sec. 2 and Egs. (10)-(15) in Sec. 3 to the
numerical calculations.  Firstly, we perform
numerical calculations for the force constants of the
AE potential, the thermodynamic parameters, and
the temperature dependence of the first four
EXAFS cumulants in the range from 0 K to 1000
K. Our results of the cumulants are compared with
those obtained using the quantum ACE model [6]
in the range from 0 K to 1000 K by Hung et al. [12]
and experiment at 80 K, 300 K, and 500 K by
Benfatto et al. [13]. Then, we analyze the logarithm
of amplitude ratio and the phase difference of the
anharmonic EXAFS oscillation with reference
value at 6, in the wavenumber range from 0 A to

20 Al at 700 K, 800 K, and 900K. Lastly, we
evaluate and comment on the results obtained using
the classical ACE model in this work.
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Fig. 2. Temperature dependence of (a) the first,
(b) second, (c) third, and (d) fourth EXAFS
cumulants of c-Si obtained using the ACE model,
the quantum ACE model [12], and the experiments
[13].

The force constants K,, ks, and ks, and the
correlated Einstein frequency @. and temperature
O are calculated via Egs. (8)-(9). Our obtained
results are K, [110.39eVA? K, [] 6.75eVA?,
K, ] 6.35eVA2, o []8.42 x 10%°Hz,
and G [ 643.49 K, in which the use of the Morse
D=183 &ev and

a =1.56A" in calculations were determined by
Swalin (1961) [14].

potential  parameters

The temperature dependence of (a) the first
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o?(T), (c) the third cumulant 0(3)(T), and (d)

the fourth cumulant 0(4)(T) of ¢-Si is calculated
by Egs. (9)-(12) and shown in Fig. 2. Our obtained
results using the classical ACE model agree well
with the results obtained using the quantum ACE
model [12] (for the first three cumulants) and the
experiments [13] (for the second cumulants) at high
temperatures, especially for high-order cumulants.
For example, at 500 K, the results obtained using
the classical ACE model and quantum ACE model

are oV 181x103°A, P 104.1x10°%A2,
oV 16.7x10° A, and o 12 2x107° A4,
and oW [19.2x103A

o® 14.7x10° A% and o' [1 6.8x10° A3
[12], respectively, while the experimental value is
P ~43x10°A2 at 500 K [13]. Our
expressions of the first three EXAFS cumulants are

the same as the corresponding expressions
calculated by the quantum ACE model [12] in the
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high-temperature limit. Moreover, our results of the
EXAFS cumulants can agree with their
experimental values at high temperatures although
we have only experimental values of the second
cumulant in comparisons. It is because the
experimental values of other cumulants can all be
deduced from the second cumulant [15].

Thus, the results of the temperature dependence
of the first four EXAFS cumulants of c-Si are

—T-700K ' ' (a)
|——-T=800K S

In[A(k,TY/A(k,,)]

Fig. 3. The (a) logarithm of amplitude ratio and
(b) phase difference with reference value at 6. of

c-Si obtained using the classical ACE model at
various temperatures.

The (a) logarithm of amplitude ratio

M(k,T):In[A(k,T)/A(k,HE)] and (b) phase

difference A(D(k,T):(D(k,T)—CD(k,HE) of ¢-Si

at 700 K, 800 K, and 900 K are calculated by Eqgs.
(14)-(15) and shown in Fig. 3. It can be seen that

the values of M (k,T) and AqD(k,T) decrease

with increasing temperature T and decrease with
fast-increasing wavenumber k. For example, at T =
700 K, T=800 K, and T =900 K, the approximate

results of M (k,T) are — 0.086, — 0.231, and —

0.372 at k =10A", and — 0.233, — 0.578, and —
0.833 at Kk =20A" respectively, while the

corresponding results of Ad)(k,T) are — 0.014, —
0.043, and — 0.080 at K =10A", and — 0.192, —
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obtained using the classical ACE model, which
satisfied all of their fundamental properties in
comparison with the quantum ACE model and
experiment at temperatures above the correlated
Einstein temperature. It is explained because
anharmonicity in EXAFS spectra appears from
about room temperature. These results described the
influence of anharmonic effects on the classical
limit via thermal vibration-contributions at high
temperatures.

0.4 l—T=700K ' ' (b)]
--=-T=800K Si
- T=900K
12t , , , ]
0 5 10 15 20

k(A

0.573, and — 1.012 at k =20 A", respectively.
Moreover, in the temperature dependence, the value

of Ad)(k,T) decreases faster than the value of

M(k,T). It is because high-order cumulants
increase with temperature T, in which the third

cumulant reduces the value of Aq)(k,T) and the

fourth cumulant increases the value of M (k,T),

as seen Egs. (14) and (15).

Thus, the results of the temperature dependence
of anharmonic EXAFS oscillation of c-Si are
obtained using the classical ACE model, which
shows that the even-order cumulants contribute to
the amplitude reduction, and the odd-order
cumulants contribute primarily to the phase shift of
the anharmonic EXAFS oscillation. Accurate
calculation of the cumulants will allow us to
accurately analyze the change of the anharmonic
EXAFS oscillation, and from which one will
determine the structural parameters from the
experimental EXAFS data.
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5 Conclusions

In this work, the classical ACE model has been
used successfully in the analysis of the anharmonic
EXAFS oscillation of c-Si. The EXAFS analysis is
performed based on evaluating the contribution of
terms of the Debye-Waller factor in the cumulant
expansion approach up to the fourth-order. The
results of the first four EXAFS cumulants are not
only expressed in explicit and simple forms of the
temperature T or MSRD but also satisfy all of their
fundamental properties in temperature dependence.
The analytical results show the role and meaning of
the EXAFS cumulants for the amplitude reduction
and the phase shift of the anharmonic EXAFS
oscillation. The obtained results are very useful for
analyzing the experimental data of the anharmonic
EXAFS oscillation of c-Si.

The good agreement of our numerical results with
those obtained using the quantum ACD model and the
experiments at various temperatures show the
effectiveness of the classical ACE model for
calculating and analyzing the anharmonic EXAFS
oscillation of c-Si. The obtained results can be applied
to the analysis of the anharmonic EXAFS oscillation
of c-Si starting from about the correlated Einstein
temperature to just before the melting point.
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SU PHU THUQC VAO NHIET PQ CUA DAO PONG EXAFS
PHI PIEU HOA CUA TINH THE SILIC

Tong Sy Tién, Lé Viét Hoang

Théng tin bai viét

Tom tit

Ngay nhdn bai:
16/9/2020

Ngay duyét dang:
10/12/2020

T khoa:

Phan tich EXAFS; Hé so
Debye-Waller; M& hinh
Einstein twong quan phi

diéu hoa; Tinh thé silic.

Trong cong viéc nay, dao dong cua pho cau tric tinh t¢ mé rong (EXAFS) phi
diéu hoa cua tinh thé silic dd dugc biéu dién qua cic s6 hang ciia hé s6 Debye-
Waller bang phuong phap khai trién cumulant dén bac bén. Bon EXAFS
cumulant dau tién da dugc tinh toan dwa trén mo hinh Einstein twong quan phi
diéu hoa (ACE) ¢6 dién va qui trinh phéan tich phu hop, trong d6 cic tham sb
nhiét dong dwoc rut ra tir ham thé hiéu dung phi diéu hoa thu duoc bang cach
tiép can cac dong gop lan can cua 16p nguyén tr dau tién. Viéc phén tich su
phu thudc vao nhiét d6 cia dao dong EXAFS duoc thuc hién thong qua viéc
danh gia anh hudng ctia cac cumulant vao sy giam bién d¢ va sy dich pha. Cac
két qua tinh sé dwoc tim thy trang hop tt voi cac két qua thu dwoc biang mé
hinh ACE lugng tr va thuc nghi€ém & cac nhiét 3§ khac nhau. Cac két qua thu
duoc 1a rat hitu ich ddi trong viéc phén tich cac dir liéu EXAFS thuc nghiém

cua c-Si.
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