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Article info Abstract:

Received: 12/8/2023 The concept of the ill-posed problem was
Revised:28/9/2023 introduced by Hadamard, a French mathematician in
Accepted: 16/10/2023 1932 when he studied the effect of the boundary value
Keyword: problem on differential equations. Due to the
Monotone operators, hemi- unstability of the ill-posed problems, the numerical
continuous, Hilbert spaces, computation is difficult to do. Therefore, one of the
Gateaux derivative, Tikhonov main study directions for ill-posed problems is
regularization. constructing stable methods to solve ill-posed

problems such that when the error of the input data is
smaller, the approximate solution is closer to the
correct solution of the original problem. Although
there are some known important results obtained in
studying the regularization method for solving ill-
posed problems, the improvement of the methods to
increase their effectiveness always attracts the
attention of many researchers. In this paper, we
present a regularization method for a common
minimum point of a finite system of Gateaux
differentiable weakly lower semi-continuous and
properly convex functionals on real Hilbert spaces.
And then, we give an application to illustrate the
propose method.
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Thong tin bai bao Abstract:

Ngay nhan bai: 12/8/2023 Khai niém bai toan dat khong chinh dugc nha
Ngay sira bai: 28/9/2023 toan hoc ngudi Phap J. Hadamard dua ra vao nim 1932,
Ngay duyét dang: 16/10/2023 khi nghién ctru 4nh huong cia bai toan gid tri bién véi
Tw khoa: phuong trinh vi phan. Do tinh khong 6n dinh cta bai
Todn tir don diéu, hemi-lién tuc, toan dat khong chinh nén viéc giai sé gip nhiéu kho
khong gian Hilbert, dao ham khan. Vi vdy, mot trong nhitng huéng nghién ctru rat
Gateaux, hiéu chinh Tikhonov. quan trong vé bai toan dat khong chinh do 13, xay dung

cac phuong phap giai 6n dinh 16p bai toan nay sao cho,
khi sai s6 cua dir liéu dau vao cang nho thi nghiém xap
xi cang gan voi nghiém chinh x4c ctia bai toan ban dau.
Tuy d4 c6 nhiéu két qua dat duoc cho viéc nghién ciru
cac phuong phap hi€u chinh giai bai toan dat khong
chinh song viéc cai tién cac phuwong phap lam gia ting
tinh hiéu qua ctia phuong phap 1a van dé thoi su va cp
thiét. Trong bai bao nay, chung t6i gidi thiéu phuong
phap hiéu chinh lién tuc cho diém cuc tiéu chung cua
ho hitu han cac ham 16i, kha vi, nira lién tuc dudi yéu
trong khong gian Hilbert thyc. Cudi cing 1 vi du minh
hoa cho phuong phap da dé xuét.

1. Introduction continuous and property convex functionals
Let H be a real Hilbert space with the on H.

scalar product and norm denoted by the Consider the problem: find an

symbols <,> and ||. ||, respectively, and let element xo € H such that

Q; (x) 0< j < N,be weakly lower semi- (pj(xo) :irelg P (x) Vi=0L...N.(1.1)
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Set

N

5 :{’ze g, (@Z}Qﬁ% (x)} s=(1s,

j=0
Here, we suppose S # .
As we know that in [13], S coincides
with the set of solutions of the following
operator equation

4,(x)=6, (1.2)

J

where 0 is the zero element in H, and 4; is
the Gateaux derivative of the functional ;.
Besides, S; is a closed convex subset in H.

Without the additional conditions on
Ajsuch as the strongly or uniformly monotone
property each j-operator equation in (1.2) is
ill-posed. Therefore, to find a solution of each
Jj-operator equation in (1.2) we have to use
stable methods. One of those methods is the
Tikhonov regularization method [1] and is
difined by

A;’ (x)+a(x—x*):6?, (1.3)
where x, is some element H | S . o> 0 is

the parameter of regularization, A;' are the

hemi-continuous monotone approximations
for A;in the sense

|4,00- 4] (x)] <

). VxeH (14)

with the nonegative bounded function g(7),
t>0,h—0.
Our problem: find
u(1):[ty,+0) > H, 1, >0,
such that lim u(t) =x,xeSs.

t—>+o0

To do this, consider the differential equation

()

dt

+y(1) iaf(t)A” (u@))+ o (@) (u(t) - x.) | =0,

Jj=0

u(ty)=u,, (1.5)
with x, ¢ §,, where uo is an element of H,

h(t), a(t) >0, t 2¢, 20, a(s) is a convex

184|

decreasing function, y(¢) is a nondecreasing
positive and differentiable function, and
lim oc(t) = lim h(t) =0,

im0 fyy 2O
1=+ ([) 1=+ ([) ’Y(t)
V@O
o () 7 ()
Note that equation (1.5) when N = 0 has the
simple form

dtlgt)w(t)[A:(t) (u(®))+ o) (u(t) - x. )] —0

u(to):uo. (1.7)
This equation is used in [2] with the case
y(f) = 1, and 4

posed equations involving the accretive

(1.6)

= 4 in regularization ill-

operator 4.
2. Main results
First, consider the operator equation

ﬁ:oo" (04, (x)+a! (1) (x—x.) = 6. (2.1

Since 4; are the maximal monotone operators

defined on H [9], then the operator

ia-’ (0)4, + o' (1)1 » Where [ is the identity
J

J=0

operator in H, is maximal monotone [3,4,5]

and coercive. Hence, equation (2.1) has a

unique solution, denoted by x_ (7).

We have a result.

Theorem 2.1. lim x, () =x e S, where

T—>+0

=min

xeS

|X Xeel|-

[e—x.

Proof. From (2.1) it follows
ZOL (r)< X (r)) x,(v)- x>

+0LN+1(T)<xa(r)—x*,xa(t)—x> =0 VxeS.

On the base of (1.2) and the monotone
property of A; we obtain

<xa(t)—x*,xa(r)—x*> < <xa(t)—x*,x—x*>.
Thus,
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vxeS. (2.2)

Hxa(r) x| < Hx — X,

Hence, {x, (1)} is bounded. Let x;(t) weak

convergence to x € H, as T — +00. First,

we prove that xe S,- Indeed, by virtue of

the monotone property of 4y and (2.1) we
can write

(4 (0),3 = 2,(1)) = {4y 0 (1), x =%, ()
> jZNIBf(r><A, (5, (2)).%,(1) - x)
A OIENGEEENCEE)
> jisf(r)<Aj(x),xB(r)-x>

+BN+1(‘C)<X—X*,XB(‘E)—X> xeH.

By tending t — +o0 in the last inequality
we have

<A0(x),x—7c> >0 VxeH.
Consequently, xe S, [13]. Now, we shall

prove that )_ceSj,j:LZ,...,N. Indeed,

from (1.2), (2.1) and the monotone property
of Ay it implies that

(A G (D35 (0)-)+ 3B (04, (5 (D). x5 (1) - )
+BN(’C)<XB(’C) =X, %,(7) - x> <0 Vxes,.
or

(A5, (0)-x) + 3B (04,60 3,(0)- )

+BN(‘C)<X =X, %,(7) - x> <0.
After passing T — 400, it gives
(4,(x),x—x)<0 VxeS,.
Thus, x is a local minimizer for @,on §,.
Since S, NS, #J, then x isalsoa global

minimizer for ¢,,i.e., x €S,.

Set § = hSk. Then, S’i is also closed

k=0

convex and S, # .

Now, suppose that we have proved

xe Sl., and need to show that x belongs to

S

we can write

Again, by virtue of (2.1) for x€ S,

i+1°

(4,05 (0), x5, (0)-x)+ D" B (1) (A, (x5, (1)), 3, (1) - x)

+B (1) (x, (1) = x., %, (1) - x) <0,

or

(4.,(0,x,(0)-x) + i B (1) (4, (x), (1) - x)

J=i+2
+gV (T)<x — X, X, (1) - x> <0.
After passing T — +00, it is clear that
(4, (x),x—x)<0 VxeS§,

So, )_CGSM. It means that x€S. S is a
closed convex subset in H, because each S ;
is closed convex. Hence, from (2.2) and

x,(t) weak convergence to x it deduces that

X isan X, -minimal norm solution of S. This
element is unique. Consequently, all sequence
{xa (1:)} weak convergence to X. Again,
from (2.2) we have

VxeS.

SHx—x*

e
Since H is a Hilbert space, then
lim x,_ (T) = X. Theorem is proved.

T+
Remark. It is clear that if x is converges
weaklyto X €S, i.e., S= .

Now, consider the differential equation

dy(1,7)

dt
+y(t)[z o/ (04, (y(1.7))+ " (@) (y(t.71)-x.) |=6,
y(to,r) =u,, (2.3)

for each fixed t12>1¢,.

Theorem 2.2. Assume that the following
conditions hold:
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(©) The problems (1.5) and (2.3) possess

solutions in the class C'[t,,+®) for any
u, € Hwith |u(t)|<d,.d,>0,t>1,

(ii) The fuctions o(t), h(t) and y(t) satisfy
the condition (1.6),

(iii) A; are bounded.
Then, lim u(r) = X.

Proof. The proof is done on the base of the
techniques in [11]. For the value

r(t,r): = Hy(t,r)—xa (1:)”2 )

we have [2]
dr(t,7)

d
o 2Hy(t,r) - xa(T)HEHy(t’T) - xa(r)H

= 2<Zt(y(t,r)—xu(r)),y(t,t)—xa(t)>.

From (2.1) and (2.3) it follows

<jt(y(m)—x«(f))’y (Z’T)_x“(r)>

0] SO (5(15) (5. (3) ) .5

+0LN”(1:)< (t,7)—x, (7). »(t,7)—x, (r)>} =0.

As A; are monotone, then r (l‘, ’L‘) is the
solution of the following inequality [10]

%tt,r) +2y()a " ()r(1,7) <0.
Hence,

r(t,7)<r(t,,t)exp {—2(1]\/” (’C)j- y(t)dt],

)

with
r(to,r) = Hy(to,r) -

< (””0” +2

+pa)

X
Consequently,

r(tt)<r(z, t)exp{ 2ocN”(r)Iy(t)dt]

)

On the base of the properties of y(z) we

186

% (D) < (o] + e, (<))

have j v(¢)dt = +o0. Using (1.6) and the

)

Lopital’s rule we obtain

T N+2
lim e ()] y(1)dr = lim Y040,
T—>0 " T—0 o (T)

Therefore, lim¢(t,7)=0 and ||y(tr)|| <d,,

T—>0

V't > t,, where d» is some positive constant.

Now, consider the value
R(t,0):=[u(e)-y (1) Vo2,

From (1.5) and (2.3) it implies that
(05 9) ()50}

+v(f>[<ga"(t>f1f(’) (u(t))—l_‘Z:aj(ﬂA/ (y(t:f))Ju(f)—y(M)>
Ho @ (u(r) =) =0 @(y(11)-x.)ult) =y (1)) | =0

Here,

S0 O 1) S 0055009
S a0 417 (1)) - 42 (v(1.9) (1) - »(09)

Jj=0

+j;qf(t)<A]’?(f) (y(t,r)) —4; (y(t,t)),u(t) —y(m;)>

B[00t @] (4, (3(07)). () -5(0.9)
On the other hand,
(0" @) (u(t)=x )= @) (y(t7) = x.)u(t) =y (t.7))
=a™ Ou() -y (o)
+(o" 0= (@) (y(67) —x.u(t) - y(1,7)).
Since [u(t)|. 4, are bounded, it deduces

the following inequality

D) gy (o)

+(d, +|x.])(d, +d, )|aN“(t) —a (@)

(d,+d,)(N+1)

+d,(d, +d,) ﬁ:\af () -/ (¥)] |- 26(1)R(2,7),
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R(ty, 1) =[u(ty) = v (1, 7)| =ty = 15| = 0,
a(t) = y(6) o (1),
where d, 2 g (u(1)]). d, 2 max |4, (g (2. ))]

Hence,

R (t, 1:) < Mljy(s) [h(s)

N+l t
+3 |’ () -0 (‘c)ﬂexp[— j a(mde ds,
Jj=0 s
where M is some positive constant.
Using the equality
a" —b* = (a —b)(a'H +a" b+ ... +bk’l)

and the properties of a(z), we have

R(t,7)<M j ¥()[A(s)

ty

+la(s) —o(t)| | exp [—j &(x)dxj ds,

where M is some positive constant.
From [11] we have

R(t,‘C) <R (r) +R, (’C)

R (%)= M [y(0)h(0)¥t)dt / &)
R, (t) =M [y(O)o ())(t — &)t / &(v),

E(s)=exp [i d(l)dt} .

Therefore, lim R, (t)= lim R, (t)=0. Since

T—>+00

")E—u(r)” < ||)~c—xOt (r)||+ x, (‘c)—y(r,r)”
+||y(r,t)—u(r) , then Tlil:rlzou(t) =X
Theorem is proved.

Remark 2.

a. The solution existences for (1.5) and (2.3)
are studied in [6, 7, 8].

b. The functions o.(¢), h(t),y(¢) satisfying

the above conditions are h(t)=1/¢",

a(r)=1/t"y(t)=1/¢ with h>Na,
0<(N+1)a<1 and y>0.

3. Application

Give a finite family of convex functions
f;»7=0,1..,N, findan x, € H such that

£1(%)<0, j=0,L...N.

Denote by
C,={x:f,(x)<0},j=0,1..,N.

Then, Cj are closed convex. The problem of

N
finding x, € ﬂC . 1s the convex feasibility

j=0
one. It is intensively studied for the last time
[9,10], and can be rewriten in the form of
unconstrained vector convex optimization
as follows. Define

9, (x) = max {Of/ (x)}
Then Cj is coincided with the set .S -

The problem of common fixed point is

N
formulated as follows. Find x, € C = ﬂ C;,

J=0
where C, :F(T}),ij,l,...,N, F(Tj) 1S
the fixed point set of the nonexpensive
operator T,. It is intensively studied in

recent under condition (13), (14)
C=F(T,T,.,..T,)=F (T, ..T,Ty)
=..=F(T,T,..T,).
This condition can be replaced by the
potential property of T, 1.e., there exists a

functional f,(x) suchthat f7(x)=T,(x)
for each /. Then, ¢, (x)= Ilx|* /2 —f(x) is
convex, since its derivative [ —Tj are
monotone. Moreover, S, =C,, and the

presented method in this paper can be
applied to solve the problems.
4. Conclusion

In this paper, we proposed a continuous
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method of regularization for a common

minimum point of a finite system of Gateaux

differentiable weakly lower semi-continuous

and properly convex functionals on real
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