TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO

PHƯƠNG PHÁP DIỆN TÍCH Ở BẬC TIỂU HỌC
 VỚI BÀI TOÁN ĐƯỜNG TRUNG TUYẾN

Trần Dình Tướng ${ }^{1}$, Khổng Chí Nguyện ${ }^{2, *}$
${ }^{1}$ Trường Dại học Tài chính - Marketing, thành phố Hồ Chí Minh, Việt Nam
${ }^{2}$ Truờng Dại học Tân Trào, Tuyên Quang, Việt Nam
*Email: nguyenkc69@gmail.com
https://doi.org/10.51453/2354-1431/2022/5xx

Thông tin bài viết

Ngày nhận bài: 21/9/2022
Ngày duyệt đăng: .../.../2022
Từ khóa: Tam giác, Diện tích, Tỷ số, Dường cao, Cạnh đáy

Tóm tắt:

Khi giải được một bài toán nói chung và bài toán hình học nói riêng, ta thường có suy nghĩ để tìm thêm lời giải khác, hoặc làm thế nào để có được một bài toán mới từ bài toán gốc. Đối với bài toán hình học, để có thêm những bài toán mới, ta thường thay đổi, hoặc bổ sung thêm giả thiết/kết luận... Trong bài báo này xuất phát từ việc giải Bài toán đường trung tuyến cho học sinh tiểu học, ta sẽ phát triển, mở rộng thêm một số bài toán mới trên cơ sở thay đởi tỷ lệ của mỗi điểm chia trên hai cạnh của tam giác và/hoặc bổ sung thêm những giả thiết phù hợp.

TẠP CHÍ KHOA HỌC ĐẠI HỌC TÂN TRÀO

ISSN: 2354-1431
http://tckh.daihoctantrao.edu.vn/

THE AREA METHOD AT THE PRIMARY LEVEL WITH MEDIAN LINE PROBLEMS

Tran Dinh Tuong ${ }^{1}$, Khong Chi Nguyen ${ }^{2, *}$
${ }^{2}$ University of Finance - Marketing, Ho Chi Minh City, Viet Nam
${ }^{2}$ Tan Trao University, Tuyen Quang, Viet Nam
* Email: nguyenkc69@gmail.com
https://doi.org/10.51453/2354-1431/2022/5xx

Article info.

Received: 21/9/2022
Accepted: .../.../2021

Keywords: Triangle, Area, Ratio, Altitude, Base side

Abstract

Abtract:

When solving any problem or geometry problem, we often have thoughts and find the other solutions or how to discover new problems from the original problem. For geometry problems, in order to have a new problem we often change or add assumptions/conclusions and etc. In this work, it comes from solving the median line problem at primary level, we will develop and expand it to include new problems on the basis of changing the ratio of each dividing point on the two sides of the triangle and/or adding appropriate assumptions.

1 Introduction

In the Primary Math program, geometry problems are always content of knowledge with many difficult math problems. In particular, the problems of the area, and the ratio of measurements between geometric figures are challenges for most pupils and some teachers. These problems require students and teachers to have a solid foundation of geometric knowledge, to have coherent thinking and, to be able to read and analyze geometric figures to determine the exact solution for the problem.
In the entrance exams to grade 6 at key junior high schools, the problem of the geometrical
area is always taken to increase the differentiation for candidates. However, most pupils have no points in the problems of the area and are solved by the area method. Finding the solution of a geometry problem by the area method and appropriately presenting the object, and helping pupils develop thinking capacity is always a requirement for every teacher.
Starting from the Median line Problem, Example 3.1, we will develop and expand many more problems by changing the ratio of each dividing point on the two sides of the triangle and/or adding make appropriate assumptions. In the scope of this paper, we mainly study area problems related to triangles and
special quadrilaterals such as parallelograms, trapezoids, rectangles.

The article is structured as follows: Following the Introduction section is the Preliminary knowledge section, which recalls some related knowledge that will be used in Section 3 of this article. Section 3 is the research content. Finally, the Conclusion section.

2 Preliminary

2.1 Area formulas

Triangle area: Given triangle $A B C$, altitude $A H$ is perpendicular to side $B C$ at point H. We have, the area formula of triangle $A B C$ is

$$
S_{A B C}=\frac{B C \times A H}{2}
$$

$B C$ is called the base side, and $A H$ is the altitude corresponding to $B C$. The formula for area is (verbally) stated as follows: The area of a triangle is the product of the base length with the corresponding height divided by 2.
Now we will consider the ratio of two triangles through the base lengths and the heights.

Consider triangle $M N P$, altitude $M K$ is perpendicular to $N P$ at point K. We have,

$$
S_{M N P}=\frac{N P \times M K}{2} .
$$

Then,

$$
\frac{S_{A B C}}{S_{M N P}}=\frac{B C \times A H}{N P \times M K}=\frac{B C}{N P} \times \frac{A H}{M K}
$$

If $B C=N P$ then

$$
\frac{S_{A B C}}{S_{M N P}}=\frac{A H}{M K}
$$

If $A H=M K$ ten

$$
\frac{S_{A B C}}{S_{M N P}}=\frac{B C}{N P} .
$$

Area of a trapezoid, parallelogram, and rectangle: Given trapezoid $A B C D$, small base $A B$, longer base $C D$, and the altitude $A H$ perpendicular to the bases at H on the side $C D$. Then, the area of trapezoid $A B C D$ is calculated by the formula

$$
S_{A B C D}=\frac{(A B+C D) \times A H}{2}
$$

If $A B=C D$, we get the parallelogram $A B C D$, and the area of parallelogram $A B C D$ is calculated by the formula

$$
S_{A B C D}=A B \times A H
$$

If $A B=C D$ and the altitude $A H$ is the side $A D$, we get the rectangle $A B C D$, and the area of rectangle $A B C D$ is calculated by the formula

$$
S_{A B C D}=A B \times A D
$$

2.2 Find two numbers when the sum and difference are known

Let's say $a>b$. Find two numbers a and b if the sum is $T=a+b$, the difference is $H:=a-b$. We have

$$
a=(T+H) \div 2, b=(T-H) \div 2
$$

or $b=T-a$, or $b=a-H$.

2.3 Find two numbers when the sum/difference and ratio are known

Let's say $a>b$. Find two numbers a and b if the sum is $T=a+b$ (or, difference is $H:=a-b$) and the ratio is $\frac{a}{b}=\frac{M}{N}$.
It is easy to see that the sum (or, difference) of two numbers a and b is divided into $M+N$ (or, $M-N$) parts, where a occupies the M part, b occupies the N part. Then each
part has a value of $p=T \div(M+N)$ (or, $p=H \div(M-N))$, and we have

$$
a=M \times p, b=N \times p .
$$

or $b=T-a($ or, $b=a-H)$.

3 Contents

We consider and solve the problem of the median line theorem in a triangle, in line with the thinking of primary students.

Example 3.1. Given triangle $A B C$. Take the points M, N on the sides $B C, C A$ respectively such that $M C=M B, N A=N C$. Let P be the intersection of $A M$ and $B N$. Prove that $P A=2 \times P M, B P=2 \times P N$.

ANALYSIS. By assumption, to prove $P A=$ $2 \times P M$, we will prove $S_{C P A}=2 \times S_{C P M}$.
Draw a line segment $P C$, it is easy to see that $S_{P B C}=2 \times S_{P C M}, S_{P B C}=S_{P A C}$. So, $S_{C P A}=2 \times S_{C P M}$. Therefore,

$$
P A=2 \times P M
$$

Similarly, we also prove the case $B P=2 \times P N$. SOLUTION. Draw a line segment $P C$. By assumption, we have

$$
\begin{align*}
B C & =2 \times B M \tag{3.1}\\
A C & =2 \times A N \tag{3.2}
\end{align*}
$$

Two triangles $P B M$ and $P B C$ share the same altitude drawn from P to $B C$ and the equality (3.1), so we have

$$
\begin{equation*}
S_{P B C}=2 \times S_{P B M} . \tag{3.3}
\end{equation*}
$$

Two triangles $B A N$ and $B C N$ share the same altitude drawn from B to $A C$ and $N A=N C$, so we have

$$
\begin{equation*}
S_{B A N}=S_{B C N} \tag{3.4}
\end{equation*}
$$

Two triangles $P A N$ and $P C N$ share the same altitude drawn from P to $A C$ and $N A=N C$, so we have

$$
\begin{equation*}
S_{P A N}=S_{P C N} \tag{3.5}
\end{equation*}
$$

By (3.4) and (3.5), we have

$$
\begin{equation*}
S_{P A B}=S_{P B C} \tag{3.6}
\end{equation*}
$$

Therefore, by (3.3) and (3.6), we get

$$
\begin{equation*}
S_{P B A}=2 \times S_{P B M} \Rightarrow \frac{S_{P B A}}{S_{P B M}}=2 \tag{3.7}
\end{equation*}
$$

Two triangles $P B A$ and $P B M$ share the same altitude drawn from B to $A M$ and the ratio (3.7). Then, the ratio of the bases is equal to the area ratio of the triangles. We have

$$
\frac{P A}{P M}=\frac{S_{P B A}}{S_{P B M}}=2 \Rightarrow P A=2 \times P M
$$

Next, we prove $B P=2 \times P N$. It is clear that the two triangles $P C N$ and $P A C$ share the same altitude drawn from P to $A C$ and the ratio (3.2), so we have

$$
\begin{equation*}
S_{P A C}=2 \times S_{P C N} \tag{3.8}
\end{equation*}
$$

Two triangles $A B M$ and $A C M$ share the same altitude drawn from A to $B C$ and $M B=M C$, so we have

$$
\begin{equation*}
S_{A B M}=S_{A C M} \tag{3.9}
\end{equation*}
$$

Two triangles $P B M$ and $P C M$ share the same altitude drawn from P to $B C$ and $M B=M C$, so we have

$$
\begin{equation*}
S_{P B M}=S_{P C M} . \tag{3.10}
\end{equation*}
$$

By (3.9) and (3.10), we get

$$
\begin{equation*}
S_{P A B}=S_{P A C} . \tag{3.11}
\end{equation*}
$$

By (3.8) and (3.11), we get

$$
\begin{equation*}
S_{A P B}=2 \times S_{A P N} \Rightarrow \frac{S_{A P B}}{S_{A P N}}=2 . \tag{3.12}
\end{equation*}
$$

Two triangles $A P B$ and $A P N$ share the same altitude drawn from A to $B N$ and the ratio (3.12), so the ratio of the two bases is equal to the area ratio of the triangles. We have

$$
\frac{P B}{P N}=\frac{S_{A P B}}{S_{A P N}}=2 \Rightarrow P B=2 \times P N .
$$

The proof is complete.
Example 3.1 is a basic problem for the requirement to calculate the ratio of the lengths of two line segments on a side connecting the vertex of the triangle to the midpoint of the opposite side by using the area method. To solve the problem, detecting and drawing the subline $P C$ play an important role. To get more new problems, we will change the ratio of the points M, N on the two sides of the triangle $A B C$ and/or add another, appropriate assumptions. We consider some such problems through the examples presented as follows.

Example 3.2. Given triangle $A B C$. Take the points M on $A B, N$ on $A C$ such that $A M=$ $M B, N A=2 \times C N$. The notation E is the intersection of $A M$ and $B N$. Suppose, the area of triangle $A E N$ is equal to $18 \mathrm{~cm}^{2}$. Calculate the area of triangle $A B C$.

ANALYSIS. Thank to the assumption $N A=$ $2 \times N C$, we can calculate the area of triangle $E A C$, the area ratio of the triangles $E B C$ and $E B A$, namely

$$
S_{E A C}=27 \mathrm{~cm}^{2}, \frac{S_{E B C}}{S_{E B A}}=\frac{1}{2} .
$$

On the other hand,from the assumption $A M=$ $M B$, then the area ratio of the triangles $E B M$ and $E B A$ is

$$
\frac{S_{E B M}}{S_{E B A}}=\frac{1}{2} .
$$

We infer that two triangles $E B C$ and $E B M$ have equal areas and

$$
\frac{S_{E B C}}{S_{E B M}}=1,
$$

and then $E C=E M$. Therefore,

$$
S_{A E M}=S_{A E C}=27 \mathrm{~cm}^{2}
$$

Then, triangle $A B C$ has an area of $108 \mathrm{~cm}^{2}$. SOLUTION. By the assumption $N A=2 \times$ $N C$, we have the ratio $\frac{N A}{A C}=\frac{2}{3}$. Therefore, the area ratio of the triangles $E N A$ and $E A C$ is

$$
\begin{equation*}
\frac{S_{A C E}}{S_{E N A}}=\frac{3}{2} \Rightarrow S_{A C E}=27\left(\mathrm{~cm}^{2}\right) . \tag{3.13}
\end{equation*}
$$

It is also from the assumption $N A=2 \times N C$, we have the ratio $\frac{N C}{N A}=\frac{1}{2}$. Thus we have the area ratio of the triangles $E N C$ and $E N A$ as $\frac{S_{E N C}}{S_{E N A}}=\frac{1}{2}$. Thus, two altitudes drawn from C,
A to $N B$ have the ratio $\frac{1}{2}$. So the area ratio of the triangles $E B C$ and $E B A$ is

$$
\begin{equation*}
\frac{S_{E B C}}{S_{E B A}}=\frac{1}{2} \Rightarrow S_{E B C}=\frac{1}{2} \times S_{E B A} \tag{3.14}
\end{equation*}
$$

On the other hand, under the assumption $A M=M B$, we have $A B=2 \times M B$. Therefore, the area ratio of the triangles $E M B$ and $E B A$ is

$$
\begin{equation*}
\frac{S_{E M B}}{S_{E B A}}=\frac{1}{2} \Rightarrow S_{E A B}=2 \times S_{E M B} \tag{3.15}
\end{equation*}
$$

By (3.14) and (3.15), we have $S_{B E C}=S_{B E M}$. Since two triangles $B E C$ and $B E M$ share the same altitude drawn from B to $M C$, so two bases corresponding to B must be equal to each other, and $E C=E M$. We get

$$
S_{E M A}=S_{E C A}=27\left(\mathrm{~cm}^{2}\right)
$$

Thus, we have $S_{C A M}=2 \times S_{E A M}=54\left(\mathrm{~cm}^{2}\right)$. So, $S_{A B C}=2 \times S_{C A M}=108 \mathrm{~cm}^{2}$.

Answer: $S_{A B C}=108 \mathrm{~cm}^{2}$
In Example 3.2, the "subline" $A E$ is given. Then, to get the solution of the problem, we have to calculate the ratio $\frac{E C}{E M}=1$, or the ratio $\frac{E B}{E N}=3$. This is the critical middle step to determine $S_{A B C}$. Therefore, this problem may require proving $E C=E M$ or $E B=3 \times E N$ to get another problem. We can also replace the area of triangle $E N A$ with the area of triangle $E N C, E A M$ and etc. Finally, F is the intersection of the extended $A E$ that intersects the side $B C$. It is easy to see that the ratio $\frac{A E}{A F}=\frac{B E}{B N}=\frac{3}{4}$. Readers should prove these claims. In the next example, we add more assumptions in addition to the ones about the dividing point on two sides of the triangle.

Example 3.3. Given triangle $A B C$. Take the points D on $A B, E$ on $A C$ such that $A B=3 \times B D, A C=4 \times A E$. The notation
F is the intersection of $C D$ and $B E$. Suppose, the area of triangle $D B F$ is equal to $100 \mathrm{~cm}^{2}$. Calculate the area of triangle $A B C$.

ANALYSIS. By assumption, it is easy to see that the triangle $D B F$ lies within the triangle $A B E$ and $S_{A B C}=4 \times S_{A B E}$. Therefore, to compute $S_{A B C}$, we would have to find $S_{A B E}$ through $S_{D B F}$. Two triangles $D B F, A B E$ have two bases on the side $B E$, so the altitudes are parallel. Draw the altitude $A H, D I$ perpendicular to $B E$. We will calculate the ratio of two altitudes and two bases of the triangles $D B F, A B E$. Thereby, the ratio of the areas of the two triangles $D B F, A B E$ is

$$
\frac{S_{A B E}}{S_{D B F}}=\frac{A H}{D I} \times \frac{B E}{B F}=\frac{15}{2}
$$

So $S_{A B E}=750 \mathrm{~cm}^{2}$. Hence $S_{A B C}=3000 \mathrm{~cm}^{2}$.
SOLUTION. Draw $A F$ and the altitudes $A H, D I$ perpendicular to $B E, H, I$ are in $A E$. We have

$$
\begin{equation*}
S_{A B E}=\frac{B E \times A H}{2}, S_{D B F}=\frac{B F \times D I}{2} . \tag{3.16}
\end{equation*}
$$

i) Computing the ratio $\frac{A H}{D I}$. Draw $A F$, and $F K$ perpendicular to $A B$. The triangle $F D B$ and the triangle $F A B$ share the same altitude $F K$, and the ratio of the bases $\frac{A B}{D B}=3$ (by assumption $A B=3 \times B D)$. So $\frac{S_{F A B}}{S_{F D B}}=3$. Hence,

$$
\begin{equation*}
S_{F A B}=3 \times S_{F D B} \tag{3.17}
\end{equation*}
$$

Now consider two triangles $D F B$ and $A F B$ with the base side $F B$. Combined with (3.17) we get the ratio of two altitudes $\frac{A H}{D I}=3$. We deduce,

$$
\begin{equation*}
A H=3 \times D I \tag{3.18}
\end{equation*}
$$

ii) Computing the ratio $\frac{B E}{B F}$ through the ratio area $\frac{S_{C F E}}{S_{C F B}}$. Two triangles $C A D$ and $C B D$ share the same altitude drawn from C to $A B$ and the ratio of the two bases $\frac{A D}{B D}=2$ (since $A B=3 \times B D)$, so the area ratio is

$$
\frac{S_{C A D}}{S_{C B D}}=2
$$

We deduce

$$
\begin{equation*}
S_{C A D}=2 \times S_{C B D} \tag{3.19}
\end{equation*}
$$

Now we consider two triangles $C A D, C B D$ with base $C D$. Combined with (3.19), we get the ratio of two altitudes drawn from A and B to $C D$ equal to 2 .

The triangles $C F A$ and $C F B$ share the base $C F$, and the ratio of two altitudes corresponding to the base $C F$ is 2 . Hence the area ratio is $\frac{S_{C F A}}{S_{C F B}}=2$, so

$$
\begin{equation*}
S_{C F B}=\frac{1}{2} \times S_{C F A} . \tag{3.20}
\end{equation*}
$$

Two triangles $F A C, F E C$ share the altitude drawn from F to $A C$ and the ratio of two bases is $\frac{A C}{E C}=\frac{4}{3}$ (by assumption, $A C=4 \times A E$). So, the area ratio of two the triangles is $\frac{S_{F A C}}{S_{F E C}}=\frac{4}{3}$. We get

$$
\begin{equation*}
S_{F A C}=\frac{3}{4} \times S_{F E C} \tag{3.21}
\end{equation*}
$$

It thanks to (3.20), (3.21), we have $S_{C F B}=$ $\frac{1}{2} \times \frac{4}{3} \times S_{C F E}=\frac{2}{3} \times S_{C F E}$. Hence the area ratio is

$$
\begin{equation*}
\frac{S_{C F E}}{S_{C F B}}=\frac{3}{2} . \tag{3.22}
\end{equation*}
$$

According to the results (3.22), the two triangles $C F E$ and $C F B$ share the altitude drawn from C to $B E$, so the ratio of two bases is $\frac{F E}{F B}=\frac{3}{2}$. Thus, we have

$$
\frac{B E}{F B}=\frac{F E+F B}{F B}=\frac{3+2}{2}=\frac{5}{2} .
$$

We deduce

$$
\begin{equation*}
B E=\frac{5}{2} \times F B \tag{3.23}
\end{equation*}
$$

iii) Computing the area of triangle $A B C$. By the (3.16), (3.18) and (3.23) we get

$$
\begin{aligned}
S_{A B E} & =\frac{1}{2} \times B E \times A H=\frac{15}{2} \times \frac{1}{2} \times B F \times D I \\
& =\frac{15}{2} \times S_{D B F}=\frac{15}{2} \times 100=750\left(\mathrm{~cm}^{2}\right)
\end{aligned}
$$

Two triangles $A B E, A B C$ share the altitude drawn from B to $A C, A C=4 \times A E$. Thus,

$$
S_{A B C}=4 \times S_{A B E}=4 \times 750=3000\left(\mathrm{~cm}^{2}\right)
$$

Answer: $S_{A B C}=3.000 \mathrm{~cm}^{2}$

Example 3.3 has the solution presented with a different approach, through finding the ratio between the altitudes, the bases of two triangles $D B F$ and $A B E$. So we determine the area ratio of these triangles and the area of the triangle $A B F$ - an important calculation in computing the area of the triangle $A B C$. Of course, we can also compute the area of triangle $A B C$ through the area of triangle $B C D$.

Example 3.4. Given triangle $A B C$. Take the point M in $B C$, the point N in $A C$ such that, $B M=M C, C N=3 \times N A . E$ is the intersection of $A M$ and $B N$. If the area of triangle $A B C$ is equal to $420 \mathrm{~cm}^{2}$, calculate the area of triangle $A E N$ and the ratio $\frac{A E}{A M}$.

ANALYSIS. By the assumptions and conditions about two triangles having equal area, it is easy to see that

$$
S_{A E N}=\frac{1}{4} \times S_{A E C}=\frac{1}{4} \times S_{A E B} .
$$

Hence, $S_{A E N}=\frac{1}{5} \times S_{A B N}$. We deduce

$$
S_{A E N}=\frac{1}{20} \times S_{A B C}=21\left(\mathrm{~cm}^{2}\right)
$$

SOLUTION. Draw the line segment EC. By assumption, triangle $A B M$ and triangle $A M C$ share the altitude drawn from A to $B C$ and $B M=M C$. Therefore, $S_{A B M}=S_{A C M}$.
Similarly, triangle $E B M$ and triangle $E M C$ share the altitude drawn from E to $B C$ and $B M=M C$. Hence, $S_{E B M}=S_{E C M}$. Deduce

$$
\begin{align*}
S_{A B E} & =S_{A B M}-S_{E B M} \tag{3.24}\\
& =S_{A C M}-S_{E C M}=S_{A C E}
\end{align*}
$$

Now we will calculate $S_{A E N}$ in terms of $S_{A B N}$. By the assumption $C N=3 \times N A$, then $N A=$ $\frac{1}{4} \times A C$. The triangles $A E N$ and $A E C$ share the altitude drawn from E to $A C$, and the ratio of two bases is $N A=\frac{1}{4} \times A C$. Therefore

$$
S_{A E N}=\frac{1}{4} \times S_{A E C}
$$

Combined with (3.24), we have $S_{A E N}=\frac{1}{4} \times$ $S_{A E B}$, and then

$$
S_{A E N}=\frac{1}{5} \times S_{A B N}
$$

On the other hand, the triangles $A B N$ and $A B C$ share the altitude drawn from B to $B C$ and the ratio of the bases is $N A=\frac{1}{4} \times A C$, so

$$
S_{A B N}=\frac{1}{4} \times S_{A B C}=\frac{1}{4} \times 420=105\left(\mathrm{~cm}^{2}\right) .
$$

Therefore $S_{A E N}=\frac{1}{5} \times 105=21\left(\mathrm{~cm}^{2}\right)$.
Finally, we calculate the ratio $\frac{A E}{A M}$. The triangles $A B E$ and $A B M$ share the altitude drawn from B to $A M$. Therefore, the area ratio of the triangles $A B E$ and $A B M$ is equal to the ratio of the bases $A E, A M$. Therefore,

$$
\frac{A E}{A M}=\frac{S_{A B E}}{S_{A B M}}
$$

We have $S_{A B E}=S_{A B N}-S_{A E N}=105-21=$ $84\left(\mathrm{~cm}^{2}\right)$. So, the ratio to be found is

$$
\frac{A E}{A M}=\frac{84}{210}=\frac{2}{5}
$$

$$
\text { Answer: } S_{A E N}=21 \mathrm{~cm}^{2} ; \frac{A E}{A M}=\frac{2}{5} \text {. }
$$

The subline $C E$ in Example 3.4 is still the deciding factor to get the correct answer. The problem can be changed the assumptions, conclusions, and others to have new problems:

- Change the conclusions about calculating areas and ratios, for example, the area of the triangle $A E B$ or $B E M$, the ratios $\frac{A E}{E M}$ or $\frac{B E}{B N}$, or $\frac{E N}{E B}$, etc.
- Change the assumption about the position of the points M, N in $B C, A C$ respectively, for example, $B M=\frac{1}{2} \times M C$ and $E N=\frac{1}{2} \times N C$ and etc. These changes can make the more difficult problems. We will consider an example for these cases.

Example 3.5. Given triangle $A B C$. Take the point M in $B C$, the point N in $A C$ such that, $B M=\frac{1}{2} \times M C, C N=\frac{1}{2} \times N A, E$ is the intersection of $A M$ and $B N$. Supopose that the area of the triangle $A B C$ is $420 \mathrm{~cm}^{2}$. Calculate
the area of the triangle $A E N$ and the ratio $\frac{A E}{A M}$.

ANALYSIS. According to the assumptions and conditions about the area ratio of two triangles with equal altitudes, the area ratio is the ratio of two bases. We have

$$
S_{A E N}=\frac{2}{3} \times S_{A E C}=\frac{4}{3} \times S_{A E B} .
$$

Therefore, $S_{A E N}=\frac{4}{7} \times S_{A B N}$. We deduce $S_{A E N}=\frac{8}{21} \times S_{A B C}=\frac{8}{21} \times 420=160\left(\mathrm{~cm}^{2}\right)$.
SOLUTION. Draw the line segment EC. By assumption, the triangles $A B M$ and $A M C$ share the altitude drawn from A to $B C$, and $B M=\frac{1}{2} \times M C$. Therefore, $S_{A B M}=\frac{1}{2} \times S_{A C M}$. Similarly, two triangles $E B M$ and $E M C$ share the altitude from E to $B C$ and $B M=\frac{1}{2} \times M C$. Thus, $S_{E B M}=\frac{1}{2} \times S_{E C M}$. We deduce

$$
\begin{aligned}
S_{A B E} & =S_{A B M}-S_{E B M} \\
& =\frac{1}{2} \times S_{A C M}-\frac{1}{2} \times S_{E C M}=\frac{1}{2} \times S_{A C E} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
S_{A C E}=2 \times S_{A B E} \tag{3.25}
\end{equation*}
$$

Now we will calculate the area $S_{A E N}$ through $S_{A B N}$.

The triangles $A E N$ and $A E C$ share the altitude drawn from E to $A C$ and $N A=\frac{2}{3} \times A C$. So we have

$$
S_{A E N}=\frac{2}{3} \times S_{A E C}
$$

Combined with (3.25), we have $S_{A E N}=\frac{4}{3} \times$ $S_{A E B}$. We deduce

$$
S_{A E N}=\frac{4}{7} \times S_{A B N}
$$

On the other hand, the triangles $A B N$ and $A B C$ share the altitude drawn from B to $A C$ and $N A=\frac{2}{3} \times A C$, then

$$
S_{A B N}=\frac{2}{3} \times S_{A B C}=\frac{2}{3} \times 420=280\left(\mathrm{~cm}^{2}\right) .
$$

Therefore, $S_{A E N}=\frac{4}{7} \times 280=160\left(\mathrm{~cm}^{2}\right)$.
Finally, we calculate the ratio $\frac{E M}{A E}$. Triangles $B E M$ and $B E A$ share the altitude drawn from B to $A M$. Thus, the area ratio of the triangles $B E M$ and $B E A$ is the ratio of the bases $A E, E M$. Therefore,

$$
\frac{E M}{A E}=\frac{S_{B E M}}{S_{B E A}} .
$$

We have
$S_{B E A}=S_{A B N}-S_{A E N}=280-160=120\left(\mathrm{~cm}^{2}\right)$,
so
$S_{B E M}=S_{A B M}-S_{E B A}=140-120=20\left(\mathrm{~cm}^{2}\right)$.
So, the ratio to be found is

$$
\frac{E M}{E A}=\frac{20}{120}=\frac{1}{6} .
$$

Answer: $S_{A E N}=160 \mathrm{~cm}^{2} ; \frac{E M}{E A}=\frac{1}{6}$.
Example 3.6. Given triangle $A B C$. Take the points M in $B C$ and N in $A C$ such that $B M=M C, C N=4 \times N A$. The line passing through M and N intersects the side $B A$ extended at E. Determine the area ratio of the triangles $A N E, A B C$ and the length ratio of the sides $E N$, $E M$.

ANALYSIS. By the assumptions we have $\frac{S_{A B N}}{S_{A B C}}=\frac{1}{5}$. Therefore, to determine the ratio $\frac{S_{A E N}}{S_{A B C}}$ we must calculate the ratio $\frac{S_{A E N}}{S_{A B N}}$.
It is clear that $S_{E B M}=S_{E C M}, S_{N B M}=S_{N C M}$. Therefore, $S_{E B N}=S_{E C N}$. On the other hand, $\frac{S_{E A N}}{S_{E C N}}=\frac{1}{4}$. Hence, $\frac{S_{E A N}}{S_{E B N}}=\frac{1}{4}$, so $\frac{S_{E A N}}{S_{A B N}}=\frac{1}{3}$. We deduce

$$
\frac{S_{A E N}}{S_{A B C}}=\frac{1}{15} \text { and } \frac{E N}{E M}=\frac{2}{5} .
$$

SOLUTION. We draw $B N$ and $C E$. Acording to the assumptions, the triangles $E B M$ and $E C M$ share the altitude drawn from E to $B C$ and $M B=M C$, so $S_{E B M}=S_{E C M}$.
Similarly, we also have $S_{N B M}=S_{N C M}$. We deduce, $S_{E B N}=S_{E C N}$

Two triangles $E B M$ and $E C M$ share the altitude drawn from E to $A C$ and $C N=4 \times A N$, so we get

$$
S_{E A N}=\frac{1}{4} \times S_{E C N}
$$

Therefore,

$$
S_{E A N}=\frac{1}{4} \times S_{E B N}
$$

We deduce

$$
\begin{equation*}
S_{E A N}=\frac{1}{3} \times S_{A B N} . \tag{3.26}
\end{equation*}
$$

From the assumption $C N=4 \times A N$, so $A C=$ $5 \times A N$. Furthermore, the two triangles $A B N$
and $A B C$ share the same altitude from B to $A C$ and $A C=5 \times A N$, so we have

$$
\begin{equation*}
S_{A B N}=\frac{1}{5} \times S_{A B C} \tag{3.27}
\end{equation*}
$$

Combined with (3.26) we get the result $S_{E A N}=\frac{1}{15} \times S_{A B C}$, or

$$
\frac{S_{E A N}}{S_{A B C}}=\frac{1}{15}
$$

Next, we calculate the ratio $\frac{E N}{E M}$. According to (3.26), we have

$$
\begin{equation*}
S_{B E N}=\frac{4}{3} \times S_{B N A} \tag{3.28}
\end{equation*}
$$

Now we will determine $S_{B N A}$ through $S_{B N M}$. The triangles $B N M, B N C$ share the altitude drawn from the vertex N and $B M=\frac{1}{2} \times B C$, so we have

$$
S_{B N M}=\frac{1}{2} \times S_{B N C}
$$

On the other hand, by the assumptions we have $S_{B N C}=\frac{4}{5} \times S_{A B C}$, so $S_{B N M}=\frac{2}{5} \times S_{A B C}$, or

$$
S_{A B C}=\frac{5}{2} \times S_{B N M}
$$

Combining with (3.27), we get the result

$$
S_{B N A}=\frac{1}{2} \times S_{B N M}
$$

Therefore, by (3.28), we have

$$
S_{B N E}=\frac{2}{3} \times S_{B N M}
$$

The trangles $B N E, B N M$ share the altitude drawn from B to $E M$ and the area ratio

$$
\frac{S_{B E N}}{S_{B N M}}=\frac{2}{3}
$$

Thus, the ratio of the bases $E N, E M$ is the ratio of two areas $S_{B E N}, S_{B N M}$, and we have

$$
\begin{aligned}
& \frac{E N}{N M}=\frac{S_{B E N}}{S_{B N M}}=\frac{2}{3} \Rightarrow \frac{E N}{E M}=\frac{2}{5} . \\
& \quad \text { Answer: } \frac{S_{E A N}}{S_{A B C}}=\frac{1}{15}, \frac{E N}{E M}=\frac{2}{5} .
\end{aligned}
$$

This is a difficult problem that is not given specific data, especially the requirement to find the ratio $\frac{E N}{E M}$. The problem will be more difficult if it only requires calculating the ratio $\frac{E N}{E M}$ or changing the assumption about the point M, for example, $B M=2 \times C M$. Calculating the ratio $\frac{S_{A E N}}{S_{A B C}}$ is an intermediate step and also requires a lesser degree of difficulty. When adding specific data to simplify the problem, we should start from the area of triangle $A E N$, or the area of triangle $A B C$ and calculate the area of the remaining triangles. Note that, if we choose a specific figure for the area of triangle $A B C$, it should be divisible by $3,4,5$ so that the results are integers.

Example 3.7. Given triangle $A B C$. Take the points M in $B C$ and N in $A C$ such that $B M=\frac{1}{3} \times B C, A N=\frac{1}{4} \times A C$. The notation P is the intersection of $A M$ and $B N$. Calculate the area ratio of the triangles $P B M, P A N$ and prove that $P A=P M$.

ANALYSIS. Draw the line segment $P C$. Thanks to the assumptions we have

$$
S_{P B M}=\frac{1}{3} \times S_{P B C}=S_{P A B} \Rightarrow P A=P M
$$

On the other hand, it is easy to see that

$$
S_{P A B}=\frac{1}{2} \times S_{P A C}, S_{P A N}=\frac{1}{4} \times S_{P A C}
$$

Therefore, $S_{P A B}=2 \times S_{P A N}$. We deduce $S_{P B M}=2 \times S_{P A N}$. To solve this problem we
will prove $P A=P M$, thereby determining the ratio of two triangles $S_{P B M}, S_{P A N}$.
SOLUTION. Drawn the line segment $P C$. By the assumptions, we have

$$
\begin{equation*}
A N=\frac{1}{3} \times N C \tag{3.29}
\end{equation*}
$$

The triangles $P B M, P C M$ share the altitude drawn from P to $B C$, and $B M=\frac{1}{3} \times B C$, so we have

$$
\begin{equation*}
S_{P B M}=\frac{1}{3} \times S_{P B C} \tag{3.30}
\end{equation*}
$$

The triangles $P A N, P C N$ share the altitude drawn from P to $A C$, and the ratio (3.29), so we have

$$
\begin{equation*}
S_{P A N}=\frac{1}{3} \times S_{P C N} \tag{3.31}
\end{equation*}
$$

The triangles $B A N, B C N$ share the altitude drawn from P to $A C$, and the ratio (3.29), so we get

$$
\begin{equation*}
S_{B A N}=\frac{1}{3} \times S_{B C N} . \tag{3.32}
\end{equation*}
$$

Acording to (3.31) and (3.32), we have

$$
\begin{equation*}
S_{P A B}=\frac{1}{3} \times S_{P B C} \tag{3.33}
\end{equation*}
$$

Combined with the (3.29), we get the result

$$
\begin{equation*}
S_{P A B}=S_{P M B} \tag{3.34}
\end{equation*}
$$

The triangles $B P A, B P M$ share the altitude drawn from B to $A M$. Hence, we have immediately

$$
P A=P M .
$$

Next, we calculate the area ratio of the triangles $P A N, P B M$.
It is assumed that $B M=\frac{1}{3} \times B C$. Therefore, we have $B M=\frac{1}{2} \times C M$.
The triangles $A B M, A C M$ share the altitude drawn from A to $B C$, and $B M=\frac{1}{2} \times C M$, so we have

$$
\begin{equation*}
S_{A B M}=\frac{1}{2} \times S_{A C M} \tag{3.35}
\end{equation*}
$$

From (3.29) and (3.35), we deduce

$$
\begin{equation*}
S_{P A B}=\frac{1}{2} \times S_{P A C} \tag{3.36}
\end{equation*}
$$

On the other hand, two triangles $P A N, P A C$ share the altitude drawn from A to $A C$, and $A N=\frac{1}{4} A C$, so we have

$$
\begin{equation*}
S_{P A N}=\frac{1}{4} \times S_{P A C} \tag{3.37}
\end{equation*}
$$

From (3.34), (3.36) and (3.37), we deduce

$$
\begin{aligned}
S_{P A N}= & \frac{1}{2} \times S_{P B M} \Rightarrow \frac{S_{P A N}}{S_{P B M}}=\frac{1}{2} \\
& \text { Answer: } \frac{S_{P A N}}{S_{P B M}}=\frac{1}{2}, P A=P M
\end{aligned}
$$

Example 3.8. Given triangle $A B C$. Take the points M, N, P on the sides $B C, C A, A B$ respectively such that $M C=2 \times M B, N A=$ $2 \times N C, P B=2 \times P A$. Prove that $S_{M N P}=$ $\frac{1}{3} \times S_{A B C}$.

ANALYSIS. Draw the line segment $A M$. By the assumptions we have $S_{A B M}=\frac{1}{3} \times S_{A B C}$ and $S_{M P B}=\frac{2}{3} \times S_{M B A}$. Therefore,

$$
S_{M P B}=\frac{2}{9} \times S_{A B C}
$$

Similarly, we get

$$
S_{P N A}=\frac{2}{9} \times S_{A B C}, S_{M N C}=\frac{2}{9} \times S_{A B C}
$$

We deduce, $S_{M N P}=\frac{1}{3} \times S_{A B C}$.

SOLUTION. Draw the line segment $A M$. Acording to the assumptions, we have

$$
\begin{align*}
M B & =\frac{1}{3} \times B C \tag{3.38}\\
P B & =\frac{1}{3} \times A B \tag{3.39}
\end{align*}
$$

Two triangles $A B M, A C M$ share the altitude drawn from A to $B C$, and the ratio (3.38). We have

$$
\begin{equation*}
S_{A B M}=\frac{1}{3} \times S_{A B C} \tag{3.40}
\end{equation*}
$$

Two triangles $M P B, M A B$ share the altitude drawn from M to $A B$, and the ratio (3.39). We get

$$
\begin{equation*}
S_{M P B}=\frac{2}{3} \times S_{M A B} \tag{3.41}
\end{equation*}
$$

From (3.40) and (3.41) we get the result

$$
\begin{equation*}
S_{M P B}=\frac{2}{9} \times S_{A B C} \tag{3.42}
\end{equation*}
$$

Similarly, we have

$$
\begin{align*}
S_{M N C} & =\frac{2}{9} \times S_{A B C} \tag{3.43}\\
S_{N P A} & =\frac{2}{9} \times S_{A B C} \tag{3.44}
\end{align*}
$$

Combined the (3.42), (3.43) and (3.44), we deduce

$$
S_{M N P}=\frac{1}{3} \times S_{A B C}
$$

The proof is complete.
Example 3.8 is also a basic problem, has a simple solution, and is solved by the area method. However, if the subline $A M$ is not detected, the problem will not be possible to solve. Our problem will becomes more difficult if the points M, N, and P are defined on the sides of the triangle with different ratios.
Next, we will consider some area problems in the special quadrilaterals.

Example 3.9. Given a parallelogram $A B C D$, height $A H=15 \mathrm{~cm}$, base $A B=20 \mathrm{~cm}$. Take the point M on the side $A B$ such that $A M=$ $\frac{2}{3} \times M B$. The line segment $M C$ intersects the diagonal $B D$ at K. Calculate the area of triangle $K M B$.

ANALYSIS. By assumption, it is easy to calculate the area of triangles $M B D, M C D, C B D$ and $C B M$. On the other hand, assumptively, we have the ratio $\frac{M B}{C D}=\frac{3}{5}$. Therefore, to calculate $S_{M B K}$, we have to calculate the ratio $\frac{S_{M B K}}{S_{M B D}}=\frac{3}{8}$, or the ratio $\frac{S_{B M K}}{S_{B M C}}=\frac{3}{8}$. Then,

$$
S_{B M K}=\frac{3}{8} \times S_{B M D}=\frac{3}{8} \times S_{B M C}
$$

SOLUTION. Acording to the assumptions, we have $M B=\frac{3}{5} \times A B=\frac{3}{5} \times 20=12(\mathrm{~cm})$. Therefore, we get $S_{D M B}=\frac{1}{2} \times M B \times A H=$ $\frac{1}{2} \times 12 \times 15=90\left(\mathrm{~cm}^{2}\right)=S_{C M B}$,
By the same assumption, we have

$$
S_{M C D}=\frac{1}{2} \times C D \times A H=150\left(\mathrm{~cm}^{2}\right)
$$

Two triangles $M C D, C M B$ share the altitude $A H=15(\mathrm{~cm})$, and the ratio of the bases $\frac{M B}{C D}=$ $\frac{3}{5}$. Thus, the ratio of the areas is $\frac{S_{C M B}}{S_{M C D}}=\frac{3}{5}$.
On the other hand, triangles $M C D, C M B$ share the bases $M C$. Then, the altitude drawn from the vertices B, D to $M C$ has the ratio $\frac{3}{5}$. The triangles $B K M, D K M$ share the bases $K M$, and the ratio of the altitudes is $\frac{3}{5}$. So
the ratio of the areas is $\frac{S_{B K M}}{S_{D K M}}=\frac{3}{5}$. It is clear that we get the problem: Find two numbers when the sum and ratio of the two numbers are known, where the sum is $S_{B K M}+S_{D K M}=$ $S_{M B D}=90\left(\mathrm{~cm}^{2}\right)$, the ratio is $\frac{S_{B K M}}{S_{D K M}}=\frac{3}{5}$ and $S_{K M B}$ is small number. Therefore, we have

$$
S_{K M B}=90 \div(3+5) \times 3=33,75\left(\mathrm{~cm}^{2}\right) .
$$

Answer: $33,75 \mathrm{~cm}^{2}$.
Example 3.10. Given rectangle $A B C D$. Take the point M in $C D$, the diagonal $B D$ and the line segment $A M$ intersect at I such that the area of triangle $B M C$ is equal to $36 \mathrm{~cm}^{2}$ and equal to $\frac{9}{16}$ area of triangle $I M D$. Calculate the area of rectangle $A B C D$.

ANALYSIS. Acording to the assumptions

$$
S_{B M C}=36 \mathrm{~cm}^{2}=\frac{9}{16} \times S_{I M D} .
$$

Thus, $S_{I M D}=64 \mathrm{~cm}^{2}$, and we find the area of triangle $I A B$. So, to calculate the area of rectangle $A B C D$ we will compute the area of two triangles $I A D, I B M$.
Since $S_{I A D}=\frac{1}{2} \times I D \times A H$ and $S_{M I D}=$ $\frac{1}{2} \times I D \times M K=64 \mathrm{~cm}^{2}$, we would determine the relationship between the line segments $I D$, $I B$ or $A H, M K$. Notice that $\frac{I D}{I B}=\frac{M K}{A H}$.
SOLUTION. By assumptions, we have immediately $S_{I M D}=64 \mathrm{~cm}^{2}$. Next, the triangles
$D A B, M A B$ share the base side $A B$ and the height $D A$, so

$$
\begin{equation*}
S_{M A B}=S_{D A B}=S_{B C D} . \tag{3.45}
\end{equation*}
$$

On the other hand, the triangles $B C D, M A B$ share the triangles $I M B$. We deduce

$$
S_{I A B}=S_{I D M}+S_{M B C}=100 \mathrm{~cm}^{2}
$$

We determine the triangles $I A D, I M B$. By (3.45) and the triangles $D A B, M A B$ share the triangle $I A B$, so we have $S_{I A D}=S_{I B M}$, and then

$$
\begin{equation*}
\frac{I D}{I B}=\frac{M K}{A H} \tag{3.46}
\end{equation*}
$$

We drawn the altitudes $A H, M K$ with H, K in $B D$. Then, we have
$S_{I M D}=\frac{1}{2} \times I D \times M K, S_{I A B}=\frac{1}{2} \times I B \times A H$.
Therefore,

$$
\begin{equation*}
\frac{64}{100}=\frac{S_{I M D}}{S_{I A B}}=\frac{I D}{I B} \times \frac{M K}{A H} \tag{3.47}
\end{equation*}
$$

By (3.46) and (3.47) we get the result

$$
\begin{equation*}
\frac{I D}{I B} \times \frac{I D}{I B}=\frac{64}{100} \Rightarrow \frac{I D}{I B}=\frac{4}{5} \tag{3.48}
\end{equation*}
$$

We deduce,

$$
\begin{aligned}
S_{I A D} & =\frac{1}{2} \times I D \times A H=\frac{1}{2} \times \frac{4}{5} \times I B \times A H \\
& =\frac{2}{5} \times S_{I A B}=\frac{2}{5} \times 100=40\left(\mathrm{~cm}^{2}\right)
\end{aligned}
$$

From the above results, it follows that $S_{A B C D}=2 \times S_{A B D}=2 \times\left(S_{I A B}+S_{I A D}\right)=$ $280 \mathrm{~cm}^{2}$.

$$
\text { Answer: } S_{A B C D}=280 \mathrm{~cm}^{2}
$$

Example 3.11 (Junior high school Le Quy Đon, 2020). In a trapezoid $A B C D$, the ratio between the base sides $A B, C D$ is $\frac{2}{3}$. Two diagonals $A C, B D$ intersect at I. The area of
triangle $A O B$ is $4 \mathrm{~cm}^{2}$. Find the area of trapezoid $A B C D$.

ANALYSIS. From the assumptions, it is easy to calculate the area ratio of the triangles $D A B$ and $B C D$,

$$
\frac{S_{D A B}}{S_{B C D}}=\frac{2}{3}
$$

We are also easy to calculate the area ratio of the triangles $A B I$ and $C B I$,

$$
\frac{S_{A B I}}{S_{C B I}}=\frac{2}{3} \Rightarrow S_{C B I}=6 \mathrm{~cm}^{2}
$$

Hence, $S_{A B D}=10 \mathrm{~cm}^{2}$. So, $S_{B C D}=15 \mathrm{~cm}^{2}$, and thereby $S_{A B C D}=25 \mathrm{~cm}^{2}$.

SOLUTION. The triangles $D A B, B C D$ have the same height as the height of the trapezoid and the ratio of the bases $\frac{A B}{C D}=\frac{2}{3}$. So the area ratio of two triangles $D A B, B C D$ is

$$
\begin{equation*}
\frac{S_{D A B}}{S_{B C D}}=\frac{2}{3}, \text { hay } S_{B C D}=\frac{3}{2} \times S_{D A B} \tag{3.49}
\end{equation*}
$$

The triangles $A B D, C B D$ share the base $B D$ and the ratio (3.49). Therefore, the ratio of the altitudes drawn from A and C to $B D$ is $\frac{2}{3}$.
The triangles $A B I, C B I$ share the base $B I$ and the ratio of the altitudes drawn from A and C to $B I$ is $\frac{2}{3}$. We deduce

$$
\begin{equation*}
S_{C B I}=\frac{3}{2} \times S_{A B I}=6 \mathrm{~cm}^{2} \tag{3.50}
\end{equation*}
$$

On the other hand, $S_{I A D}=S_{I B C}=6 \mathrm{~cm}^{2}$. We deduce,

$$
S_{A B D}=S_{I A B}+S_{I A D}=4+6=10\left(\mathrm{~cm}^{2}\right)
$$

According to (3.49), we get

$$
S_{C B D}=\frac{3}{2} \times 10=15\left(\mathrm{~cm}^{2}\right)
$$

So, the area of trapezoid $A B C D$ is

$$
\begin{array}{r}
S_{A B C D}=S_{A B D}+S_{C B D}=10+15=25\left(\mathrm{~cm}^{2}\right) \\
\text { Answer: } S_{A B C D}=25 \mathrm{~cm}^{2}
\end{array}
$$

4 Conclusion

The article has presented some development directions to detect new problems such as: changing the assumptions and/or adding new assumptions, changing the role between the assumptions and conclusion, and etc. Improving the solutions to these examples is left to the reader. Otherwise, these techniques that we proposed in this work can be applied to higher levels such as high school and undergraduate programs for some fields, such as geometry in algebra and geometric data analysis. These problems arise in these fields, and some applications of geometry will be studied in future research.

REFERENCES

[1] Bộ Giáo dục và Đào tạo (2020), Toán lớp 4 (Tập 1, 2), Nhà xuất bản Giáo dục Việt Nam.
[2] Bộ Giáo dục và Đào tạo (2020), Toán lớp 5 (Tập 1, 2), Nhà xuất bản Giáo dục Việt Nam.
[3] Đỗ Đình Hoan (Chủ biên), Nguyễn Áng, Đỗ Tiến Đạt, Phan Thanh Tâm (2020), Bài tập Toán 4, Nhà xuất bản Giáo dục Việt Nam.
[4] Đỗ Đình Hoan (Chủ biên), Nguyễn Áng, Đỗ Tiến Đạt, Phan Thanh Tâm (2020), Bài tập Toán 5, Nhà xuất bản Giáo dục Việt Nam.
[5] Trần Phương, Nguyễn Đức Tấn, Phạm Xuân Tiến (2011), Toán Chọn lọc Tiểu học (Tập 2: Các đề toán), Nhà xuất bản Giáo dục Việt Nam.
[1] Ministry of Education and Training, Grade 4 Math (Volume 1, 2), Vietnam Education Publishing House.
[2] Ministry of Education and Training, Grade 5 Math (Volume 1, 2), Vietnam Education Publishing House.
[3] Do Dinh Hoan (Editor), Nguyen Ang, Do Tien Dat, Phan Thanh Tam (2020), Math Exercise 4, Vietnam Education Publishing House.
[4] Do Dinh Hoan (Editor), Nguyen Ang, Do Tien Dat, Phan Thanh Tam (2020), Math Exercise 5, Vietnam Education Publishing House.
[5] Tran Phuong, Nguyen Duc Tan, Pham Xuan Tien (2011), Primary Selected Mathematics (Volume 2: Math problems), Vietnam Education Publishing House.

