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Abstract:

This paper proposes a new algorithm for solving the split
variational inequality problem in Hilbert spaces. In order to
solve this problem, we propose a new algorithm and establish
a strong convergence theorem for it. Compared with the work
by Censor et al. (Numer. Algor., 59:301-323, 2012), the new
algorithm gives strong convergence results. It shows that the
iterative method converges strongly under weaker assumptions
than the ones used recently. Some numerical examples are also
given to illustrate the convergence analysis of the considered
algorithm.
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Từ khóa:
Bài toán bất đẳng thức biến phân tách, bài
toán chấp nhận tách, không gian Hilbert,
phép chiếu mê-tric.

Tóm tắt:

Bài báo đề xuất một thuật toán mới giải bài toán bất đẳng
thức biến phân tách trong không gian Hilbert. Để giải bài
toán này, chúng tôi đề xuất một thuật toán mới và thiết lập
sự hội tụ mạnh. So sánh với thuật toán của Censor và các
cộng sự (Numer. Algor., 59:301-323, 2012), thuật toán mới
này cho sự hội tụ mạnh. So với một số kết quả gần đây, thuật
toán của chúng tôi cho sự hội tụ mạnh dưới các điều kiện yếu
hơn. Một số ví dụ cũng được đưa ra để minh họa cho sự hội
tụ giải tích của thuật toán đề xuất.

1 INTRODUCTION

The split variational inequality problem (SVIP),
which was introduced first by Censor et al. [1]

find u∗ ∈ Ω := S(A,C)

⋂
F−1

(
S(B,Q)

)
, (SVIP)

where C ⊆ H1 and Q ⊆ H2 are nonempty closed
convex subsets, F : H1 → H2 is a bounded linear
mapping. A : H1 → H1 and B : H2 → H2 are
single–valued operators, S(A,C) and S(B,Q) denote
as the set of all solutions of the variational inequality
problems

⟨Au∗, u− u∗⟩ ≥ 0 ∀u ∈ C (VIP(A,C))

and ⟨Bu∗, u− u∗⟩ ≥ 0, ∀u ∈ Q, respectively.

In this paper, using the viscosity approximation
method [2], as well as a modification of the CQ
method [3] we propose a new convergence strongly
algorithm for solving the (SVIP).

2 PRELIMINARIES

In this section, we introduce some mathematical
symbols, definitions, and lemmas which can be used
in the proof of our main result.

Let H be a real Hilbert space with inner product
⟨., .⟩ and norm ∥.∥ and C be a nonempty, closed,
and convex subset of H. In what follows, we write
xk ⇀ x to indicate that the sequence {xk} con-
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verges weakly to x while xk → x indicates that the
sequence {xk} converges strongly to x. It is known
that in a Hilbert space H,

2⟨x, y⟩ = ∥x+ y∥2 − ∥x∥2 − ∥y∥2

= ∥x∥2 + ∥y∥2 − ∥x− y∥2, (2.1)

and

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2

− λ(1− λ)∥x− y∥2 (2.2)

for all x, y ∈ H and λ ∈ [0, 1] (see, for example
[4, Lemma 2.13], [5]). For every point x ∈ H there
exists a unique nearest point in C, denoted by PCx.
This point satisfies ∥x− PCx∥ ≤ ∥x− u∥ for all
u ∈ C. The mapping PC : H → C is called the
metric projection of H onto C.

Lemma 2.1 (see, [6]). For given x ∈ H and y ∈ C,
y = PCx if and only if ⟨x− y, z − y⟩ ≤ 0 for all
z ∈ C.

Definition 2.1. An operator T : H → H is called a
contraction operator with the contraction coefficient
τ ∈ [0, 1) if ∥Tx− Ty∥ ≤ τ∥x− y∥ for all x, y ∈ H.

It is easy to see that, if T is a contraction operator,
then PCT is a contraction operator too. If τ ≥ 0 we
have τ -Lipschitz continuous operator.

Definition 2.2. An operator A : H → H is called
an η-inverse strongly monotone operator with con-
stant η > 0 if ⟨Ax−Ay, x−y⟩ ≥ η∥Ax−Ay∥2 for all
x, y ∈ H.

It is easy to see that, if A is an η-inverse strongly
monotone operator, then IH−λA is a nonexpansive
mapping for λ ∈ (0, 2η], where IH is the identity
operator on H.

Lemma 2.2 (see [1]). Let A : C → H be η-
inverse strongly monotone on C and λ > 0 be a
constant satisfying 0 < λ ≤ 2η. Define the mapping
T : C → C by taking

Tx = PC

(
IH − λA

)
x for all x ∈ C. (2.3)

Then T is nonexpansive on C, and Fix(T ) = S(A,C),
where Fix(T ) := {x ∈ C

∣∣ Tx = x} is the set of
fixed points of T .

Lemma 2.3 (see, [6]). Assume that T be a nonex-
pansive mapping of a closed and convex subset C of
a Hilbert space H into H. Then the mapping IH−T

is demiclosed on C; that is, whenever {xk} is a se-
quence in C which weakly converges to some point
u∗ ∈ C and the sequence {(IH−T )xk} strongly con-
verges to some y, it follows that (IH − T )u∗ = y.

From Lemma 2.3, if xk ⇀ u∗ and
(IH − T )xk → 0, then u∗ ∈ Fix(T ).

Lemma 2.4 (Maingé, [7]). Let {sk} be a real se-
quence which does not decrease at infinity in the
sense that there exists a subsequence {skn

} such that
skn ≤ skn+1 for all n ≥ 0. Define an integer se-
quence by ν(k) := max

{
k0 ≤ n ≤ k | sn < sn+1

}
,

k ≥ k0. Then ν(k) → ∞ as k → ∞ and for all
k ≥ k0, we have max{sν(k), sk} ≤ sν(k)+1.

Lemma 2.5 (see, [8]). Let {sk} be a sequence
of nonnegative numbers satisfying the condition
sk+1 ≤ (1 − bk)sk + bkck, k ≥ 0, where {bk} and
{ck} are sequences of real numbers such that

(i) {bk} ⊂ (0, 1) for all k ≥ 0 and
∑∞

k=1 bk = ∞,

(ii) lim supk→∞ ck ≤ 0.

Then, limk→∞ sk = 0.

3 MAIN RESULTS

We consider the (SVIP) under the following condi-
tions.

Assumption 3.1.

(A1) A : H1 → H1 is an ηA-inverse strongly mono-
tone on H1.

(A2) B : H2 → H2 is an ηB-inverse strongly mono-
tone on H2.

(A3) F : H1 → H2 is a bounded linear operator.

(A4) T : H1 → H1 is a contraction mapping with
the contraction coefficient τ ∈ [0, 1).

(A4) The solution set Ω of the (SVIP) is nonempty.

We also consider some conditions.

{αk} ⊂ (0, 1) for all k ≥ 0,

lim
k→∞

αk = 0,

∞∑
k=0

αk = ∞; (α)

0 < λ ≤ 2η; η = min{ηA, ηB}; (λ)

0 < γ <
1

∥F∥2
. (γ)

We present a algorithm for solving the (SVIP). This
is our new algorithm.

Algorithm 3

156



Vu Van Dong/Vol 9. No 3_May 2023| p.239-246

242|

No.21_Jun 2021|p.154–160

Step 0. Select the initial point x0 ∈ H1 and
the sequence {βk} ⊂ [c, d] ⊂ (0, 1) ∀k ≥ 0,
the sequences {αk}, λ, and γ such that the
conditions (α), (λ), and (γ) are satisfied. Set
k := 0.

Step 1. Compute
uk = βkx

k + (1− βk)P
H1

C (xk − λAxk).
Step 2. Compute vk = PH2

Q (Fuk − λB(Fuk)).
Step 3. Compute wk = uk + γF ∗(vk − Fuk).
Step 4. Compute xk+1 = αkT (x

k) + (1 −
αk)w

k.
Step 5. Set k := k + 1 and go to Step 1.

Theorem 3.1. Suppose that all conditions in As-
sumption 3.1 are satisfied. Then the sequence {xk}
generated by Algorithm 3 converges strongly to the
unique solution u∗ ∈ Ω of the VIP(IH1 − T,Ω).

Proof. Since T is a contraction mapping, PΩT is a
contraction too. By Banach contraction mapping
principle, there exists a unique point u∗ ∈ Ω such
that PΩTu

∗ = u∗. By Lemma 2.1, we obtain u∗ is
the unique solution to the VIP(IH1 − T,Ω).

1. Claim the sequence {xk} is well defined.

Indeed, let u ∈ Ω. Since u ∈ Ω, u ∈ S(A,C). It follows
from (λ) and Lemma 2.2 that u = PH1

C

(
IH1−λA

)
u.

From Step 1 in Algorithm 3, the nonexpansive prop-
erty of PH1

C

(
IH1 − λA

)
,

{βk} ⊂ [c, d] ⊂ (0, 1) ∀k ≥ 0, and (2.2), we have
that

∥uk − u∥2 =
∥∥∥βk(x

k − u) + (1− βk)

[
PH1

C

(
xk − λAxx

)
− u

]∥∥∥
2

=
∥∥∥βk(x

k − u) + (1− βk)

[
PH1

C

(
xk − λAxk

)
− PH1

C

(
u− λAu

)]∥∥∥
2

= βk∥xk − u∥2 + (1− βk)∥xk − u∥2 − βk(1− βk)
∥∥xk − PH1

C

(
xk − λAxk

)∥∥2]

= ∥xk − u∥2 − βk(1− βk)
∥∥xk

− PH1

C

(
xk − λAxk

)∥∥2 (3.1)

≤ ∥xk − u∥2. (3.2)

It follows from Step 3 in Algorithm 3, the property

of adjoint operator F ∗, and (2.1) that

∥wk − u∥2 =
∥∥uk + γF ∗(vk − Fuk

)
− u

∥∥2

= ∥uk − u∥2 + γ2
∥∥F ∗(vk − Fuk

)∥∥2

+ 2γ
〈
uk − u, F ∗(vk − Fuk)

〉

= ∥uk − u∥2 + γ2∥F∥2∥vk − Fuk∥2

+ 2γ⟨Fuk − Fu, vk − Fuk⟩. (3.3)

Using the convexity of ∥·∥2 and Step 2 in Algorithm
3, we have

∥vk − Fuk∥2 =
∥∥∥PH2

Q (Fuk − λB(Fuk))− Fuk
∥∥∥
2

.

(3.4)

Since u ∈ Ω, Fu ∈ S(B,Q). It follows from Lemma
2.2 that Fu = PH2

Q

(
IH2 − λB

)
Fu. From Step

2 in Algorithm 3, the nonexpansive property of
PH2

Q

(
IH2 − λB

)
, we have

⟨Fuk − Fu, vk − Fuk⟩ = ⟨Fuk − Fu,

PH2

Q

(
Fuk − λB(Fuk)

)
− Fuk⟩

=
1

2

(∥∥∥PH2

Q

(
Fuk − λB(Fuk)

)
− Fu

∥∥∥
2

−
∥∥∥Fuk − Fu

∥∥∥
2

−
∥∥∥PH2

Q

(
Fuk − λB(Fuk)

)
− Fuk

∥∥∥
2)

=
1

2

(∥∥∥PH2

Q

(
Fuk − λB(Fuk)

)
− PH2

Q

(
Fu− λB(Fu)

)∥∥∥
2

−
∥∥∥Fuk − Fu

∥∥∥
2

−
∥∥∥PH2

Q

(
Fuk − λB(Fuk)

)
− Fuk

∥∥∥
2)

≤ −1

2

∥∥∥PH2

Q

(
Fuk − λB(Fuk)

)
− Fuk

∥∥∥
2

. (3.5)

It folows from (3.3)–(3.5) and (γ) that

∥wk − u∥2 ≤ ∥uk − u∥2 − γ
(
1− γ∥F∥2

)
∥∥∥PH2

Q

(
Fuk − λB(Fuk)

)
− Fuk

∥∥∥
2

(3.6)

≤ ∥uk − u∥2. (3.7)

It follows from the convexity of the norm function
∥.∥ on H1, the contraction property of T with the
contraction coefficient τ ∈ [0, 1), (3.2), (3.7), the
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condition (α), and Step 4 in Algorithm 3 that

∥xk+1 − u∥ =
∥∥αk

(
Txk − u

)
+ (1− αk)(w

k − u)
∥∥

≤ αk

(∥∥Txk − Tu
∥∥+

∥∥Tu− u
∥∥)

+ (1− αk)∥wk − u∥

≤ ταk∥xk − u∥+ αk

∥∥Tu− u
∥∥

+ (1− αk)∥xk − u∥

=
[
1− (1− τ)αk

]
∥xk − u∥

+ (1− τ)αk

∥∥Tu− u
∥∥

1− τ

≤ max
{
∥xk − u∥,

∥∥Tu− u
∥∥

1− τ

}

...

≤ max
{
∥x0 − u∥,

∥∥Tu− u
∥∥

1− τ

}
.

This implies that the sequence {xk} is bounded.
Since PC and PQ are nonexpansive mappings and
F is the bounded linear operator, we also have the
sequences {uk}, {vk}, and {wk} are bounded.

2. For any u ∈ Ω, the following inequality holds:

sk+1 ≤
[
1− (1− τ)αk

]
sk + αkek, (3.8)

where sk := ∥xk − u∥2 and
ek := 2⟨Tu− u, xk+1 − u⟩.

Indeed, from the convexity of ∥.∥2, Step 4 in Al-
gorithm 3, (3.1), (3.6), and the condition (α), we
get

∥xk+1 − u∥2 =
∥∥αk(Tx

k − u) + (1− αk)(w
k − u)

∥∥2

≤ αk

∥∥Txk − u
∥∥2 + (1− αk)∥wk − u∥2

≤ αk

∥∥Txk − u
∥∥2 + ∥uk − u∥2

− γ(1− γ∥F∥2)
∥∥∥PH2

Q (Fuk − λB(Fuk))− Fuk
∥∥∥
2

≤ αk

∥∥Txk − u
∥∥2 + ∥xk − u∥2 − γ(1− γ∥F∥2)

∥∥∥PH2

Q (Fuk − λB(Fuk))− Fuk
∥∥∥
2

− βk(1− βk)
∥∥∥xk − PH1

C

(
xk − λA(xk)

)∥∥∥
2

.

Hence,

γ
(
1− γ∥F∥2

)∥∥∥PH2

Q (Fuk − λB(Fuk))− Fuk
∥∥∥
2

+ βk(1− βk)
∥∥∥xk − PH1

C

(
xk − λA(xk)

)∥∥∥
2

≤
(
∥xk − u∥2 − ∥xk+1 − u∥2

)
+ αk

∥∥Txk − u
∥∥2.
(3.9)

Next, from Step 4 in Algorithm 3 and the contrac-
tion property of T with the contraction coefficient

τ ∈ [0, 1), we have that

∥xk+1 − u∥2 = ⟨αk(Tx
k − u) + (1− αk)(w

k − u),

xk+1 − u⟩

= (1− αk)⟨wk − u, xk+1 − u⟩

+ αk⟨Txk − u, xk+1 − u⟩

≤ 1− αk

2

(
∥wk − u∥2 + ∥xk+1 − u∥2

)

+ αk⟨Txk − Tu, xk+1 − u⟩

+ αk⟨Tu− u, xk+1 − u⟩

≤ 1− αk

2

(
∥wk − u∥2 + ∥xk+1 − u∥2

)

+
αk

2

(
τ∥xk − u∥2 + ∥xk+1 − u∥2

)

+ αk⟨Tu− u, xk+1 − u⟩.

This implies that

∥xk+1 − u∥2 ≤ (1− αk)∥wk − u∥2

+ αkτ∥xk − u∥2 + 2αk⟨Tu− u, xk+1 − u⟩.
(3.10)

From (3.2), (3.7), and (3.10), we obtain

∥xk+1 − u∥2 ≤
[
1− (1− τ)αk

]
∥xk − u∥2

+ 2αk⟨Tu− u, xk+1 − u⟩. (3.11)

Put sk := ∥xk −u∥2 and ek := 2⟨Tu−u, xk+1−u⟩,
then the inequality (3.11) can be rewritten as (3.8).

3. We will show limn→∞ ∥xk − u∗∥ = 0, where
u∗ = PΩTu

∗.

We consider two possible cases.

Case 1. There exists an integer k0 ≥ 0 such that
∥xk+1 − u∗∥ ≤ ∥xk − u∗∥ for all k ≥ k0. Then,
limk→∞ ∥xk − u∗∥ exists. Since the sequence {xk}
is bounded, the sequence {Txk} is also bounded.
From the boundedness of the sequence {Txk}, (α),
(λ), and (γ), it follows from (3.9) that

lim
k→∞

∥∥[IH1 − PH1

C

(
IH1 − λA

)]
xk

∥∥ = 0 (3.12)

and

lim
k→∞

∥∥[IH2 − PH2

Q

(
IH2 − λB

)]
Fuk

∥∥ = 0. (3.13)

From the fact that (3.13) and (3.4), we get

lim
k→∞

∥vk − Fuk∥ = 0. (3.14)

From Step 3 in Algorithm 3, the property of adjoint
operator F ∗, and (3.14), we obtain

lim
k→∞

∥wk − uk∥ = γ lim
k→∞

∥F ∗(vk − Fuk)∥ = 0.

(3.15)
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From Step 1 in Algorithm 3 and (3.13), we get

lim
k→∞

∥xk − uk∥

= lim
k→∞

(1− βk)
∥∥xk − PH1

C

(
IH1 − λA

)
xk

∥∥ = 0.

(3.16)

It follows from (3.16) and (3.15) that

lim
k→∞

∥xk − wk∥ = 0. (3.17)

Using the boundedness of {wk} and {Txk}, Step 4
in Algorithm 3, and the condition (α), we also have
limk→∞ ∥xk+1−wk∥ = limk→∞ αk∥Txk−wk∥ = 0.

When combined with (3.17), this implies that

lim
k→∞

∥xk+1 − xk∥ = 0. (3.18)

Now we show that
lim supk→∞⟨Tu∗−u∗, xk+1−u∗⟩ ≤ 0. Indeed, sup-
pose that {xkn} is a subsequence of {xk} such that

lim sup
k→∞

⟨Tu∗ − u∗, xk − u∗⟩

= lim
kn→∞

⟨Tu∗ − u∗, xkn − u∗⟩. (3.19)

Since {xkn} is bounded, there exists a subsequence
{xknl } of {xkn} which converges weakly to some
points u†. Without loss of generality, we may as-
sume that xkn ⇀ u†. We will prove that u† ∈ Ω.
Indeed, from (3.12), Lemma 2.2 and Lemma 2.3, we
obtain u† ∈ S(A,C). Moreover, since F is a bounded
linear operator, Fxkn ⇀ Fu†. Using (3.13), Lemma
2.2 and Lemma 2.3, we also obtain Fu† ∈ S(B,C).
Hence, u† ∈ Ω. So, from u∗ = PΩTu

∗, (3.19),
and Lemma 2.1 we deduce that lim supk→∞⟨Tu∗ −
u∗, xk − u∗⟩ = ⟨Tu∗ − u∗, u† − u∗⟩ ≤ 0, which com-
bined with (3.18) gives

lim sup
k→∞

⟨Tu∗ − u∗, xk+1 − u∗⟩ ≤ 0. (3.20)

Now, the inequality (3.8) with u replaced by u∗, can
be rewritten in the form sk+1 ≤ (1− bk)sk + bkck,

where bk = (1 − τ)αk and ck = 2
1−τ ⟨Tu

∗ −
u∗, xk+1 − u∗⟩. Since the condition (α) and τ ∈
[0, 1), {bk} ⊂ (0, 1) and

∑∞
k=1 bk = ∞. Con-

sequently, from τ ∈ [0, 1) and (3.20), we have
that lim supk→∞ ck ≤ 0. Finally, by Lemma 2.5,
limk→∞ sk = 0. Hence, limk→∞ ∥xk − u∗∥ = 0.

Case 2. There exists a subsequence {kn} of {k}
such that ∥xkn − u∗∥ ≤ ∥xkn+1 − u∗∥ for all n ≥ 0.
Hence, by Lemma 2.4, there exists an integer, non-
decreasing sequence {ν(k)} for k ≥ k0 (for some k0

large enough) such that ν(k) → ∞ as k → ∞,

∥xν(k) − u∗∥ ≤ ∥xν(k)+1 − u∗∥ and

∥xk − u∗∥ ≤ ∥xν(k)+1 − u∗∥ for each k ≥ 0.

(3.21)

From (3.8) with u replaced by u∗ and k replaced
by ν(k), we have

0 < ∥xν(k)+1 − u∗∥2 − ∥xν(k) − u∗∥2

≤ 2αν(k)⟨Tu∗ − u∗, xν(k)+1 − u∗⟩.

Since αν(k) → 0 and the boundedness of {xν(k)},
we conclude that

lim
k→∞

(
∥xν(k)+1 − u∗∥2 − ∥xν(k) − u∗∥2

)
= 0.

(3.22)

By a similar argument to Case 1, we obtain
limk→∞

∥∥[IH1 − PH1

C

(
IH1 − λA

)]
xν(k)

∥∥ = 0

and limk→∞
∥∥[IH2 −PH2

Q

(
IH2 −λB

)]
Fuν(k)

∥∥ = 0.

Also we get

∥xν(k)+1 − u∗∥2 ≤
[
1− (1− τ)αν(k)

]
∥xν(k) − u∗∥2

+ 2αν(k)⟨Tu∗ − u∗, xν(k)+1 − u∗⟩,

where lim supk→∞⟨Tu∗ − u∗, xν(k)+1 − u∗⟩ ≤ 0.

Since the first inequality in (3.21) and αν(k) > 0,
we have that (1 − τ)∥xν(k) − u∗∥2 ≤ 2⟨Tu∗ −
u∗, xν(k)+1 − u∗⟩. Thus, from
lim supk→∞⟨Tu∗ − u∗, xν(k)+1 − u∗⟩ ≤ 0 and τ ∈
[0, 1), we get limk→∞ ∥xν(k) − u∗∥2 = 0. This to-
gether with (3.22) implies that limk→∞ ∥xν(k)+1 −
u∗∥2 = 0. Which together with the second inequal-
ity in (3.21) implies that limk→∞ ∥xk − u∗∥ = 0.

Since T is a contraction mapping, PΩT is a con-
traction too. By Banach contraction mapping prin-
ciple, there exists a unique point u∗ ∈ Ω such that
PΩTu

∗ = u∗. By Lemma 2.1, we obtain u∗ is the
unique solution to the VIP(IH1 − T,Ω). This com-
pletes the proof.

4 NUMERICAL EXPERIMENTS

We perform the iterative schemes in Python run-
ning on a laptop with Intel Core i7 8650U CPU,
16GB RAM.

Example 4.1. In this example, with the purpose
of illustrating the convergence of the Algorithm
3, we will apply the method to solve (SVIP). Let
H1 = R4 and H2 = R5. Operators A : R4 → R4

159



Truong Dang Thang/Vol 9. No 3_May 2023| p.239-246

|245

No.21_Jun 2021|p.154–160

and B : R5 → R5 are defined by

Ax =




1 1 2 1

1 1 2 1

2 2 7 2

1 1 2 1







x1

x2

x3

x4


 , x =




x1

x2

x3

x4


 ∈ R4 and

Bx =




2 0 0 0 0

0 7 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0







x1

x2

x3

x4

x5



, x =




x1

x2

x3

x4

x5



∈ R5

that are inverse strongly monotone operator with
constant ηA = 1

9 and ηB = 1
7 , respectively. Bounded

linear operator F : R4 → R5,

Fx =




0 0 2 0

0 0 7 0

1 1 0 0

0 0 1 0

0 3 0 0







x1

x2

x3

x4


 , x =




x1

x2

x3

x4


 ∈ R4.

And Tx : R4 → R4,

Tx =




1
2 0 0 0

0 1
2 0 0

0 0 1
2 0

0 0 0 1
2







x1

x2

x3

x4


+




0

0.2

0

0.25


 , x =




x1

x2

x3

x4


 ∈ R4,

is contractive operator with constant τ = 1
2 .

Let C and Q are defined by C = {x =

(x1, x2, x3, x4) | 2x1 + x4 ≤ 1};Q = {y =

(y1, y2, y3, y4, y5) | y21 + y22 + y23 + y24 + y25 ≤ 1}.
The solutions set of (SVIP) is

Ω =

x = (−u− v, u, 0, v) |

9u2 + v2 ≤ 1; 2u+ v ≥ −1; u, v ∈ R

.

The unique solution of VIP

IR

4 − T,Ω

is

x∗ =

−0.3 0.1 0 0.2

⊤
.

Now, choose αk = 1√
k+1

, λ = 0.2, βk = 0.25, γ =

0.01 , tolerance ε = 10−6 and initial point
x0 = (2 − 1 0 5)⊤, we get x =

(−0.2943, 0.1056, −0.0014, 0.2056)⊤. This result
archived within 0.208041 seconds.

Next, we used different choices of parameters. Ta-
ble shown below is the performance with differ-
ent λ parameter, (0 < λ ≤ 2η ≈ 0.2222) and
αk = 1√

k+1
, βk = 0.25, γ = 0.01 with initial point

x0 = (2 − 1 0 5)⊤. Tolerance ε = 10−6.

λ
Number of
iterations

Time

0.05 13557 0.5560s
0.10 8514 0.3500s
0.15 6303 0.2649s
0.20 4963 0.2080s

Bảng 4.1: Results with different λ

Then, we changed the parameter γ with 0 < γ <
1
L = 1

54 ≈ 0.0185. The other parameters stay un-

changed λ = 0.20, αk =
1√
k + 1

, βk = 0.25 with

initial point x0 = (2 − 1 0 5)⊤. Tolerance
ε = 10−6.

γ
Number of
iterations

Time

0.002 7088 0.260000s
0.004 6378 0.247037s
0.006 5808 0.219998s
0.008 5345 0.203006s
0.010 4963 0.199033s
0.012 4647 0.174994s
0.014 4385 0.174000s
0.016 4167 0.159012s
0.018 3987 0.148996s

Bảng 4.2: Results with different γ

Following that, we changed the parameter βk as
well, with the same choice of parameters, as λ =

0.20, αk =
1√
k + 1

, γ = 0.01 with initial point

x0 = (2 − 1 0 5)⊤. Tolerance ε = 10−6.

βk
Number of
iterations

Time

0.1 4501 0.166038s
0.2 4793 0.180050s
0.3 5152 0.214039s
0.4 5606 0.241030s
0.5 6205 0.263004s
0.6 7040 0.278997s
0.7 8307 0.329004s
0.8 10529 0.381039s
0.9 15828 0.617035s

Bảng 4.3: Results with different βk
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Hình 1: Results with different change in some pa-
rameters

Afterwards, we modify the parameter αk. The ta-
ble below show the results of the algorithm with
λ = 0.20, βk = 0.25, γ = 0.01. and initial point
x0 = (2 − 1 0 5)⊤. Tolerance ε = 10−6.

αk ϵ

Number
of itera-
tions (k)

Time (s)

αk = (k + 1)−0.5

10−6 4963 0.208041
10−7 23133 0.882029
10−8 107595 4.463039
10−9 499903 20.689995

αk = (k + 1)−0.8

10−6 1693 0.07303
10−7 5658 0.209031
10−8 20287 0.826946
10−9 72908 3.344028

Bảng 4.4: Results with different αk

Hình 2: The behavior of the number of iterations
and time when αk changed

5 CONCLUSION

In this paper, we introduced a new algorithm (Al-
gorithm 3) and a new strong convergence theorem
for solving the (SVIP) in a real Hilbert spaces. We
consider a numerical example to illustrate the ef-
fectiveness of the proposed algorithm.
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