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1 INTRODUCTION

Let us assume that H is a real Hilbert space which
is endowed with the scalar product ⟨· , ·⟩ and the
induced norm ∥ · ∥ and let K be a closed convex
set in H. The semi-affine variational inequalities is
the problem of find x ∈ K such that

⟨Tx+ c, y − x⟩ ≥ 0 ∀y ∈ K, (1)

where T (with the adjoint T ∗) be a bounded linear
operators on H, c ∈ H.

The variational inequality theory which is mainly
due to Stampacchia (see [8]) provides very power-
ful techniques for studying problems arising in me-
chanics, optimization, transportation, economics
equilibrium, contact problems in elasticity, and
other branches of mathematics. Problems semi-
affine variational inequalities including linear com-
plementarity problems, give a suitable format for
many problems arising in economics, mathemati-
cal physics, operations research, mathematical pro-
gramming and have been extensively studied in
literature both in finite- or infinite-dimensional
spaces (see, e.g, [8, 5, 10, 9] and references therein).

Since problems of the form (1) is a subclass of vari-
ational inequality problem, the stability of varia-
tional inequality problem can be applied to semi-
affine variational inequality problems. However, the
special structure of semi-affine variational inequal-
ity allows one to have deeper and sharper results
on the stability properties of the form (1).

This paper investigates the conditions for partic-
ular points to be solution and stability of the
solutions for a class of semi-affine variational
inequalities whose constraint set is defined by
finitely many convex linear quadratic inequalities
in Hilbert spaces. As an application, we obtain
stability of solutions for the parametric quadrati-
cally constrained quadratic programming problems
in Hilbert spaces.

The remainder of the paper is organized as fol-
lows. Some preliminaries are given in Section 2.
In the next section, we propose conditions for a
feasible point to be a solution of a class of semi-
affine variational inequalities problems. A stability
result of the solution for problem is also investi-
gated in this section. Finally, in Sect. 4, we ob-
tain the stability of solutions for the parametric
quadratically constrained quadratic programming
problems in Hilbert spaces by applying the results

in the previous section.

2 NOTATIONS AND PRELIMINARY RE-
SULTS

In this paper, the set K is defined by the finitely
many convex quadratic constraints of the form

K = {x ∈ Rn | gi(x) :=
1

2
⟨x, Tix⟩+⟨ci, x⟩+αi ≤ 0},

where Ti is a positive semidefinite continuous lin-
ear self-adjoint operator on H, ci ∈ H, and αi are
real numbers, i = 1, 2, . . . ,m.

In this section we recall some notations and known
results which will be used in our analysis. For de-
tails, we refer to [1].

In this paper, dist(x, S) = inf
y∈S

∥x−y∥ stands for the
distance from the point x ∈ H to set S ⊂ H. The
norm of a continuous linear operator Q : H → H

shall be defined ∥Q∥ = sup
{∥Qx∥

∥x∥
| x ∈ H, x ̸= 0

}
.

The notation r(h) = O(h) means that
r(h)

∥h∥
is

bounded for all h in neighborhood of 0 ∈ X, where
X is Banach or locally convex topological vector

spaces and r(t) = o(t) mean that
r(t)

t
→ 0 as

t → 0,.

Definition 2.1. [See, e.g., [1, p.45]] Let x ∈ K and
denote by I(x) = {i ∈ {1, 2, . . . ,m} | gi(x) = 0}
the set of inequality constraints active at x, as well
as by

TK(x) = {h ∈ H | dist(x+ th,K) = o(t), t ⩾ 0},

the tangent cone of K at x.

Definition 2.2. [See, e.g., [1, p.71]] (Mangasarian-
Fromovitz constraint qualification) The feasible
point x̄ is called regular if

∃h ∈ H : ⟨Tix̄+ ci, h⟩ < 0, ∀i ∈ I(x̄). (2)

Remark 2.1. Note that if x̄ ∈ K is regular, then
TK(x̄) is formulated as follows (see [1, Example
3.39])

TK(x̄) = {h ∈ H | ⟨Qix̄+ ci, h⟩ ⩽ 0, ∀i ∈ I(x̄)}.

We will need the following lemma, which is an ex-
tension of a Hoffman estimate for the distance to
the set of solutions to a system of linear inequali-
ties.

2
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Lemma 2.1 (see [7, Theorem 3]). Let H be a
Hilbert space. Let x∗

i ∈ H, i = 1, 2, . . . ,m, be given,
and consider the set

S = {x ∈ H | ⟨x∗
i , x⟩ ⩽ 0, i = 1, 2, . . . ,m}.

Then there exists a constant k > 0 such that for
any x ∈ H,

dist(x, S) ⩽ k
 m

i=1

⟨x∗
i , x⟩+


,

where [a]+ := max{a, 0}.

3 MAIN RESULTS

Let L(H) be the space of continuous linear oper-
ators from H into H equipped with the operator
norm induced by the vector norm in H and also
denoted by ∥ · ∥. The norm in the product space
X1 × . . . ×Xk of the normed spaces X1, . . . , Xk is
defined by ∥(x1, . . . , xk)∥ = max{∥x1∥, . . . , ∥xk∥}.

Consider the perturbed variational inequality: find
x ∈ K such that

⟨Tx+ c, y − x⟩ ≥ 0 ∀y ∈ K (sAVIω)

depending on the parameter vector ω = (T, c) ∈
Ω = L(H)×H. For a given point ω0, in the param-
eter space Ω, we view the corresponding problem
(sAVIω0) as an unperturbed problem. We denote
by S(ω) the set of solutions of (sAVIω). For a given
value ω0 of the parameter vector we assume that
(GAVIω0

) coincides with the unperturbed problem.

The following result gives a set of necessary and suf-
ficient conditions for x̄ to be a solution of (sAVIω0).
The proof of this theorem is similar to the proof of
Theorem 2.1 in [4]. However, for the sake of com-
pleteness, we give the complete proof here.

Theorem 3.1.

(i) Suppose that x̄ is a solution of (sAVIω0), and
that there exists x0 ∈ H be such that gi(x0) <

0 for all i = 1, 2, . . . ,m (Slater condition).
Then, there exists λ = (λ1, . . . , λm) ∈ Rm

such that



T x̄+ c+
m
i=1

λi(Tix̄+ ci) = 0

1
2 ⟨x̄, Tix̄⟩+ ⟨ci, x̄⟩+ αi ≤ 0,

λi(
1
2 ⟨x̄, Tix̄⟩+ ⟨ci, x̄⟩+ αi) = 0,

λi ≥ 0, i = 1, . . . ,m.

(3)

(ii) If there exist λ = (λ1, . . . , λm) ∈ Rm and
x̄ ∈ H such that the (3) is satisfied, then x̄ is
a solution of (sAVIω0).

Proof. (i) Suppose that x̄ is a solution of (sAVIω0).
Then,

⟨T x̄+ c, y − x̄⟩ ≥ 0 ∀y ∈ K,

which is equivalent to the following one

⟨T x̄+ c, x̄⟩ ≤ ⟨T x̄+ c, y⟩ ∀y ∈ K.

Hence x̄ is an optimal solution of the optimization
problem

min
y∈K

⟨T x̄+ c, y⟩. (4)

We have

⟨Tix̄+ ci, x̄− x0⟩ = lim
t↓0

gi(x̄+ t(x0 − x̄))− gi(x̄)

t
.

(5)

Since Ti are positive semi-definite continuous linear
self-adjoint operators, ci ∈ H, it follows that gi are
continuous and convex. By convexity of gi, we have

gi(x̄+t(x0 − x̄)) = gi((1− t)x̄+ tx0)

≤(1− t)gi(x̄) + tgi(x
0) ∀t ∈ (0, 1).

(6)

Combining (5) with (6) we obtain

⟨Tix̄+ ci, x̄− x0⟩ ≤ gi(x
0)− gi(x̄)

Put h̄ = x̄−x0. It follows from the above inequality
that

⟨Tix̄+ ci, h̄⟩ < 0, ∀i ∈ I(x̄),

where I(x) = {i ∈ {1, 2, . . . ,m} | gi(x) = 0}.
Hence TK(x̄), the tangent cone of K at x̄, is for-
mulated as follows (see [1, Example 3.39])

TK(x̄) = {h ∈ H | ⟨Tix̄+ ci, h⟩ ≤ 0, ∀i ∈ I(x̄)}.

Since x̄ is a solution of (4) and by Lemma 3.7 in
[1], it follows that h = 0 is an optimal solution of
the problem

min
h∈H

⟨T x̄+ c, h⟩ subjects to ⟨Tix̄+ ci, h⟩ ≤ 0, i ∈ I(x̄).

(7)

The (7) is a linear programming problem with a
finite (equal zero) optimal value. By Hoffman’s
lemma (see, for instance, [7, Theorem 3]), we have
that the set of optimal solutions of the dual prob-
lem of (7)

max
λi≥0

0 subjects to T x̄+ c+


i∈I(x̄)

λi(Tix̄+ ci) = 0

(8)

3
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is nonempty.

Put λi = 0 for all i ∈ I\I(x̄), and λ = (λ1, . . . , λm).
From (8) we obtain the first equality in (3). Since
x̄ ∈ K and λi(

1
2 ⟨x̄, Tix̄⟩+ ⟨ci, x̄⟩+ αi) = 0 for each

i ∈ I, the other conditions in (3) are satisfied too.

(ii) Suppose that the (3) is satisfied. Then, for every
y ∈ K we have gi(y) ≤ 0 and

−⟨T x̄+ c, y − x̄⟩ =
m∑
i=1

λi⟨Tix̄+ ci, y − x̄⟩

≤
m∑
i=1

λi[gi(y)− gi(x̄)] =
m∑
i=1

λigi(y).

From the above it follows that x̄ is a solution of
(sAVIω0).

The following example shows that the conclusion
of Theorem 3.1 (i) fails if the assumption on Slater
condition does not holds.

Example 3.1. Consider the problem (sAVIω0)
where T : R2 → R2 is defined by Tx = (x1, 0),
c = (0,−1) and T1 : R2 → R2 is defined by
T1x = (x1 − x2,−x1 + x2).

Let K = {x = (x1, x2) ∈ R2 | g1(x) ≤ 0}. It is easy
to check that

K = {x = (x1, x2) ∈ R2 | x1 = x2}.

It is clear that there does not exist a point x0 =

(x0
1, x

0
2) ∈ R2 such that g(x0) < 0. Hence the Slater

condition does not holds.

For x̄ = (1, 1) ∈ R2 we have

⟨T x̄+ c, x− x̄⟩ = ⟨(1,−1), (x1 − 1, x1 − 1)⟩

= x1 − 1− x1 + 1 = 0

for all x ∈ K. Hence x̄ = (1, 1) is a solution of
(sAVIω0).

Since T x̄ + c = (1,−1) and T1x̄ = 0, we see that
there exists no λ1 ≥ 0 such that T x̄+c+λ1T1x̄ = 0.
Hence first equality in (3) does not hold.

The main result of this section is stated as follows.

Theorem 3.2. Consider the problem (sAVIω). Let
x̄ ∈ H and λ ∈ Rm be such that the system(3)
is satisfied, and suppose that there exist constants
α > 0, γ > 0 such that

⟨h, Th⟩ ≥ α∥h∥ ∀h ∈ Dγ(x̄), (9)

where Dγ(x̄) = {h ∈ TK(x̄) | ⟨T x̄ + c, h⟩ ≤ γ∥h∥}.
Then x̄ ∈ S(ω0) and for all x(ω) ∈ S(ω) in a neigh-
borhood of x̄, we have that

∥x(ω)− x̄∥ = O(∥ω − ω0∥).

Proof. Since there exists λ ∈ Rm and x̄ ∈ H such
that the system(3) holds, it follows from Theorem
3.1(ii) that x̄ ∈ S(ω0).

Let ωk = (Tk, ck) → ω0 = (T, c), and xk ∈ Sol(ωk)

be such that xk → x̄ as k → ∞. Set tk = ∥xk − x̄∥
and hk = t−1

k (xk − x̄), so that xk = x̄+ tkhk, with
∥hk∥ = 1. We have

⟨Tix̄+ ci, hk⟩ =
1

tk
{gi(xk)− gi(x̄)

− 1

2
⟨xk − x̄, Ti(xk − x̄)⟩} ⩽ 0,

for all i ∈ I(x̄). Set TK(x̄) = {h ∈ H | ⟨Tix̄ +

ci, h⟩ ⩽ 0, i ∈ I(x̄)}. Since {hk} is bounded, it has
a weakly convergent subsequence. By passing to a
subsequence, we may assume that hk itself weakly
converges to some h. We have

⟨Tix̄+ ci, h⟩ = lim
k→∞

⟨Tix̄+ ci, hk⟩ ≤ 0 ∀i ∈ I(x̄)

Hence h ∈ TK(x̄).

We have prove that tk = O(∥ωk−ω0∥). On the con-
trary, suppose that this is false, i.e., t−1

k (ωk−ω0) →
0 as k → ∞. Since x̄ ∈ S(ω0) and xk ∈ S(ωk), we
have

⟨T x̄+ c, xk − x̄⟩ ≥ 0 and ⟨Tkxk + ck, x̄− xk⟩ ≥ 0

Combining these with xk − x̄ = tkhk yields

⟨T x̄+ c, hk⟩ ≥ 0 and ⟨Tkxk + ck,−hk⟩ ≥ 0

(10)

Letting k → ∞, from (10) we get

⟨T x̄+ c, h⟩ = 0.

Since ⟨T x̄+ c, hk⟩ ≥ 0 and by

⟨T x̄+ c, hk⟩ → ⟨T x̄+ c, h⟩ = 0 as k → ∞,

it follows that there exist sequence γk of positive
numbers converging to zero such that

⟨T x̄+ c, hk⟩ ≤ γk∥hk∥. (11)

Therefore, hk ∈ Dγk
(x̄).

Adding the two inequalities in (10), we obtain

⟨Tkxk + ck − (T x̄+ c), hk⟩ ≤ 0, (12)

It is easily verified that (12) is equivalent to

tk⟨Thk, hk⟩+ tk

〈Tk − T

tk
x̄+

ck − c

tk
, hk

〉

+ t2k

〈Tk − T

tk
hk, hk

〉
≤ 0.

(13)

4
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Since
Tk − T

tk
→ 0 and

cn − c

tk
→ 0 as k → ∞, it

follows that
〈Tk − T

tk
x̄+

ck − c

tk
, hk

〉
+
〈Tk − T

tn
hk, hk

〉
→ 0

as k → ∞. Combining this with (13) we have that

tk⟨Thk, hk⟩ ≤ o(tk).

It follows that ⟨Thk, hk⟩ < α for k large enough.
This contradicts (9), and hence the proof is com-
plete.

It is known that the adjoint operator of T always
exists and is bounded linear and unique. Moreover,
it is not hard to show that if T ∗ is an adjoint op-
erator of T , then M := T + T ∗ is a self adjoint
continuous linear operator on H. Recall that if M
is a self adjoint bounded linear operator on H, then
function Q : H → R defined by Q(x) = ⟨Mx, x⟩ is
said to be a quadratic form associated with M on
H. The quadratic form Q associated with T + T ∗

is a Legendre form (see, for instance, [6, p.551]) if

(i) it is weakly lower semicontinuous, and

(ii) for any sequance {xk} in H, if xk ⇀ x0 and
Q(xk) → Q(x0), then xk → x0.

Theorem 3.3. Consider the problem (sAVIω),
where quadratic form associated with T + T ∗ is a
Legendre form. Let x̄ ∈ H and λ ∈ Rm be such that
the system(3) is satisfied and suppose that

⟨h, Th⟩ > 0 ∀h ∈ Dγ(x̄)\{0}. (14)

Then x̄ ∈ S(ω0) and for all x(ω) ∈ S(ω) in a neigh-
borhood of x̄, we have that

∥x(ω)− x̄∥ = O(∥ω − ω0∥).

Proof. To prove the theorem, by Theorem 3.2, it
suffices to verify that there exists α > 0 such that

⟨h, Th⟩ ≥ α∥h∥ ∀h ∈ Dγ(x̄).

Suppose that the assertion is fail. Let γk be a
sequence of positive numbers converging to zero.
Then there exists a sequence hk ∈ Dγk

(x̄), hk ̸= 0

such that
⟨Thk, hk⟩ <

1

k
∥hk∥2. (15)

Put vk :=
hk

∥hk∥
, one has ∥vk∥ = 1. Since {vk} is

bounded, it has a weakly convergent subsequence.

We may assume that vk itself weakly converges to
some v. Since hk ∈ D(x̄),

⟨T x̄+ c, hk⟩ ≤ γk∥hk∥, ⟨Tix̄+ ci, hk⟩ ⩽ 0, i ∈ I(x̄).

(16)
Multiplying both sides of the inequalities in (16) by
∥hk∥−1 and letting k → ∞, we obtain

⟨T x̄+ c, v⟩ = 0, ⟨Tix̄+ ci, v⟩ ⩽ 0, i ∈ I(x̄).

Hence v ∈ Dγ(x̄).

Since the quadratic form Q associated with T +T ∗

is a Legendre form and by Q(x) = ⟨(T +T ∗)x, x⟩ =
2⟨Tx, x⟩, it follows that the mapping x → ⟨Tx, x⟩
is weakly lower semicontinuous. Multiplying both
sides of the inequalities in (15) by ∥hk∥−2 and let-
ting k → ∞, we obtain

⟨Tv, v⟩ ≤ lim inf
k→∞

〈
T

hk

∥hk∥
,

hk

∥hk∥

〉

≤ lim sup
k→∞

〈
T

hk

∥hk∥
,

hk

∥hk∥

〉
≤ 0.

Combining these with (14) yields

v = 0 and lim
k→∞

Q(vk) = Q(v).

So that vk → v = 0 by Q is a Legendre form,
contrary to the relations ∥vk∥ = 1. We have thus
proved that there exists α > 0 such that

⟨h, Th⟩ ≥ α∥h∥ ∀h ∈ Dγ(x̄).

The proof is complete.

Remark 3.1. It is clear that if there exists α > 0

such that ⟨h, Th⟩ ≥ α∥h∥ ∀h ∈ Dγ(x̄) then
⟨h, Th⟩ > 0 ∀h ∈ Dγ(x̄)\{0}. The converse is not
true in general.

Example 3.2. Let ℓ2 denote the Hilbert space
of all square summable real sequence, ℓ2 = {x =

(x1, x2, . . .) |
∑∞

n=1 x
2
n < ∞, xn ∈ R, n = 1, 2, . . .}.

Consider the problem (sAVIω) where H = ℓ2, T :

ℓ2 → ℓ2 is defined by Tx =
(
x1,

x2

22
, . . . ,

xn

nn
, . . .

)
,

c = (0, 0, . . . , 0, . . .) and the set K is defined

K =
{
x = (x1, x2, . . .) ∈ ℓ2 | ⟨c1, x⟩ − 1 ≤ 0,

}
,

with c1 = (−1,−1

2
, . . . ,− 1

n
, . . .).

Taking x̄ = 0. It is easy to check that D(x̄) =

H. Since Q(x) = ⟨Tx, x⟩ =
∞∑

n=1

x2
n

nn
> 0 for all

x ∈ ℓ2\{0}, Q(h) > 0 ∀h ∈ D(x̄)\{0}. We

have the quadratic form ⟨x, Tx⟩ =
∞∑

n=1

x2
n

nn is not

5
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a Legendre form (see, [2, Example 3.3]). Hence
Q(x) = ⟨(T + T ∗)x, x⟩ = 2⟨Tx, x⟩ is not a Leg-
endre form. Therefore, by [6, Theorem 10.1], we
deduce that there no exists any α such that Q(h) ≥
α∥h∥2 ∀h ∈ D(x̄)\{0}.

Corollary 3.1. Consider the problem (sAVIω).
Let dimH < ∞ and suppose that there exists
λ = (λ1, . . . , λm) ∈ Rm and x̄ ∈ H such that the
(3) holds. Then, if condition (14) is satisfied, then
x̄ ∈ S(ω0) and for all x(ω) ∈ S(ω) in a neighbor-
hood of x̄, we have that

∥x(ω)− x̄∥ = O∥ω − ω0∥.

Proof. Since the space H is finite dimensional, any
quadratic form Q : H → R is a Legendre form.
Hence the assertion follows from Theorem 3.2.

4 APPLICATIONS TO THE QUADRATIC
PROGRAMMING PROBLEMS

In this section we discuss applications of the
previous results to the parametric quadratically
constrained quadratic programming problems in
Hilbert spaces. In what follows, we assume that
T : H → H is a continuous linear self-adjoint op-
erator and c ∈ H. We consider the quadratic pro-
gramming problem




min f(x) := 1
2 ⟨x, Tx⟩+ ⟨c, x⟩

s.t. x ∈ K,
(QP)

depending on the parameter vector ω = (T, c) ∈
Ω = L(H)×H.

Theorem 4.1 (First-order necessary optimality
condition). Suppose that x̄ ∈ H is a local solution
of problem (QP) and the Slater condition holds.
Then, there exists λ = (λ1, . . . , λm) ∈ Rm such
that the (3) holds.

Proof. The direct assertion of the above theorem
follows from Theorem 3.1 and Theorem 3.2 in
[3].

Remark 4.1. Suppose that T is a positive semidef-
inite continuous linear self-adjoint operator. Then,
by positive semi-definiteness of T , it follows that f
is convex function. For every y ∈ F we have

0 ≤⟨T x̄+ c, y − x̄⟩ =

= lim
t↓0

f(x̄+ t(y − x̄))− f(x̄)

t
≤ f(y)− f(x̄).

It follows that x̄ is a local solution of (QP). Hence
x̄ is a local solution of (QP) if and only if x̄ is a
solution of (sAVIω0) and (3) is sufficient condition
for x̄ to be a local solution of (QP).

Theorem 4.2. Consider the problem (QP) where
⟨x, Tx⟩ is a Legendre form. Let x̄ ∈ H and λ ∈ Rm

be such that the system (3) is satisfied, and sup-
pose that the condition (14) holds, then the point
x̄ is a locally unique solution of (QP) and for
all x̄(ω) ∈ S(ω) in a neighborhood of x̄, we have
∥x(ω)− x̄∥ = O(∥ω − ω0∥).

Proof. To prove the theorem, by Theorem 3.3 and
Theorem 3.1 in [3], it suffices to verify that x̄ is a
locally unique solution for (QP). Indeed, suppose
that the point x̄ is not a locally unique solution
for (QP). Then there exists a sequence of feasible
points xk, converging to x̄, xk ̸= x̄, such that

f(xk) ⩽ f(x̄). (17)

Set tk := ∥xk − x̄∥ and hk :=
xk − x̄

tk
. We have

tk > 0, ∥hk∥ = 1 and

⟨Tix̄+ ci, hk⟩ =

=
1

tk
{gi(xk)− gi(x̄)−

1

2
⟨xk − x̄, Ti(xk − x̄)⟩} ⩽ 0

for all i ∈ I(x̄). Put C(x̄) = {h ∈ H | ⟨T x̄+ c, h⟩ =
0, ⟨Tix̄+ ci, h⟩ ⩽ 0, i ∈ I(x̄)}. It follows from Hoff-
man’s lemma (see, for instance, [7, Theorem 3])
that

dist(hk, C(x̄)) ⩽ β

[⟨T x̄+ c, hk⟩]++

+


i∈I(x̄)

[⟨Tix̄+ ci, hk⟩]+

= β


[⟨T x̄+ c, hk⟩]+



where, β > 0 depending on T x̄+ c and Tix̄+ ci.

By (17) and

f(xk)− f(x̄) = tk⟨T x̄+ c, hk⟩+
t2k
2
⟨hk, Thk⟩,

it follows that

tk⟨T x̄+ c, hk⟩ ⩽ − t2k
2
⟨hk, Thk⟩. (18)

Since |⟨hk, Thk⟩| ⩽ ∥T∥∥hk∥2 = ∥T∥, it follows

that − tk
2
⟨hk, Thk⟩ → 0 as k → ∞. Combining this

with (18) we have that tk
�
⟨T x̄+c, hk⟩


≤ o(tk), and

hence there exists ĥk ∈ C(x̄) such that ĥk → hk,
and hence ∥ĥk∥ = 1.

Observe that

⟨ĥk, T ĥk⟩ − ⟨hk, Thk⟩ = ⟨ĥk + hk, T (ĥk − hk)⟩

≤ ∥ĥk + hk∥∥T∥∥ĥk − hk∥.

6
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From this and ∥ĥk − hk∥ ⩽ β([⟨T x̄ + c, hk⟩]+) we
deduce that

⟨ĥk, T ĥk⟩ − ⟨hk, Thk⟩ ⩽ 2β∥T∥([⟨T x̄+ c, hk⟩]+).
(19)

Consequently,

f(xk) =f(x̄) + tk⟨T x̄+ c, hk⟩+
t2k
2
⟨hk, Thk⟩

⩾f(x̄) + tk⟨T x̄+ c, hk⟩+
t2k
2
⟨ĥk, T ĥk⟩

−t2kβ∥T∥([⟨T x̄+ c, hk⟩]+).

Since ⟨T x̄ + c, h⟩ ⩾ 0 for all h ∈ TF (x̄), we have
⟨T x̄+ c, hk⟩ ⩾ 0 for k large enough. It follows that
for k large enough

f(xk)− f(x̄) ⩾ tk⟨T x̄+ c, hk⟩+
t2k
2
⟨ĥk, T ĥk⟩

− t2kβ∥T∥([⟨T x̄+ c, hk⟩]+) > 0,

which contradicts (17). The proof is complete.

Corollary 4.1. Consider the problem (QP) Let
dimH < ∞ and suppose that there exists λ =

(λ1, . . . , λm) ∈ Rm and x̄ ∈ H such that the (3)
holds. Then, if condition (14) is satisfied, then the
point x̄ is a locally unique solution of (QP) and for
all x(ω) ∈ S(ω) in a neighborhood of x̄, we have
that

∥x(ω)− x̄∥ = O∥ω − ω0∥.

Proof. Since the space H is finite dimensional, any
quadratic form Q : H → R is a Legendre form.
Hence the assertion follows from Theorem 4.2.

5 CONCLUSIONS

By using the basic analysis tools, such as tan-
gent cone, critical cone, conditions for particular
points to be solution and stability of the solutions
for the class of semi-affine variational inequalities
problem in the infinite-dimensional Hilbert space
are obtained. We obtained stability of solutions for
the parametric quadratically constrained quadratic
programming problems in the infinite-dimensional
Hilbert space.
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