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Abstract:

In this paper, we introduce a new approximate projection
algorithm for finding a common solution of multivalued vari-
ational inequality problems and fixed point problems in a
real Hilbert space. The proposed algorithm combines the ap-
proximate projection method with the Halpern iteration tech-
nique. The strongly convergent theorem is established under
mild conditions.
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Từ khóa:
Bất đẳng thức biến phân đa trị, liên tục
Lipschitz, tựa đơn điệu, phương pháp chiếu
gần đúng, bài toán điểm bất động.

Tóm tắt:

Trong bài báo này, chúng tôi đưa ra một thuật toán chiếu
gần đúng mới để tìm nghiệm chung của các bài toán bất
đẳng thức biến phân đa giá trị và các bài toán tìm điểm bất
định trong không gian Hilbert thực. Thuật toán của chúng
tôi kết hợp phương pháp chiếu gần đúng với kỹ thuật lặp
Halpern. Định lý hội tụ mạnh được thiết lập trong điều kiện
nhẹ.

1 INTRODUCTION

Let H be real Hilbert space and C be nonempty,
closed and convex subset of H. The multivalued
variational inequality problem for a operator F :

H → 2H such that F (x) is nonempty closed convex
for each x ∈ H (shortly, (MVI)), is stated as

Find (x∗, w∗) ∈ C × F (x∗) s.t. �w∗, x− x∗� ≥ 0

for all x ∈ C. From now on, one denotes the so-
lution set of the above by S(MV I). When F :

H → H is a single-value mapping, it is the form of
the following classical variational inequality prob-
lem (shortly, (VI)):

Find x∗ ∈ C such that �F (x∗), x−x∗� ≥ 0 ∀x ∈ C.

Mathematically, Problem (V I) can be considered
as a generalized model of various known prob-
lems such as optimization problems, complemen-
tary problems, and fixed point problems. Many it-
erative methods have been proposed, among them,
the projection and the extragradient algorithms
are widely (see [1, 3, 5]). Note that the projec-
tion methods often require too harsh assumptions
to obtain convergence theorems, such as the strong
monotonicity or inverse strong monotonicity of the
mapping F . To obtain the convergence results of
the projection algorithms, Korpelevich [7] intro-
duced an extragradient for Problem (MVI). The
author showed that the algorithm is convergent
when F is monotone and L-Lipschitz continuous.
Afterward, Korpelevich’s extragradient method has
been extended and improved by many mathemati-
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cians in different ways. However, the extragradient
algorithms often require computing two projections
onto the feasible set C at each iteration. This can
be computationally expensive when the set C is not
so simple.

In [2], authors introduced an approximate projec-
tion algorithm, that only uses one projection, for
solving multivalued variational inequalities involv-
ing pseudomonotone and Lipschitz continuous mul-
tivalued cost mappings in a real Hilbert space.
This algorithm combines the approximate projec-
tion method with the Halpern iteration technique.
The strongly convergent theorems are established
under standard assumptions imposed on cost map-
pings. Motivated and inspired by the approximate
projection method in [2], and using the Halpern it-
eration technique in [8], the purpose of this paper
is to propose a new projection algorithm for finding
a common element of the solution sets of Problem
(MVI) and the set of fixed points of a finite system
of demicontractive mappings Sj (j ∈ J), namely:

Find x∗ ∈ ∩j∈JFix(Sj) ∩ S(MV I).

We have proved that the proposed algorithm is
strongly convergent under the assumption of the
pseudomonotonicity and Lipschitz continuity of
cost mappings.

The remaining part of the paper is organized as
follows. Section 2 shows preliminaries, some lem-
mas that will be used in proving the convergence
of our proposed algorithm. The approximate pro-
jection algorithm and its convergence analysis are
presented in Section 3.

2 PRELIMINARIES

The metric projection from H onto C is denoted
by PC and

PC(x) = argmin{�x− y� : y ∈ C} x ∈ H.

It is well known that the metric projection PC(·)
has the following basic property:

�x− PC(x), y − PC(x)� ≤ 0, ∀x ∈ H, y ∈ C.

Definition 2.1. A multi-valued mapping F : H→
2H is called to be

(i) pseudo-monotone, if �v, x − y� ≥
0 implies �u, x − y� ≥ 0, ∀x, y ∈ H, ∀u ∈
F (x), ∀y ∈ F (y);

(ii) L- Lipschitz-continuous, if ρ(F (x), F (y)) ≤
L�x − y�, ∀x, y ∈ H, where ρ denotes the
Hausdorff distance. By the definition, the
Hausdorff distance of two sets A and B is
defined as

ρ(A,B) = max{d(A,B), d(B,A)},

where d(A,B) = supa∈A infb∈B �a − b�,
d(B,A) = supb∈A infa∈A �a− b�.

Definition 2.2. Let C ⊂ H be a nonempty sub-
set. An operator S : C → H is called to be
(i) β-demi-contractive on C, if Fix(S) is nonempty
and there exists β ∈ [0, 1) such that

�Sx − p�2 ≤ �x− p�2 + β�x− Sx�2, (1)

for all x ∈ C and p ∈ Fix(S);
(ii) demi-closed, if for any sequence {xk} ⊂ C,
xk � z ∈ C, (I − S)(xk) � 0 implies z ∈ Fix(S).

It is well known that if S is β-demi-contractive on
C then S is demi-closed and (1) is equivalent to
(see [10])

�x− Sx, x − p� ≥ 1

2
(1− β)�x− Sx�2, (2)

for all x ∈ C and p ∈ Fix(S).

The following lemmas are useful in the sequel.

Lemma 2.3. Let {ak} be a sequence of nonnega-
tive real numbers satisfying the following condition:

ak+1 ≤ (1− αk)ak + αkαk + γk, ∀k ≥ 1,

where {αk} ⊂ [0, 1],
	∞

k=0 αk = +∞, lim supαk ≤
0, and γk ≥ 0,

	∞
n=1 γk <∞. Then, lim

n→∞
ak = 0.

Lemma 2.4. ([4], Theorem 2.1.3) Let C be a con-
vex subset of a real Hilbert space H and g : C →
R ∪ {+∞} be subdifferentiable. Then, x̄ is a solu-
tion to the following convex problem:

min{g(x) : x ∈ C}

if and only if 0 ∈ ∂g(x̄)+NC(x̄), where ∂g denotes
the subdifferential of g and NC(x̄) is the outer nor-
mal cone of C at x̄ ∈ C.

Lemma 2.5. ([9], Remark 4.4) Let {ak} be a se-
quence of nonnegative real numbers. Suppose that
for any integer m, there exists an integer p such
that p ≥ m and ap ≤ ap+1. Let k0 be an integer
such that ak0 ≤ ak0+1 and define, for all integer
k ≥ k0,

τ(k) = max{i ∈ N : k0 ≤ i ≤ k, ai ≤ ai+1}.
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Then, 0 ≤ ak ≤ aτ(k)+1 for all k ≥ k0. Fur-
thermore, the sequence {τ(k)}k≥k0 is nondecreas-
ing and tends to +∞ as k →∞.

3 APPROXIMATE PROJECTION ALGO-
RITHM

Let us assume that the cost mapping F : H → 2H

and mappings Sj satisfy the following conditions:

A1. F is pseumonotone, L-Lipschitz continuous
on H;

A2. Sj : H → H is βj-demicontractive for every
j ∈ J ;

A3. ∩j∈JFix(Sj) ∩ S(MV I) �= ∅

A4. F satisfies following property: if xk � x̄ and
wk ∈ F (xk), then exists a subsequence {wkj}
of {wk} such that wkj � w̄ ∈ F (x̄).

Now, we describe our approximate projection algo-
rithm.

Algorithm 3.1. Choose starting point x0 ∈ H,
L̄ > L, sequences {αk} , {λk} and {ηk} such that





{αk} ⊂ (0, 1), lim
k→∞

αk = 0,
	∞

k=0 αk = +∞,

0 < ηk ≤ α3k,
	∞

k=0 η
1
4

k <∞, ηk ≤ 1
ρ2k
if ρk > 0,

{λk} ⊂ [a, b] ⊂
�
0, 1

L̄

�
⊂ (0,∞).

(3)

Step 1. (k = 0, 1, ...) Take uk ∈ F (xk). Find yk ∈ C

such that

�yk − xk + λku
k, x− yk� ≥ −ηk ∀x ∈ C.

Step 2. Take vk ∈ B
�
uk, L̄�xk − yk�

�
∩F (yk), where

B
�
uk, L̄�xk − yk�

�
:= {x ∈ H : �x − uk� ≤

L̄�xk− yk�}. Set dk := xk− yk−λk(u
k− vk)

and wk := xk − γρkd(x
k, yk), ∀k ≥ 0, with

γ ∈ (0, 2) and

ρk =






	xk−yk,d(xk,yk)

�dk�2 , dk �= 0

0, dk = 0.
(4)

Step 3. Compute

pk = αkx
0 + (1− αk)w

k,

qkj = (1− ω)pk + ωSjp
k, 0 < ω <

1− βj
2

,

for all j ∈ J ,

xk+1 = qkj0 , j0 = argmax{||qkj −pk||, j ∈ J}.
(5)

Step 4. Set k := k + 1, and go to Step 1.

Lemma 3.1. (see [2]) Let two sequences {xk} and
{yk} be defined by the algorithm 3.1. The following
inequalities hold

�xk−yk, dk� ≥ c1�xk−yk�2 and �xk−yk, dk� ≥ c2�dk�2.

Lemma 3.2. Let x∗ ∈ S(MV I). Then,

�wk−x∗�2 ≤ �xk−x∗�2−2− γ

γ
�wk−xk�2+2γ

√
ηk.

Proof. Since Step 1 and x∗ ∈ C, we have �yk −
x∗, xk − yk − λku

k� ≥ −ηk. Using (x∗, w∗) ∈
S(MV I), i.e., �w∗, yk − x∗� ≥ 0 and the pseu-
domonotone assumption of F , we get λk�vk, yk −
x∗� ≥ 0. From two last inequalities, it follows

−ηk ≤ �yk−x∗, xk−yk−λku
k+λkv

k� = �yk−x∗, dk�.

Using this inequality, Condition (3) and Step 2, we
have

�wk − x∗�2

=�xk − γρkd
k − x∗�2

=�xk − x∗�2 − 2γρk�xk − x∗, dk�+ γ2ρ2k�dk�2

≤�xk − x∗�2 − 2γρk�xk − yk, dk�+ γ2ρ2k�dk�2

+ 2γρkηk

=�xk − x∗�2 − 2γρk�xk − yk, dk�+ γ2ρk�xk − yk, dk�

+ 2γρkηk

=�xk − x∗�2 − 2− γ

γ
�wk − xk�2 + 2γρkηk

≤�xk − x∗�2 − 2− γ

γ
�wk − xk�2 + 2γ

√
ηk. (6)

✷

Lemma 3.3. The sequences {pk}, {xk} and {wk}
are bounded.

Proof. Let x∗ ∈ ∩j∈JFix(Sj) ∩ Sol(C,F ). Using
Step 3 and the βj demi-contractive assumption of
Sj , j = 1, 2, ..., we get

||xk+1 − x∗||2

=||(1− ω)pk + ωSj0p
k − x∗||2

=||(pk − x∗) + ω(Sj0p
k − pk)||2

≤||pk − x∗||2 + 2ω�pk − x∗, Sj0p
k − pk�

+ ω2||Sj0p
k − pk||2

≤||pk − x∗||2 + ω(ω + βj0 − 1)||Sj0p
k − pk||2

≤||pk − x∗||2. (7)
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From Lemma 3.2 and the last inequality, it follows
that

||wk+1 − x∗|| ≤ ||pk − x∗||+ 2η
1
4

k+1. (8)

Using Step 3, Condition (3) and (8), we have

�pk+1 − x∗�

=||αk+1(x
0 − x∗) + (1 − αk+1)(w

k+1 − x∗)||

≤αk+1||x0 − x∗||+ (1− αk+1)||wk+1 − x∗||

≤αk+1||x0 − x∗||+ (1− αk+1)(||pk − x∗||+ 2η
1
4

k+1)

≤max{||pk − x∗||+ 2η
1
4

k+1, ||x
0 − x∗||}

...

≤max{||p0 − x∗||+ 2
k+1


i=1

η
1
4

i , ||x0 − x∗||} < +∞

≤max{||p0 − x∗||, ||x0 − x∗||}+ 2
∞


i=1

η
1
4
i < +∞.

So, the sequence {pk} is bounded. From (7) and
(8), it follows that the sequences {xk} and {wk}
are bounded. ✷

Lemma 3.4. Let x∗ ∈ ∩j∈JFix(Sj) ∩ Sol(C, F ).
Set ak = �xk − x∗�2, γk = 2γ

√
ηk and bk =

2�x0 − x∗, pk − x∗�. Then,

(i) ak+1 ≤ (1− αk)ak + αkbk + γk;

(ii) γk ≥ 0,
	∞

n=1 γk <∞;

(iii) lim
k→∞

γk
αk

= 0.

Proof. Using Lemma 3.2 and Step 3, we get

||pk − x∗||2

=||αk(x
0 − x∗) + (1− αk)(w

k − x∗)||2

≤(1− αk)||wk − x∗||2 + 2αk�x0 − x∗, pk − x∗�

≤(1− αk)||xk − x∗||2 + 2αk�x0 − x∗, pk − x∗�

+ 2γ
√
ηk(1− αk)

≤(1− αk)||xk − x∗||2 + 2αk�x0 − x∗, pk − x∗�

+ 2γ
√
ηk. (9)

Using last inequality and (7), we have

||xk+1 − x∗||2 ≤(1− αk)||xk − x∗||

+ 2αk�x0 − x∗, pk − x∗�+ 2γ
√
ηk.

This follows (i). Note that (ii) and (iii) are deduced
from the condition (3). ✷

Lemma 3.5. Suppose that limk→∞ �xk− yk� = 0,
limk→∞ �wk − yk� = 0, limk→∞ �xk+1 − pk� = 0

and xki � p as i → ∞. Then p ∈ ∩j∈JFix(Sj) ∩
Sol(C, F ).

Proof. By Step 1, we have

�xki − yki , x− yki�+ λki�uki , yki − xki�

≤ λki�uki , x− xki�+ ηki ∀x ∈ C.

For each fixed point x ∈ C, take the limit as i→∞,
using limi→∞ �xki − yki� = 0 and limi→∞ ηki = 0,
we get lim infi→∞�uki , x − xki� ≥ 0 ∀x ∈ C.

Let {�j} be a positive sequence decreasing and
limj→∞ �j = 0. Then, for each j ∈ N , there
exists a smallest positive integer Kj such that�
uKj , x− xKj

�
+ �j ≥ 0 ∀x ∈ C. It is easy to check

that {Kj} is increasing. Set νKj := 1
�uKj �2

uKj .

Then, we have �uKj , νKj � = 1 for all j ∈ N and�
uKj , x+ �jν

Kj − xKj
�
≥ 0 ∀x ∈ C. Combining

this and the pseudomonotonicity of F , we have
�
u, x+ �jν

Kj − xKj
�
≥ 0 ∀x ∈ C, u ∈ F (x+�jν

Kj ).

(10)
Using the assumptions A2 and xKj � p as j →∞,
the sequence {uKj} converges weakly to up ∈ F (p).
If up = 0 then (p, up) is a solution. So we can
suppose that up �= 0. Then, we have 0 < �up� ≤
lim infj→∞ �uKj�, and hence

0 ≤ lim sup
j→∞

�j�νKj� = limsup
j→∞

�j
�uKj�

≤
lim supj→∞ �j

lim infj→∞ �uKj� = 0.

Consequently

lim
j→∞

�j�νKj� = 0. (11)

For each ū ∈ F (x), set ūKj = PrF(x+�jνKj )(ū). By
the definition of the projection, we have

�ū− ūKj� = d
�
ū, F
�
x+ �jν

Kj
��

≤ ρ
�
F (x), F

�
x+ �jν

Kj
��
≤ L��jνKj�.

From (11) and this, it follows that

lim
j→∞

�ū− ūKj� = 0. (12)

Using the assumption limk→∞ �xk − yk� = 0 and
xKj � p, the sequence {yKj} also converges weakly
to p. Substituting u := ūKj ∈ F

�
x+ �jν

Kj
�
into

(10), we get
�
ūKj , x+ �jν

Kj − xKj
�
≥ 0 ∀x ∈ C.

Passing the limit into the last inequality, using (12)
and limj→∞ �j = 0, we obtain �ū, x− p� ≥ 0 ∀x ∈
C. For every t ∈ [0, 1], set xt := tx+ (1 − t)p ∈ C.
There exists ut ∈ F (xt) such that

0 ≤ �ut, xt−p� = �ut, tx+(1−t)p−p� = t�ut, x−p�,
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for all x ∈ C. Let t 	 0. By the assumption A4,
we have that {ut} converges weakly to û ∈ F (p)

and hence �û, x − p� ≥ 0 ∀x ∈ C. It implies
p ∈ S(MV I). For each j ∈ J , we now show that
p ∈ Fix(Sj). Using Step 3, we have

||pk − Sjp
k|| = 1

ω
||pk − qkj ||

≤ 1

ω
||pk − qkj0 || =

1

ω
||xk+1 − pk||.

From limk→∞ �xk+1 − pk� = 0 and last inequality,
it follows that ||pk − Sjp

k|| → 0, k → ∞. Also we
know from Step 3 that

||pk − wk|| = αk||x0 − wk|| ≤ αkM0 → 0, k →∞,

(13)
where M0 = sup{||x0 − wk|| : k = 0, 1, ...}. Us-
ing limk→∞ �xk − yk� = 0, limk→∞ �wk − yk� = 0

and �wk − xk� ≤ �wk − yk� + �yk − xk�, we have
limk→∞ �wk − xk� = 0. Combining this and (13),
we obtain

�pk − xk� ≤ �pk −wk�+ �wk − xk�.

From this and xki � z, it follows that pki � p.
Using this, limk→∞ ||pk−Sjp

k|| = 0 and the demi-
closedness of Sj , we have p ∈ Fix(Sj). ✷

Theorem 3.6. Let C be a nonempty closed con-
vex subset of a real Hilbert space H. Suppose that
conditions A1 −A4 are satisfied. Let {xk} be a se-
quence generated by Algorithm 3.1. Then, the se-
quence {xk} converges strongly to a solution

z ∈ ∩j∈JFix(Sj) ∩ S(MV I),

where z = Pr∩j∈JFix(Sj)∩S(MV I)(x
0).

Proof. Set ak := �xk−z�. To prove the strong con-
vergence of the algorithm 3.1, we consider two the
following cases.

Case 1. Suppose that there exists k0 ∈ N such
that ak+1 ≤ ak for all k ≥ k0. There exists the
limit A = limk→∞ ak ∈ [0,∞). Using Step 3, we
obtain

�xk+1 − z�2

=�(1− ω)pk + ωSj0p
k − z�2

=�pk − z�2 − 2ω�pk − z, pk − Sj0p
k�

+ ω2�pk − Sj0p
k�2. (14)

which together with Lemma 3.2 and (2) implies
that

�xk+1 − z�2

≤�pk − z�2 − ω(1− βj0 − ω)�pk − Sj0p
k�2

=||αk(x
0 − z) + (1 − αk)(w

k − z)||2

− 1

ω
(1− βj0 − ω)�xk+1 − pk�2

≤(1− αk)||wk − z||2 + 2αk�x0 − z, pk − z�

− �xk+1 − pk�2,

≤||wk − z||2 + 2αk�x0 − z, pk − z� − �xk+1 − pk�2

≤�xk − z�2 − 2− γ

γ
�wk − z�2 + 2αk�x0 − z, pk − z�

− �xk+1 − pk�2

≤�xk − z�2 − 2− γ

γ
�wk − z�2 + αkM1

− �xk+1 − pk�2, (15)

where M1 := sup{2�x0 − z, pk − z� : k = 0, 1, ...} <

∞. It follows that

ak+1 − ak +
2− γ

γ
�wk − xk�2 + �xk+1 − pk�2

≤ αkM1 + 2γ
√
ηk ∀k ≥ 0. (16)

Passing the limit as k →∞ and using the assump-
tions limk→∞ αk = 0, limk→∞ ηk = 0, γ ∈ (0, 2), we
have limk→∞ �wk−xk� = 0, limk→∞ �xk+1−pk� =
0. By Lemma 3.1 and Step 2, we have ρk ≥ c2 and

�xk − yk�2 ≤ 1

c1
�xk − yk, dk�

=
1

c1ρkγ2
�wk − xk�2

≤ 1

c1c2γ2
�wk − xk�2

Since limk→∞ �wk − xk� = 0 we get limk→∞ �xk −
yk� = 0. It follows that

�wk−yk� ≤ �wk−xk�+�xk−yk� → 0, as k →∞.

Using Step 3, we have �pk−wk� = αk�x0−wk� ≤
αkM0 → 0, as k → ∞, where M0 = sup{�x0 −
wk� : k = 0, 1, ...}0 < +∞. Therefore,

�xk+1−xk� ≤ �xk+1−pk�+�pk−wk�+�wk−xk� → 0

as k →∞. From this and �xk−pk� ≤ �xk+1−xk�+
�xk+1− pk�, it follows that limk→∞ �xk− pk� = 0.
Since sequence {xk} is bounded, there exists a
subsequence {xki} such that xki � p ∈ H and
lim sup
k→∞

�x0 − z, xk − z� = lim
i→∞

�x0 − z, xki − z�.

Using limk→∞ �xk − yk� = 0, �wk − yk� →
0, �xk+1 − pk� → 0 and Lemma 3.5, we have
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p ∈ ∩j∈JFix(Sj)∩Sol(C, F ). From limi→∞ �xki −
pki� = 0 and xki � p, it follows that pki � p.

Therefore, we get lim sup
k→∞

bk = 2 lim
i→∞

�x0 − z, pki −

z� = 2�x0 − z, p − z� ≤ 0. Using this, Lemma 2.3
and Lemma 3.4, we obtain lim

k→∞
�xk − z� = 0.

Case 2. Assume that there not exist k0 ∈ N
such that {ak}∞k=k0 is monotonically decreasing. So,
there exists an integer k0 such that ak0 ≤ ak0+1.
By Lemma 2.5, Maingé introduced a subsequence
{aτ(k)} of {ak} which is defined as

τ(k) = max {i ∈ N : k0 ≤ i ≤ k, ai ≤ ai+1} .

Then, he showed that τ(k) � +∞, 0 ≤ ak ≤
aτ(k)+1, aτ(k) ≤ aτ(k)+1 ∀k ≥ k0. Using aτ(k) ≤
aτ(k)+1, ∀k ≥ k0 and (16), we get

�wτ(k)−xτ(k)� → 0, �xτ(k)+1−pτ(k)� → 0, k→∞.

By a similar way as in case 1, we can show that

lim
k→∞

�xτ(k) − pτ(k)� = lim
k→∞

�xτ(k) − yτ(k)�

= lim
k→∞

�wτ(k) − yτ(k)� = 0. (17)

Since {xτ(k)} is bounded, there exists a subse-
quence of {xτ(k)}, still denoted by {xτ(k)}, which
converges weakly to p ∈ H. By Lemma 3.5, we get
p ∈ ∩j∈JFix(Sj) ∩ Sol(C,F ). Again, by a similar
way as in case 1, we can prove that lim sup

k→∞
bτ(k) ≤ 0.

Using Lemma 3.4 (i) and aτ(k) ≤ aτ(k)+1, ∀k ≥ k0,
we have

ατ(k)aτ(k) ≤ aτ(k) − aτ(k)+1 + ατ(k)bτ(k) + γτ(k)

≤ ατ(k)bτ(k) + γτ(k).

Since δτ(k) > 0, we get aτ(k) ≤ bτ(k) +
γτ(k)
ατ(k)

.

From Lemma 3.4 (iii) and last inequality, it fol-
lows that lim sup

k→∞
aτ(k) ≤ lim sup

k→∞
bτ(k) ≤ 0. Hence,

limk→∞ aτ(k) = 0. It follows that

aτ(k)+1 = �xτ(k)+1 − z�2

≤ (�xτ(k)+1 − xτ(k)�+ �xτ(k) − z�)2

→ 0, k→∞.

Using 0 ≤ ak ≤ aτ(k)+1 for all k ≥ k0, we get
lim
n→∞

ak = 0. Hence, xk → z as k →∞. ✷

4 CONCLUSIONS

We propose a new projection algorithm for finding
a common element of the solution sets of Problem
(MVI) and the set of fixed points of a finite system
of mappings. Our algorithm only uses one projec-
tion on C at each iteration. We show that the pro-
posed algorithm is strongly convergent when F is
pseudomonotone, Lipschitz and Sj is demicontrac-

for all j ∈ J.
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