THE LIMIT CONDITIONS FOR TRAPPING OF MICROLENS MODULATED ACOUSTIC WAVES IN ACOUSTIC-ELASTIC MEDIUM

Authors

  • Bui Xuan Kien Xuan
  • Dinh Van Chau
  • Nguyen Van Thinh

DOI:

https://doi.org/10.51453/2354-1431/2024/1164

Abstract

In some recent studies, the microlens 2D array modulated by acoustic wave is firstly proposed and the capability to use it to design optical tweezers 2D array theoretically investigated, i.e., the dependence of its focal length and its numerical aperture on the thickness of the acoustic-elastic medium (AEM) is discussed. In this paper, the conditions for microparticle trapping as the maximum gradient force larger than the necessary force (> 0.01pN) and radius of trapping region satisfied the diffractive limit (Rtrap>l), are discussed to find out the suitable collection of parameters.

Downloads

Download data is not yet available.

References

A. Ashkin, J. M. Dziedizic, J.E. Bjorkholm, and S. Chu, Opt. Lett. 11 (1986) 288-290.

A. Korpel, Acousto-Optics. New York: Marcel Dekker. Inc. 1988, 358.

A. Jesacher, S. Furhapter, S. Bernet, and M. R-Marte (2004), Optics Express 12 2243-2250.

B.E.Saleh, M.C. Teich, Funadamentals of photonics, John Wiley & Sons, INC., New York, 1998, 825-830.

C.H. Sow, A.A. Bettiol, Y.Y.G. Lee, F.C. Cheong, C.T. Lim, and F. Watt (2014), Appl. Phys. B 78 705-709/ DOI: 10.1007/s00340-004-1425-6.

C. Simons (2012), Large Infrared Optical Tweezer Array, Master Thesis, University of Washington,.

E. McLeod, A. B. Hopkins, and C.B. Arnold (2006), Opt. Lett. 31 3155-3157.

E. McLeod and C. B. Arnold (2007), Complex Light and Optical Forces 6483 648301.

E.R. Dufresne and D.G. Grier(1998), Rev. of Scien. Instruments 69, 1974-1977.

E.R. Dufresne, G.C. Spalding, M. T. Dearing, and S. A. Sheets (2001), Rev. of Scien. Instruments 72,1810-1816.

HQ Quy, N Van Thinh, C Van Lanh (2015), ultrasonic-controlled micro-lens arrays in germanium for optical tweezers to sieve the micro-particlest. Communications in Physics 25 (2), 157-163

H.Q. Quy, M.V. Luu, H. D.Hai, D. Zhuang (2010), Chiness Optical Lett. 8 332-334.

J.E. Curtis, B. A. Koss, and D. G. Grier, (2002) Opt. Commun. 207 169-175.

J. Y. Feng, X. Joe, H. Kaikai, L. Xuanhui, Photonic Global Conference (PGC), 1-4 (Singapore 2012)/ Doi:10.1109/PGC.2012.6458018.

L. Wei-Wei, R. Yu-Xuan, G. Hory-Fang, S. Qing, W. Zi-Quing, L. Yin-Mei (2012), Acta Phys. Sin. 61 188701/ Doi : 10.7498/aps.61-188701.

M. M. de Lima, Jr., M. Beck, R.Hey, and P.V. Santos (2016), Appl. Phys. Lett. 89 121104.

N. Pornsuwancharoen, C. Tanaponjarus, U. Dunmeekaew, and P.P. Yupapin (March 22-26, 2010), PIERS Proc. Xi’an, China, 1832-1836.

O. Mavago, P.H. Jones, P.G. Gucciari, G. Volpe and A. C. Ferrari (2013), Nature Nanotechnology 8 807-819/ Doi : 10.1038/nnano.2013.208.

Perkin, Laser and Photon. Rev. 3 (2009)203-230/DOI 10.1002/Ipor.200810014.

QH Quang, TT Doan, KB Xuan, TN Manh (2021) A model of Gaussian laser beam self-trapping in optical tweezers for nonlinear particles, Optical and Quantum Electronics 53 (8), 418

Thanh Thai Doan, Khoa Doan Quoc, Quy Ho Quang (2019). Acousto-optical tweezers for stretch of DNA molecule, Optical and Quantum Electronics, Vol 50

Van Thinh Nguyen, Quang Quy Ho, Van Lanh Chu (2014), Journal of Advances in Physics 6 1072-1078.

X. Ren, C. Wang, Y. Li, S. Shen, S. Liu (2011), Physics Procedia 22, 493-497.

Y. Tanaka, H. Kawada, S. Tsutsui, N. Ishikawa, and H. Kitajama (2019), Optics Express 17 24102-24111.

Downloads

Published

2025-01-16

How to Cite

Bui, K., Châu, & Thinh. (2025). THE LIMIT CONDITIONS FOR TRAPPING OF MICROLENS MODULATED ACOUSTIC WAVES IN ACOUSTIC-ELASTIC MEDIUM. SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY, 10(4). https://doi.org/10.51453/2354-1431/2024/1164

Issue

Section

Natural Science and Technology