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In this paper, we introduce a new approximate projection
algorithm for finding a common solution of multivalued vari-
ational inequality problems and fixed point problems in a
real Hilbert space. The proposed algorithm combines the ap-
proximate projection method with the Halpern iteration tech-
nique. The strongly convergent theorem is established under

mild conditions.
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Thong tin bai viét Tém tit:

Ngay nhan bai: Trong bai bao nay, ching téi dua ra mot thuat toin chiéu

28 /3/2021 gan ding méi dé tim nghiém chung cla cic bai toan bt
Ngay duyét dang: déng thiic bién phan da gia tri va cac bai toan tim diém bat
03/5/2021 dinh trong khong gian Hilbert thyc. Thuét toan cia ching

toi két hop phuong phap chiéu gan diang véi ki thuat lap
Tw khoa: Halpern. Dinh 1y hoi tu manh dugc thiét 1ap trong diéu kien

Bt ding thic bién phan da tri, lien tuc nhe.
Lipschitz, twa don diéu, phuong phdp chiéu

gan ding, bai todn diém bt dong.

1 INTRODUCTION

Let H be real Hilbert space and C be nonempty,
closed and convex subset of H. The multivalued
variational inequality problem for a operator F' :
H — 2 such that F(z) is nonempty closed convex
for each = € H (shortly, (MVI)), is stated as

Find (z*,w*) € C x F(z*) s.t. (w*,z —2™) >0

for all x € C. From now on, one denotes the so-
lution set of the above by S(MVI). When F :
H — H is a single-value mapping, it is the form of
the following classical variational inequality prob-
lem (shortly, (VI)):

Find 2™ € C such that (F(z*),z—2") >0 Vz € C.

Mathematically, Problem (VI) can be considered
as a generalized model of various known prob-
lems such as optimization problems, complemen-
tary problems, and fixed point problems. Many it-
erative methods have been proposed, among them,
the projection and the extragradient algorithms
are widely (see [1, 3, 5]). Note that the projec-
tion methods often require too harsh assumptions
to obtain convergence theorems, such as the strong
monotonicity or inverse strong monotonicity of the
mapping F. To obtain the convergence results of
the projection algorithms, Korpelevich [7] intro-
duced an extragradient for Problem (MVI). The
author showed that the algorithm is convergent
when F' is monotone and L-Lipschitz continuous.
Afterward, Korpelevich’s extragradient method has
been extended and improved by many mathemati-
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cians in different ways. However, the extragradient
algorithms often require computing two projections
onto the feasible set C' at each iteration. This can
be computationally expensive when the set C is not
so simple.

In [2], authors introduced an approximate projec-
tion algorithm, that only uses one projection, for
solving multivalued variational inequalities involv-
ing pseudomonotone and Lipschitz continuous mul-
tivalued cost mappings in a real Hilbert space.
This algorithm combines the approximate projec-
tion method with the Halpern iteration technique.
The strongly convergent theorems are established
under standard assumptions imposed on cost map-
pings. Motivated and inspired by the approximate
projection method in [2], and using the Halpern it-
eration technique in [8], the purpose of this paper
is to propose a new projection algorithm for finding
a common element of the solution sets of Problem
(MVTI) and the set of fixed points of a finite system
of demicontractive mappings S; (j € J), namely:

Find z* € mje‘]FZ'CL'(Sj) n S(MVI)

We have proved that the proposed algorithm is
strongly convergent under the assumption of the
pseudomonotonicity and Lipschitz continuity of
cost mappings.

The remaining part of the paper is organized as
follows. Section 2 shows preliminaries, some lem-
mas that will be used in proving the convergence
of our proposed algorithm. The approximate pro-
jection algorithm and its convergence analysis are

presented in Section 3.

2 PRELIMINARIES

The metric projection from H onto C is denoted
by Pc and

Po(z) = argmin{||lx —y| : y€ C} z € H.

It is well known that the metric projection Po(-)
has the following basic property:

(x — Po(x),y — Po(x)) <0, Ve e H, y € C.

Definition 2.1. A multi-valued mapping F' : H —
2™M is called to be

vz -y =
0 implies (u,xz — y) > 0, Vo,y € H,Vu €
F(z), Vy € F(y);

(i) pseudo-monotone, if
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(ii) L- Lipschitz-continuous, if p(F(x),F(y)) <
L|z — y||, Vz,y € H, where p denotes the
Hausdorff distance. By the definition, the
Hausdorff distance of two sets A and B is
defined as

p(A, B) = max{d(A4, B), d(B,A)},

where d(A,B) = sup,cyinfpeplla — b,
d(B,A) = supyc4 infeea |la —b].

Definition 2.2. Let C C H be a nonempty sub-
set. An operator S : C'— H is called to be

(1) B-demi-contractive on C, if Fiz(S) is nonempty
and there exists 8 € [0, 1) such that

ISz = pll* < llo = pl* + Blla = Sz, (1)

for all x € C and p € Fiz(S);
(ii) demi-closed, if for any sequence {zF} C C,
ok =~z €eC, (I - S)(z*) — 0 implies z € Fiz(9).

It is well known that if S is S-demi-contractive on
C then § is demi-closed and (1) is equivalent to
(see [10])
1
- Sza—p)> L1 Ble- et (@)
for all z € C and p € Fiz(S).

The following lemmas are useful in the sequel.

Lemma 2.3. Let {ar} be a sequence of nonnega-

tive real numbers satisfying the following condition:
a1 < (1 —ag)ay + apa +, Ve > 1,

where {ax} C [0,1], Y32, i = +oo, limsup ey, <
0, and v, >0, >°° | vk < co. Then, lim a, = 0.
n— o0

Lemma 2.4. ([4], Theorem 2.1.3) Let C be a con-
vex subset of a real Hilbert space H and g : C —
R U {+o0} be subdifferentiable. Then, T is a solu-
tion to the following convex problem:

min{g(z) : x € C}

if and only if 0 € dg(Z) + Nc (&), where Og denotes
the subdifferential of g and N¢(Z) is the outer nor-
mal cone of C at x € C.

Lemma 2.5. (9], Remark 4.4) Let {ai} be a se-
quence of nonnegative real numbers. Suppose that
for any integer m, there exists an integer p such
that p > m and a, < apy1. Let ko be an integer
such that ar, < ag,+1 and define, for all integer
k> ko,

T(k‘) :max{i ENZkO <i<k,a; gai+1}.
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Then, 0 < ar < arpy41 for all k > ko. Fur- Step 4. Set k:=k+1, and go to Step 1.

thermore, the sequence {T(k)}k>k, is nondecreas-
ing and tends to +00 as k — oo.

3 APPROXIMATE PROJECTION ALGO-
RITHM

Let us assume that the cost mapping F : H — 2%

and mappings S; satisfy the following conditions:

Ay. F is pseumonotone, L-Lipschitz continuous
on H;

As. Sj : H — H is B;-demicontractive for every
JjeJ;

As. NjegFiz(S;)NS(MVI) #0

Ay. F satisfies following property: if ¥ — # and
w® € F(z%), then exists a subsequence {w"}
of {w*} such that w* — w € F(z).

Now, we describe our approximate projection algo-

rithm.

Algorithm 3.1. Choose starting point 2° € H,
L > L, sequences {cau},{\r} and {ng} such that

{ar} € (0,1), lim oy = 0,377 o = +00,
k—o0 .
0< Nk < ai?ZiiOﬁIg < 00, Nk < é prk > 07

{A} Cla,b] € (0,1) € (0,00).
(3)

Step 1. (k= 0,1,...) Take uk € F(2*). Find y* € C

such that

(y¥ —a* + A\uF e —yF) > - Vo e C.

Step 2. Take v® € B (uk,EHmk — ka) NF(y*), where
B (u*, Ll|lz* —y*|)) :={z € H : |z —u*|| <
L||z* — y*||}. Set d¥ = xk —yk — A (uF — oF)

and w* = 2¥ — yprd(a* y*), Yk > 0, with

v €(0,2) and
(=" —y*.d="y*)) gk
P L )
0, d* = 0.
Step 3. Compute
P = apa® + (1 — o)k,
k_ k k 1-5;
g = (1 —w)p"+wl;p", 0<w< 5
forall j € J,
a* =g jo = argmaz{||qf —p"||, j € J}.

()

Lemma 3.1. (see [2]) Let two sequences {z*} and
{y*} be defined by the algorithm 3.1. The following

inequalities hold
(@ —y*, d*) > er]|a® —yF|* and (2" —y", d*) > caf|d"|*.
Lemma 3.2. Let z* € S(MVI). Then,

2 —
lwh—a*|* < Hw’“—l‘*\IZ—TVI\w'“—x’“I\ZJr?%/nk-

Proof. Since Step 1 and z* € O, we have (y* —
¥,k — yF — MuF) > —mp. Using (2%, w*) €
S(MVTI), ie., (w*,y* —x*) > 0 and the pseu-
domonotone assumption of F, we get Ag(vF, y* —
x*) > 0. From two last inequalities, it follows

—ne < (yF—a*, 2t =yt Nt at) = (yF—at, d).

Using this inequality, Condition (3) and Step 2, we

have

[w* — z*||?
=|la* — yprd* — z*|?
=[lz* — 2*||> = 2ypp(a® — ¥, d") + 7P} | d* P

SHIk — JJ*HQ — 2’ka<$k - ykvdk> + ’YQP%HdkHQ

+ 270xMk
=[|z% — 2*||* — 2ypr(z* — yF, d¥) + VP pr(a* — yF, d¥)
+ 2y kK
i 2 -
=l — |2 = Tk — |2 + 25 pums

* 2—
<[la* - a*|? - T”uwk — 2|2+ 29y (6)

O

Lemma 3.3. The sequences {p*}, {z*} and {w*}
are bounded.

Proof. Let z* € NjcsFiz(S;) N Sol(C, F). Using
Step 3 and the §; demi-contractive assumption of

S;, 7=1,2,..., we get

||£L'k+1 _:L.*Hg

=[I(1 —w)p" +wS;,p* — =
=" = 2*) + w(S;op* — ")
<" — a*|? + 20" — 2", Sjop" — p¥)
+w?|1S5,0" = pF|I?
<|lp* = &[] + wlw + Bj, = DIIS;p" — |
<||p* — "% (7)
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From Lemma 3.2 and the last inequality, it follows
that

[t =2 || < flp" =2l + 20, (8)

Using Step 3, Condition (3) and (8), we have

k+1

||

Ip
=llaps1(2® — %) + (1 — gy (W = 2%)||

k+1

Soppllz® — 2] + (1 — agpa)[Jw x

Il

1
Sagp|la® — 2]+ (1= are) (IP" — 27| + 2044)

1
<max{||p" — || + 20y, [l2° — 27|}

k+1
1
<max{|lp’ — 2*|| +2 ), ||l2° — 27|} < +oo

i=1
<max{||p® — 2*[|, []a° = 2"|[} +2)_nf < +oo.
i=1

So, the sequence {p*} is bounded. From (7) and
(8), it follows that the sequences {z*} and {w*}
are bounded. O
Lemma 3.4. Let z* € Njc;Fiz(S;) N Sol(C, F).
2y and by =

Set ap = |la¥ — a*|?, w =
2(x — 2%, p* — 2*). Then,
(i) ap1 < (1 — ag)ag + onby + vi;
(i) vk >0, 07, < 005
Yk

(iii) lim 2= = 0.
k—

oo Yk
Proof. Using Lemma 3.2 and Step 3, we get
Ip* — *|”
=llan(z® — 2*) + (1 — ) (w" — 2*)|?
<O - alfwt - | + 2ax(a® — 2, - 2°)
<(1 —ap)||z® — 2*||? + 204 (z° — ¥, pF — z*)

+ 29y (1 — ag)

<(1 = ap)||z® — 2*||* + 20 (a° — 2*, p* — 2%)
+ 27/ k- (9)
Using last inequality and (7), we have
[l — 2|2 <(1 = ay)lja® — 27|
+ 20 (20 — 2%, pF — %) + 29 /k-

This follows (i). Note that (ii) and (ii7) are deduced
from the condition (3). O

Lemma 3.5. Suppose that limy_, ||z —y*|| = 0,

limg o0 Jw* — 3| = 0, limp_ oo |2*+L — pF|| = 0
and zF — p as i — co. Then p € Nje Fiz(S;) N
Sal(C, F).

26|

Proof. By Step 1, we have

hi ykl7 T — yki> + )\ki <ukla yki - xkl>

< M, (Wi x — 2y 4y, Vae C.

(x

For each fixed point z € (| take the limit as i — oo,
using lim;_ o || — y¥¢|| = 0 and lim;_s oo Mg, = 0,
we get liminf; o (uFi,z — 2¥) > 0 Vz € C.
Let {¢;} be a positive sequence decreasing and
lim; ,oce; = 0. Then, for each j € N, there
exists a smallest positive integer K; such that
<uK-7 , T — a:K-7>—|—6j >0 Va € C. It is easy to check
that {K,} is increasing. Set v%i := Wqu
Then, we have (ufi vKi) = 1 for all j € N and
<uKﬂ,x+6ijj — J:K-7> > 0 Vz € C. Combining

this and the pseudomonotonicity of F', we have

(u,z + e — :L’Kj> >0 Vo € Cyu € Fatev™).

(10)
Using the assumptions Ay and 2% — p as j — oo,
the sequence {u’Si} converges weakly to u, € F(p).
If up = 0 then (p,up,) is a solution. So we can
suppose that u, # 0. Then, we have 0 < |Jup|| <
lim inf; o [[uf5]], and hence

0 < limsup ¢;]|v™/ || = limsup
) — 00 j—o0

_ 5
i— [t ]|

lim sup;_, « €;

= liminf, o [[ufS]]
Consequently

lim ¢;||v%7| = 0.
]—)m

(11)

For each 4 € F(x), set a7 = PTF(x+6jVKj)(ﬂ). By

the definition of the projection, we have

la— i = d (@, F ( + "))
< p(F(2),F (x + ™)) < Lileg™||

From (11) and this, it follows that

lim ||z — | = 0. (12)
— 00
Using the assumption limy o [|2¥ — ¢*|| = 0 and
%5 — p the sequence {y¥7} also converges weakly

to p. Substituting u := @%7 € F (x—l— ejVKJ') into
(10), we get

<71Kj,:r+ejqu —sz> >0 VzxeC.

Passing the limit into the last inequality, using (12)
and lim;_, €; = 0, we obtain (@,z —p) >0 Vz €
C. For every t € [0,1], set z; :=tx + (1 —t)p € C.
There exists u; € F(x:) such that

0 < <Uta1't_p> = <Ut,t$+(1—t)p—p> = t<utﬂx_p>7
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for all x € C. Let t N\, 0. By the assumption Ay,
we have that {u;} converges weakly to 4 € F(p)
and hence (4,2 —p) > 0 Vo € C. It implies
p € S(MVI). For each j € J, we now show that
p € Fiz(S;). Using Step 3, we have

1
1" = Sip*l = ~[Ip" = gl

xk+1_ k:H

P |
S;HP _anH:;H P

k+1 _ pk|| = 0 and last inequality,

From limg_,, ||
it follows that |[p* — S;p*|| — 0, k — oo. Also we

know from Step 3 that

Ip" — || = apljz® — || < apMo — 0, k — oo,

(13)
where My = sup{||z® — w*|| : k = 0,1,...}. Us-
ing limg o0 [|2F — ¥¥|| = 0, limp o0 ||Jw* — ¥*|| =0
and [l — 2] < ok — g + 4 — 2%, we have
limy o0 [[w* — 2¥|| = 0. Combining this and (13),
we obtain

I — 2] < ¥ = k] + u® — o],

From this and zF — 2z, it follows that p* — p.
Using this, limg_oo |[p* — S;p¥|| = 0 and the demi-
closedness of S;, we have p € Fiz(S;). ad

Theorem 3.6. Let C' be a nonempty closed con-
vex subset of a real Hilbert space H. Suppose that
conditions Ay — Ay are satisfied. Let {x*} be a se-
quence generated by Algorithm 3.1. Then, the se-

quence {xk} converges strongly to a solution
z € Nje s Fix(S;) N S(MVI),
where z = P?“mg.,Fiz(sj)mS(Mw)(950)~

Proof. Set ay, := ||z* — z||. To prove the strong con-
vergence of the algorithm 3.1, we consider two the
following cases.

Case 1. Suppose that there exists kg € N such
that ar41 < ay for all & > kg. There exists the
limit A = limy_, o ax € [0,00). Using Step 3, we
obtain

ka:Jrl _ ZH2
=1 = w)p® + wSjep* — 2|2
=[p* = 2|* = 2w(p" — 2,p* — S;,p")

+w?|p* - 85,012 (14)

which together with Lemma 3.2 and (2) implies
that

ka:Jrl _ZH2
<llp® = 2? = w(1 = B, — w)Ip* — Sjop"|I®
=llan(z® = 2) + (1 — ax) (w* - 2)||?
1

— — (1= B, — et

<(1- ak)Hwk — zHZ + 2ak<x0 - z,pk —z)

— a2,
<llu* = 2 + 20x(a® — 2,p — 2) — a*H — ph|?
<t — ) = 22T ok — 212 4 201 (@ — 2,p — 2)
—
<l — 22 = 222 ok — 212 + i b
— a2, (15)

where My = sup{2(z° — 2,p* —2) : k=10,1,..} <
oo. It follows that

2_
ours = an+ 2Tk~ P 4 A

< apMi +2yy/nr Yk > 0. (16)

Passing the limit as k£ — oo and using the assump-

tions limy 00 ag = 0, limg 0o = 0,7 € (0,2), we
L _pk|| =

0. By Lemma 3.1 and Step 2, we have py > ¢y and

have limy_ o0 || W —2¥|| = 0, limp_ o0 ||

1 .
2% =y <—(a* —y*, d")
C1

k_mkHZ

Since limy_ o0 Hwk - ka =0 we get limgo0 Hmk -
y*|| = 0. Tt follows that

[w*=y* || < ' —a* [ +[|l2* ~y* | = 0, as k — oo.

Using Step 3, we have |[p* —wF|| = ap||2® — w¥|| <
arMy — 0, as k — oo, where My = sup{||z® —
wk||: k=0,1,...}0 < +o0o. Therefore,

"+ =a® || < [l —p® [+l —w* |+ |w" —2] = 0

as k — o0o. From this and ||z* —p*|| < [Ja*+! —2F||+

k+1 _ pk||, it follows that limg_, [|2* — p¥|| = 0.

B2
Since sequence {z*} is bounded, there exists a

subsequence {z¥i} such that z* — p € H and

limsup<:r0 — z,zF — z) = lim <:r0 — 2k — 2).
k—o0 1—00
Using limpoo 2" — y* = 0, [w* — y*| —

0, [[z**! — p*| — 0 and Lemma 3.5, we have
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p € NjesFiz(S;) N Sol(C, F). From lim;_, o || 2% —

ki

Therefore, we get limsupb, = 2 lim (z
71— 00

k—oo

2) = 2(x® — z,p — 2z) < 0. Using this, Lemma 2.3
and Lemma 3.4, we obtain lim ||z* — z|| = 0.
k—o0

= 0 and z* — p, it follows that p* — p.
0

ki
—z,pk —

Case 2. Assume that there not exist kg € N
such that {ax}2,, is monotonically decreasing. So,
there exists an integer ko such that axp, < ag,+1.
By Lemma 2.5, Maingé introduced a subsequence
{a-)} of {ar} which is defined as
T(k)=max{i e N : kg <i<k,a; <a;41}.
Then, he showed that 7(k) ,* +o00,0 < ay

<
Ar(k)+1: Gr(k) < Qrpy+1 Yk 2> ko. Using arx) <

ar(k)+1, Yk > ko and (16), we get
[w™®) —zm®) || — 0, 2@+ _pT®)|| 0, k — oco.
By a similar way as in case 1, we can show that

lim [|z7® — p™®) || = lim [|2™®) — y7®)||
—00 k—o00

— tim o™ ® — 7] =0, (17)
k—o0
Since {z™®} is bounded, there exists a subse-

quence of {27}, still denoted by {z7®}, which
converges weakly to p € H. By Lemma 3.5, we get
p € NjesFiz(S;) NSol(C, F). Again, by a similar
way as in case 1, we can prove that lim supb, ) < 0.
Using Lemma 3.4 (i) and a, ) < aTIZ;S_T_Oh Vk > ko,
we have

Qr(k)Ar(k) < Qr(k) — Qr(k)+1 T Qr(k)br(k) + Vo (k)
< Qr(eybr(ly + Ve -

Y (k)
brry + ot

From Lemma 3.4 (iii) and last inequality, it fol-

Since dr4x) > 0, we get arp) <

lows that limsupa, ) < limsupb,) < 0. Hence,
k—oo k— o0

limg— 00 ar(x) = 0. It follows that

Ay = [l —2|?

< (2™ =T ® 4 la7® — ]2

— 0, k— oo.

Using 0 < ay < arg)41 for all k& > ko, we get

lim a; = 0. Hence, ¥ — z as k — 0. O
n—o0

4 CONCLUSIONS

We propose a new projection algorithm for finding
a common element of the solution sets of Problem
(MVI) and the set of fixed points of a finite system
of mappings. Our algorithm only uses one projec-
tion on C' at each iteration. We show that the pro-
posed algorithm is strongly convergent when F' is
pseudomonotone, Lipschitz and S; is demicontrac-
for all j € J.
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