Divergent cancelling in Total scattering amplitude of H →µƮ in decays Zee-Babu model
DOI:
https://doi.org/10.51453/2354-1431/2018/232Keywords:
PV functions, divergent cancelling, Zee-Babu model, lepton flavor violating, Higgs boson decays, etc.Abstract
The Zee-Babu model continuedof Zee model, is extended from the standard model to solve mass and mixing of neutrino. Scalars of Zee-Babu model is simpler than Zee model. So the neutrino problem is solved naturally. Higgs decay channels have been tested from accelerators. New interactions of Zee-Babu model increase signal of the lepton flavor violating Higgs decay. Studying these channels help us to constrain parameter space of this model and to give new physics.
Downloads
References
1. ATLAS and CMS Collaborations (2016), Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV, JHEP 1608, 045;
2. C. Patrignani et al (2016). [Particle Data Group], Review of particle physics, Chinese Physics C 40, 100001;
3. Daniel Schmidt, Thomas Schwetz, He Zhang (2014), Status of the Zee-Babu model for neutrino mass and possible tests at a like-sign linear collider, Nucl. Phys. B 885, 524-541;
4. Juan Herrero-Garcia, Miguel Nebot, Nuria Rius, Arcadi Santamaria (2014), The Zee-Babu Model revisited in the light of new data, Nucl. Phys. B 885, 542-570;
5. K. H. Kiem, H.T.Hung and L.T.Hue (2016), Prog.Theor. Exp.Phys. 2016, 113B03;
6. L.T. Hue, H. N. Long, T.T.Thuc and T. Phong Nguyen (2016), Nucl.Phys. B 907, 37; Phys.Rev. D93, 115026;
7. Miguel Nebot et al, Prospects for the Zee-Babu Model at the LHC and low energy experiments, Phys.Rev.D77, 093013,2008;
8. Takaaki Nomura, Hiroshi Okada (2016), An Extended Colored Zee-Babu Model, Phys. Rev. D 94, 075021;
9. Tommy Ohlsson, Thomas Schwetz, He Zhang (2009), Non-standard neutrino interactions in the Zee-Babu model, Phys.Lett.B681:269-275.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All articles published in SJTTU are licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) license. This means anyone is free to copy, transform, or redistribute articles for any lawful purpose in any medium, provided they give appropriate attribution to the original author(s) and SJTTU, link to the license, indicate if changes were made, and redistribute any derivative work under the same license.
Copyright on articles is retained by the respective author(s), without restrictions. A non-exclusive license is granted to SJTTU to publish the article and identify itself as its original publisher, along with the commercial right to include the article in a hardcopy issue for sale to libraries and individuals.
Although the conditions of the CC BY-SA license don't apply to authors (as the copyright holder of your article, you have no restrictions on your rights), by submitting to SJTTU, authors recognize the rights of readers, and must grant any third party the right to use their article to the extent provided by the license.