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 Bài toán chấp nhận tách đa tập (MSSFP) được đưa ra đầu tiên bởi Censor 
và Elfving để mô hình hoá bài toán ngược trong khôi phục ảnh. Cho đến 
nay, có rất nhiều công trình liên quan đến phương pháp lặp để giải bài toán 
MSSFP và hầu hết các công trình đều sử dụng gradient của hàm xấp xỉ, đo 
khoảng cách từ một điểm đến các tập trong không gian ảnh để xây dựng 
phương pháp lặp đồng thời, lặp xoay vòng và các cải biên của chúng. Trong 
bài báo này, chúng tôi giới thiệu phương pháp tổng quát xây dựng thuật 
toán lặp giải bài toán MSSFP. Chúng tôi đưa ra sơ đồ thuật toán lặp có 
tham số lặp được chọn một cách thích nghi và đưa ra phiên bản nới lỏng 
của lược đồ bằng cách sử dụng phép chiếu lên nửa không gian thay vì chiếu 

lên những tập lồi thông thường. Cuối cùng là các ví dụ số minh họa cho các 
kết quả của chúng tôi.  

 

Từ khóa: 

Bài toán chấp nhận tách đa 
tập, ánh xạ không giãn, điểm 
bất động, phép chiếu metric, 
phương pháp lặp. 

 

1. Introduction 
 

Let En and Em be  two real Euclidian spaces, n, m 

be positive integers, i i I
C


and Q j j J

be two 

families of closed convex subsets in En and Em, 
respectively, where {1,  2,  ..., }I N  and 

{1,  2,  ..., }J M  with any fixed positive integers N 

and M. Let A be an m n -matrix of real numbers. 

We use the symbols E, .;.  and || . ||  to denote the 

unit matrix, an inner product and a norm in any 
Euclidian space. 

The MSSFP is to find a point 

: i
i I

p C C


  such that :p j
j J

A Q Q


 
 

(1.1) 

This problem was first introduced by Censor and 
Elfving in 1994 [5] for modeling inverse problems 
that arise from phase retrievals and in image 
reconstruction [3], [4]. Recently, the MSSFP can 
also be used to model the intensity-modulated 

radiation therapy [7]-[10] and references therein. 
Denote by  the set of solution for (1.1). 

Throughout, this paper, we assume that  ≠ 0. 
For solving the split convex feasibility problem, 

that is (1.1) with N = M = 1, Byrne [3], [4] introduced 
a well-known iterative method, named CQ-method 

and defined by                                       

1 ( ) , 1,k T k
C Qx P E A E P A x k    

 
(1.2)                                      

with a fixed real number 
2

0;2 / ,A  where 

CP  and QP  denote the metric projections on the sets 

C and Q, respectively, and AT is the transpose of A.  

In the case that n = m and A = E the MSSFP deduces 

to the convex feasibility problem (CFP), that is to find a 

point p C . To solve the CFP, Censor et al. [6] 

proposed a string-averaged algorithmic scheme in which 

the end-points of strings of sequential projections onto 
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the constraints are averaged.  

Recently, Nguyen Buong [1], [2] used properties of 

metric projections instead of the proximity function to 

construct a general scheme,        

1
1 2( ) , 1,k T kx P E A E P A x k      (1.3) 

where the mappings P1 and P2 are defined by one 
of the following cases: 

 (i) 1
1

i

N

i C
i

P P


 and 
2

1

;
j

M

j Q
j

P P


  

 (ii) 
11 ...

NC CP P P and 
2

1

;
j

M

j Q
j

P P


  

 (iii) 
11 ...

NC CP P P and 
12 ... ;

MQ QP P P  

 (iv) 
1

1
i

N

i C
i

P P


 and 
12 ... .

MQ QP P P  

with positive real numbers i  and j  such that 

1 1

1
N M

i j
i j 

   . 

In the present article, we propose a iterative 

algorithmic scheme which is given with a self 

adaptive step-size. We also  give a relaxed variant of 
this scheme by using projections onto half-spaces 

instead of those onto the original convex sets. 

2. Preliminaries 

In this section, we introduce some definitions 

and lemmas which can be used in the proof of our 

main result. 

Definitions 1.1. A mapping T from  a subset K of 

En into Em is called: 

(i) nonexpansive, if 

x yT T x y    for all ,x y K ; 

(ii)  inverse strongly monotone if  

2
,x y x yT T T T x y     for all , ,x y K  

where  is a positive number, and firmly 

nonexpansive if, in addition, 1 ; 

(iii) averaged, if (1 )T E U    for some 

fixed (0;1) and a nonexpansive mapping U, and 

we say T is - averaged.   

For a closed convex subset K of En, there exists a 

mapping PK from En onto K such that 

infK y K
P x x y x


   for each nx E . The 

mapping PK is called the metric projection on K. We 

know that PK is firmly nonexpansive [10] (hence, 

nonexpansive) and 1/2-averaged [5]. Moreover, 

2 2 2
, , .n

K Kx P x P x z x z x E z K      
 

We denote by Fix( ) { : }T x K Tx x    the 

set of fixed points for a mapping T. 

Lemma 2.1. [9]  Let En be any real Euclidean 

space, Ti be an i -averaged mapping with 0i   

for each i I  and let 1 2( , ,..., )N  be a 

positive real vector such that 
1

1
N

i
i

 . Set 

1

N

i i
i

T T


  and 
1

N

i i
i

 . Then, T is -

averaged. Moreover, the mapping 1 1...N NT T T T  is 

-averaged with 
1

1/ 1 1/ /(1 )
N

i i
i

 
   

 
  and 

1

Fix Fix Fix .
N

i
i

T T T


   

Lemma 2.2. [13]  Assume En and Em  are real 

Euclidean spaces. Let : n mA E E  be an m n -

matrix of real numbers such that 0A   and let 

: m mT E E  be a  nonexpansive mapping. Then, 

for every fixed 2
0;1/ A , ( )TE A E T A   

is 
2

A -averaged. 

3.  Main result 

 Let the string 1 2 ( ), ,...,
t

t t t
t II i i i  be a finite 

nonempty subset of I, for every         t = 1, 2, …, 
S1, where the length of the string It denoted by 

( )tI , is the number of elements in It. Put 

( ) 2 1

1 ... .t t t
It

t i i i
T P P P , where t

tl il
Ci

P P , for 

1,2,..., ( )tl I , t = 1, 2, …, S1. Given a positive 

weight vector 
11 2, ,..., S  with 

1

1

1
S

t
t

 , we 

define the algorithmic mapping 
1

1

1

S

t t
t

T


1 . We 

suppose that every  element of I appears in at least 
one of the string It. Analogously, for the family 

{ }j j JQ  , we can construct the mapping 

2
2

1

S

h h
h

T


2
 where 

( ) 2 1

2 ... .h h h
jh

h j j j
T P P P , 
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h
hg jg

Qj
P P , h = 1, 2, …, S2, 1,2,..., ( )hg J  and 

21 2, ,..., S  is also a positive  weight vector 

such that 
2

1

1.
S

h
h

  

Algorithmic scheme 1:  

Step 0: Let x1 and 1  be any point in En and any 

positive real number, respectively, and set k:=1; 

Step 1: Assume that the kth iterate xk has been 
constructed. If  

1 2(  -  ) (  -  ) 0k kE x E Ax   

then stop and xk is a solution of (1.1). Otherwise, 
compute  

  1 *
1 2( (  -  ) )k k

kx E A E A x     (3.1) 

where 
2*

2( ) / (  -  )k k
k k q x A E Ax   

if 
2(  -  ) 0kE Ax   and  

  
2

*
2

( )
,

(  -  )

k
k

k
k

k

q x

A E Ax




    

   
2 22

1

1
( ) ( ) ,

2

S

h h
h

q x E T Ax


            (3.2)                              (3.2) 

if 
2(  -  ) 0kE Ax  . 

Step 2: Set k: = k + 1 and go to Step 1. 

where, the parameter k  and k , for all k ≥ 1, 
satisfy, respectively, the  conditions ( ): 

0 2k    and ( ): k  is a bounded 

sequence of positive real numbers such that 

liminf 0.k k   

For the sake of simplicity in programming, the next 
iterate xk+1 can be calculated by (3.1) and (3.2) 

without verifying the zero value for (E – 2 )Axk.  

 First,  we have the following lemmas. 

Lemma 3.1. z  if and only if 

1 2(  -  ) (  -  ) 0TE z A E Az  . Moreover, the 

last equality holds if and only if 2(  -  ) 0E Az  . 

Lemma 3.2. There holds the following 
inequality 

1

2( )
2

1

1
( ) ,

2

h h h
g g

J
j j

h
h

U y U y E T y
R





    

for some positive constant R and any my E , 

where 
2 1... .

t
l

t
l

j t t

j
U P j j  and 0 .

tjU E  

We have the following main results. 

Theorem 3.1. Let En and Em be two real 
Euclidean spaces, A be an m n -matrix of real 

numbers such that 0.A   Let ,   Ci and Qj, for 

each i I  and j J  be closed convex subsets in En 

and Em, respectively.  Assume that there hold 

conditions ( ) and ( ). Then, the sequence {xk}, 
defined by algorithmic scheme 1, converges  to a 

solution of (1.1) as k  . 

Proof. We consider only the case when the 
algorithm does not terminate in a  finite number of 
iterations.  First, we prove that {xk} is bounded. 

Take a point p  . Then, since 
1
 is nonexpansive 

and 2
hE T  is 1/2-inverse strongly monotone [17], 

we have that 

 xk+1 - p2 =  1  (E - k AT(E - 2 )A)xk – 1 p2 

               ≤  xk - p - k AT(E – 
2
)Axk 2 

=  xk - p2 - 2 k (E – 2 )Axk - (E – 2 )Ap, Axk - 

Ap  + 
2
k  AT(E – 2 )Axk 2         (3.3) 

=  xk - p2 

2
2 2

1

2 ( ) ( ) ,
S

k k
k h h h

h

E T Ax E T Ap Ax Ap


      

+ 
2
k  A

T(E – 2 )Axk 2 

≤  xk - p2 - 2 k

2 22

1

1
( )

2

S
k

h h
h

E T Ax


  

+ 
2
k ( AT(E – 2 )Axk  + k)

2 

=  xk - p2 –  k(2 - k)
2 ( ) /kq x ( AT(E – 

2
)Axk 

+ k)
2, 

from which and condition ( ) it implies that  
xk+1 - p ≤  xk - p. Consequently, {xk} is bounded 

and there exists liminf 0k kx p   . Therefore, 

by  virtue of (3.3) with conditions  ( ) and ( ), we get 

that liminf ( ) 0k kq x  . From this and 

(E – 2 )Axk2
2

2

2

1

S
k

h h
h

E T Ax


 
  
 

  

2 2
2 2

2 2

1 1

( ) ( )
S S

k k
h h h h

h h

E T Ax E T Ax
 

    
2 ( )kq x  

it follows that  
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lim
k

(E – 
2
)Axk = 0.           (3.4)                                                

Let { }lkx  be a subsequence of {xk} such that 

lk nx x E  as l  . As the mapping (E – 

1
)A is continuous, from (3.4) we get that 

2(  - ) 0.E Ax   In order to prove that x  is a solution 

of (1.1), by Lemma 3.1, we have to show that x = 

1
A .x  Indeed, from (3.1) we can write that           

xk+1 = 
1
(xk + yk) 

where yk = - k AT(E – 
2
)Axk  0 as k  , 

that is followed from (3.4) again, (3.2) and the 

property of .k  So, x = P1 ,x  and hence, x  . 

Then, 

lim lim 0lkk

k l
x x x x

 
     , 

i.e., all the sequence {xk} converges to x  as 

k  . The proof is completed. 

Remark 1  

In the case that S2 = M and ( ) 1tI   for     t = 1, 

2, …, M, since 
jQE P  is firmly nonexpansive,  

(E – 2 )Axk, Axk - Ap  =  

1

( ) ( ) ,
j j

M
k k

j Q Q
j

E P Ax E P Ap Ax Ap


   
2

1

( ) : 2 ( ),
j

M
k k

j Q
j

E P Ax q x


              (3.5) 

that is the proximity function, introduced by Xu 

[15]. By taking  

( ) /k
k kq x  ( AT(E – 

2
)Axk + k)

2, 

we obtain that the upper bound for k equal to 4. 

In algorithmic schemes 1, we assume that all the 

projections 
iCP and 

jQP can be easily calculated, but in 

practice they are sometime difficult to compute or even 

impossible. In this case, one can turn to relaxed 

method, proposed by Yang [16] and studied in [11], 

[14] with the proximity function q(x) defined in the 
previous section. 

Now, we give a relaxed variant for algorithmic 
scheme 1. First, we assume that the convex subsets 

Ci and Qj in this part satisfy the following 

assumptions: 

(a1) The subset Ci for all  i  I is given by 

{ : ( ) 0},n
i iC x E c x   where : ( , )n

ic E     

is a convex function. The subset Qj for all  j  J is 

given by  

{ : ( ) 0},m
j jQ y E q y    

where : ( , )m
jq E     is a convex function. 

(a2) For any nx E  and my E , at least one of 

subdifferetial ( )i ic x  and ( )j jq y  can be 

computed, where ( )ic x  and ( )jq y  are the 

subdifferentials of ci(x) and qj(y) at the points x and  y, 

respectively, 

: ( ) ( ) , ,
( ) ,

n
i i i i

i n

E c x c x x x
c x

x E

         
   

: ( ) ( ) , ,
( ) .

                                           

m
j j j j

j
m

E q y q y y y
q y

y E

         
     

We define the following half-spaces: 

: ( ) , 0 ,

                                  ( ), ,

k n k k k
i i i

k k
i i

C x E c x x x

c x i I

    

   
and 

: ( ) , 0 ,

                                ( ), ,

k m k k k
j j j

k k
j j

Q y E q y y xy

q y j J

    

 
     

Put 
( ) 2 1

1, ... .t t t
It

k k k k
t i i i

T P P P , where ,t k
l til

k

i C
P P  for all 

1,2,..., ( )tl I and 
11,2,..., .t S  We define the 

algorithmic mapping 
1

1,
1

1

S
k k

t t
t

T


  with the positive  

weight vector 
t
 as in the previous section. We 

suppose also that every  element of I appears in at 

least one of the string It. Let 
2

2,
2

1

:
S

k k
t t

t

T


  where 

t k
l tjl

k

j Q
P P . 

By Lemma 2.1, if  

(E - 1
k )z = AT(E –

2
k )Az = 0 

then we have only that 1
N k
i iz C  and 

1
M k
j jAz Q . It is difficult to confirm that z is a 

solution of (1.1). So, we consider the following  

relaxed algorithmic scheme. 

Algorithmic scheme 2 

Step 0: Let x1 and 1 be any point in En and 

any positive real number, respectively, and set  

k = 1;   

Step 1: The kth iterate xk is constructed by   
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 xk+1 = 1
k (E - k AT(E – 2

k )A)xk,        (3.6) 

where ( ) /k
k k q x  AT(E – 2

k )Axk2  

if (E – 2
k )Axk ≠ 0 and  

( ) /k
k k kq x  ( AT(E – 2

k )Axk + k)
2,  

 if (E – 
2
k )Axk = 0, (3.7) 

   where 
2

1

1
( )

2

M
k

k j j
j

q x E P Ax


  and the 

parameter k , for all 1k  , satisfies a new 

condition : 0 4k     . 

The following Lemma is essential in proving 

convergence. 

Lemma 3.3 [12] Suppose h is a convex function 

on En, then it is subdifferentiable everywhere and its 

subdifferentials are uniformly bounded subsets of En. 

Lemma 3.3 shows that the subdifferentials are 

bounded on bounded sets. 

Theorem 3.2 Let  En,  Em, A  and   be as in 

Theorem 3.1. Let Ci and Qj, for each i  I and j  J, be 

closed convex subsets in En and Em, that be defined 

by (a1) and (a2). Assume that there hold conditions 

  and . Then, the sequence {xk}, defined  by 

(3.6)-(3.7), converges to a solution of (1.1) as 

k  . 

Proof.  Take a point p . Since ,k
i iC C  

k
j jQ Q , we have k

i ip P p P p   and 
k

j jAp P Ap P p   for all i  I, j  J and 1k  . By the 

similar argument as the above for (3.3), we have that 

 xk+1 - p2 

        =  1
k  (E - k AT(E – 2

k )A)xk – 1
k p2 

        ≤  xk - p - k AT(E – 2
k )Axk 2 

        =  xk - p2  

 - 2 k (E – 2
k )Axk - (E – 2

k )Ap, Axk - Ap  

                               + 
2
k  A

T(E – 2
k )Axk 2 

        ≤  xk - p2 - 4 k ( )k
kq x  

         + 
2
k ( AT(E – 2

k )Axk  + k)
2 

       =  xk - p2  

- k(4 - k) 
2 ( ) /k
kq x ( AT(E – 2

k )Axk + k)
2. 

Therefore, {xk} is bounded, there exists 

lim k

k
x p


  and lim ( )k

k
k

q x


. Clearly, from the 

last limit  and (3.5) with 
jQP replaced k

jP , it  

follows that  

lim ( ) 0,k k
j

k
E P Ax


                (3.8) 

for all j  J. Moreover, we have also that 

2lim ( ) 0,k k

k
E Ax


  because 

2
2

2
1

2

1

( ) ( )

                         ( )

M
k k k k

j j
j

M
k k

j j
j

E Ax E P Ax

E P Ax





  

 





 

and (3.8).  Put 2: ( )k k T k k
kz x A E Ax   . 

Then, we can write that 

 xk+1 - p2 =  1
k

zk - p2      

     

1

1

1

21,

1

( ) 22

1 1

t t t
l l

S
k k

t t
t

IS
i ik k k

t
t l

T z p

z p U z U z



 

 

   



 
                                  

     =  xk - p2 - 2 k A
T(E – 2

k )Axk, xk - p   

                      + 
2
k  A

T(E - 2
k )Axk2  

                      -
1

1

( ) 2

1 1

t t t
l l

IS
i ik k

t
t l

U z U z

 

   

where 
2 1

... .t t t ti i i il l

k k k kU P P P  and 
0
ti

kU E . Using the 

last inequality with the properties of {xk} and 

2( )T k kA E Ax , we obtain that 

1
lim 0,t t

l l

k k k k

i ik
U z U z


  this implies that 

      lim ( ) 0,k k
i

k
E P x i I


    .   (3.9) 

Next, from the definitions of k
iC  and 

k
jQ , it 

follows that 

       
( ) ( ) ,

( ) ( ) .

k k k k
i i i

k k k k
j j j

c x E P x

q Ax E P Ax

 

 
     (3.10) 

Since {xk} is bounded, {Axk} is bounded in Em. 

Therefore, ,k k
i j  are bounded and there exists 

a subsequence lkx  of {xk} such that lkx  converges  
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to a point .nx E  Thus, from (3.8)-(3.10) it follows that 

0ic x   and 0jq Ax  for all i  I and j  J. It 

means that x . Then, 

lim lim 0,lkk

k l
x x x x

 
    i.e., {xk} converges to 

x . This completes the proof. 

Remark 2. Theorem 3.1 has value, when 
2

2,
2

1

S
k k

h h
h

T


  with the positive  weight vector  as 

in the previous section, but under condition ( ) instead 

of (  ). Here, instead of ( )kq x , we use the function  

2 22,

1

1
( ) ( )

2

S
k

k h h
h

q x E T Ax


  . 

Indeed, as in the proof of Theorem 3.1, we get 

that 2,lim ( ) 0k k
h

k
E T Ax


   for all    h = 1, 2, … S2. 

Further, by Lemma 3.2, we obtain  lim ( ) 0.k k
j

k
E P Ax


   

4.  Numerical examples 

In this section, we present some preliminary 

numerical results, calculated by several methods of 

algorithmic schemes 1 and 2. The methods, used in 

computations, are (1.3) and new ones with a self-
adaptive step size.  In the first example, the sets Ci 

and Qj are defined by  

22 : 1i
iC x E x a      

and 

23 : 1j
jQ y E y a     

where ai = (1-0.25i; 0) with  N = 4 and      aj =(-
1+0.1(j-1); 0; 0) with M = 21. Elements of matrix A 
has values: a11 = a22 = 1; a21 = a12 = 0 and a31= a32 = 

Table 1. Method (3.1) - (3.2) with 
4

1
1

1

4 i
i

P


   and 
21

2
1

1

21 j
j

P


  . 

k 1
1
kx   1

2
kx   k 1

1
kx   1

2
kx   

10 0.1322489018 -0.1096046955 100 0.0134375293 -0.0118695275 

20 0.0590133866 -0.0531213074 200 0.0081669713 -0.0072623184 

30 0.0385431816 -0.333061823 300 0.0062576955 -0.0055807045 

40 0.0291680112 -0.0253854829 400 0.0052250300 -0.0046678939 

50 0.0237943020 -0.0208028142 500 0.0045615413 -0.0040800764 

Table 2. Method (3.1) - (3.2) with 1 4 1...P P  and 
21

2
1

1

21 j
j

P


  . 

k 1
1
kx   1

2
kx   k 1

1
kx   1

2
kx   

10 0.6665662985 -0.4624660997 100 0.3084168689 -0.3570661143 

20 0.5499195599 -0.4292417888 200 0.2383683602 -0.3352044020 

30 0.4803304781 -0.4089281741 300 0.2052435826 -0.3247198937 

40 0.4333536237 -0.3949881167 400 0.1842047953 -0.3179917898 

50 0.3994798577 -0.3848417711 500 0.1695279308 -0.1312747211 

Table 3. Method (3.1) - (3.2) with 1 4 1...P P  and 2 21 2 1... .P P P  

k 1
1
kx   1

2
kx   k 1

1
kx   1

2
kx   

10 0.1619563184 -0.3211904319 100 0.0347113740 -0.1986689830 

20 0.0930360637 -0.2684585047 200 0.0256552010 -0.1791816768 

30 0.0694629971 -0.2456850724 300 0.0219830960 -0.1691445434 

40 0.0574979870 -0.2321570358 400 0.0198472169 -0.1624730780 

50 0.0501837307 -0.2228438437 500 0.0183962369 -0.1575184514 
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1/2. Clearly, 21
1 {(0,0,0)}j jQ  . Therefore, 

p*=(0, 0) is the unique solution. Put T2,1 = P7…P2.P1    
and T2,2 = P14…P9.P8 and T2,3 = P21…P16.P15.  

The numerical results computed by  several 

methods, defined by algorithmic schem 2 with 

0.4 1/ ( 2), 0.1 1/ ( 2),k kk k      an   

initial point 1 (3; 2.5)x    and different forms of 

1
k  and 2

k , are given in the following tables. 

Analyzing the numerical results, we see that 

method (2.2)-(2.3) with 1  and 2  defined by convex 

combinations of 
iCP and 

jQP respectively,  gives a 

better result than those with other cases of  1  and 2 . 

In the second example, we consider the sets 

2 2
1 1 2 1 2

2 2
2 1 2 1 1

, : 0 ;

, : 1 0 ;

C x x E x x

C x x E x x

   

    
 

2
3 1 2 1 2

2 2 2
4 1 2 1 2

, : 2 0 ;

, : / 4 / 9 3 0 ;

C x x E x x

C x x E x x

    

    
 

3 2
1 1 2 3 1 2 3

3 2
2 1 2 3 1 2 3

22 2
3 31 2

3 1 2 3

, , : 2 0 ;

, , : 0 ;

, , : 1 0 .
4 9 16

Q y y y E y y y

Q y y y E y y y

yy y
Q y y y E

    

    

 
      
   

Since we do not know the exact solution to (1.1) 
with Ci and Qj given above, we use  

 

Table 4. Method (3.1) - (3.2) with 
4

1
1

1

4 i
i

P


   and 
2 21 2 1... .P P P  

k 1
1
kx   1

2
kx   k 1

1
kx   1

2
kx   

10 0.1693965225 -0.3615422314 100 0.0358096772 -0.2054187867 

20 0.0969110550 -0.2917779458 200 0.0263063929 -0.1829700425 

30 0.0722254089 -0.2627693262 300 0.0224535356 -0.1717800444 

40 0.0596950361 -0.2458839872 400 0.0202151422 -0.1644844678 

50 0.0520319645 -0.2344249979 500 0.0186971106 -0.1591374628 

 

Table 5. Method (3.1) - (3.2) with 
1 4 3 2 1

1 3

4 4
p p p p   and 

3
2,

2
1

/ 3t

t
T


  . 

k 1
1
kx   1

2
kx   k 1

1
kx   1

2
kx   

10 0.4814850658 -0.5098712064 100 0.0492697719 -0.3408147049 

20 0.3098246489 -0.4476210480 200 0.0237776835 -0.3183714090 

30 0.2163652970 -0.4116171161 300 0.0162671169 -0.3069244773 

40 0.1602679486 -0.3892344990 400 0.0125256305 -0.2990155796 

50 0.1236226400 -0.3742856213 500 0.0102614291 -0.2928868336 

 

Table 6. Method (3.6) - (3.7) with 
4

1
1

1

4
k k

i
i

P


   and 
3

2
1

1

3
k k

j
j

P


  . 

k 1
1
kx   1

2
kx   ke  

20 -1.8550560864 -1.2529823091 0.0347011051 

40 -1.0148022648 -0.9888362074 0.0020806016 

60 -1.0022774018 -0.9941922526 0.0001488434 

80 -1.0000275029 -0.9953053196 0.0000568477 

100 -1.9989834883 -0.9958226816 0.0000311400 

 

The computational results by method (3.6) with the same data as the above and new 1
k  and 2

k  are 

given in the following numerical table. 
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1 /k k k ke x x x   to measure the error of the 

kth step iteration. The computational  results, by using 

algorithmic scheme 2 with  the same values of ,k k  and 

new x1 =(-3;-2.5) are presented in the numerical tables, 
Tables 6 and 7. 

Clearly, the numerical results in Table 7 show 
that new method (3.6)-(3.7) with 

1 4 3 2 1

1 3

4 4
k k k k kP P P P  and

 
2 3 2 1

1 2

3 3
k k k kP P P 

. 

is a little faster than the first one, that is usually 
called the relaxed simultaneous method. 

5. Conclusion 

In this paper, we  proposed a general approach to 
construct iterative methods for solving the multiple-
sets split feasibility problem (MSSFP), that is string-
averaged algorithmic schemes. 
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Table 7. Method (3.6) - (3.7) with 1 4 3 2 1

1 3

4 4
k k k k kP P P P   and 2 3 2 1

1 2

3 3
k k k kP P P  . 

k 1
1
kx   1

2
kx   ke  
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