PLASMON PROPERTIES IN 3 - LAYER GRAPHENE SYSTEMS AT ZERO TEMPERATURE

Authors

  • Men Nguyen Van An Giang University, Vietnam
  • Dong Thi Kim Phuong An Giang University, Vietnam
  • Ngo Van Phong An Giang University, Vietnam

DOI:

https://doi.org/10.51453/2354-1431/2021/515

Keywords:

inhomogeneous background dielectric; damping rate; plasmon excitations; three-layer graphene system.

Abstract

Plasmon excitation is one of the important properties of a material and is applied in lots of technological fields. Plasmon excitations in graphene and graphene-based structures have been studied intensively in recent years. This paper uses a random-phase approximation to calculate plasmon excitations in a three-layer graphene system (consisting of a monolayer and a bilayer graphene sheet) at zero temperature. Calculations demonstrate the existence of three undamped plasmon modes in long-wavelength regions, but their damping rates differ significantly from each other in short-wavelength areas. The increase in separation leads to different changes in the frequency of collective modes. In addition, inhomogeneous background dielectric and the decrease in carrier density in bilayer graphene affect strongly plasmon frequencies.

Downloads

Download data is not yet available.

References

[1] Geim A.K., Novoselov, K.S. (2007). The rise of graphene, Nature Mater 6, 183.

[2] Maier, S.A.(2007). Plasmonics–Fundamentals and Applications. Springer, New York.

[3] McCann, E. (2011). Electronic Properties of Monolayer and Bilayer Graphene, In: Raza H. (ed.) Graphene Nanoelectronics. Berlin: NanoScience and Technology Springer.

[4] DasSarma, S., Adam, S., Hwang E.H., Rossi, E. (2011). Electronic transport in two dimensional graphene, Review Modern Physics 83, 407.

[5] DasSarma, S., Hwang E.H., Rossi, E. (2010). Theory of carrier transport in bilayer graphene. Physical Review B 81, 161407.

[6] Politano, A., Cupolillo, A., Profio, G.Di., Arafat, H.A., Chiarello, G., Curcio, E. (2016). When plasmonics meets membrane technology, J. Phys. Condens. Matter 28, 363003.

[7] Politano, A., Pietro, A., Profio, G.Di., Sanna, V., Cupolillo, A., Chakraborty, S., Arafat H., Curcio, E. (2017). Photothermal membrane distillation for seawater desalination, Advanced Materials 29, 03504.

[8] Ryzhii, V., Ryzhii, M., Mitin, V., Shur, M.S., Satou, A., Otsuji, T. (2013). Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure, J. Appl. Phys. 113, 174506.

[9] Shin, J.S., Kim, J.S., Kim, J.T. (2015). Graphene-based hybrid plasmonic modulator, J. Opt. 17, 125801.

[10] Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., Zhu, W., Avouris P., Xia, F. (2012). Tunable infrared plasmonic devices using graphene/insulator stacks, Nature Nanotech. 7, 330.

[11] Hwang E.H., DasSarma, S. (2007). Dielectric function, screening, and plasmons in 2D graphene, Physical Review B 75, 205418.

[12] Sensarma, R., Hwang E.H., DasSarma, S. (2010). Dynamic screening and low energy collective modes in bilayer graphene, Physical Review B 82, 195428.

[13] Badalyan S.M., Peeters, F.M. (2012). Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures, Physical Review 85(19), 195444.

[14] Khanh, N.Q., Men, N.V. (2018). Plasmon Modes in Bilayer–Monolayer Graphene Heterostructures, Physica Status Solidi B 255(7), 1700656, Vietnam.

[15] Men, N.V., Khanh, N.Q. (2017). Plasmon modes in graphene–GaAs heterostructures, Physics Letters A 381(44), 3779, Vietnam.

[16] Principi, A., Carrega, M., Asgari, R., Pellegrini V., Polini, M. (2012). Plasmons and Coulomb drag in Dirac/Schrodinger hybrid electron systems, Physical Review B 86, 085421.

[17] Scharf B., Matos-Abiague, A. (2012). Coulomb drag between massless and massive fermions, Physical Review B 86, 115425.

[18] Hwang E.H., DasSarma, S. (2009). Exotic plasmon modes of double layer graphene, Physical Review B 80, 205405.

[19] Vazifehshenas, T., Amlaki, T., Farmanbar M., Parhizgar, F. (2010). Temperature effect on plasmon dispersions in double-layer graphene systems, Physics Letters A 374(48), 4899.

[20] Zhu, J.J., Badalyan S.M., Peeters, F.M. (2013). Plasmonic excitations in Coulomb-coupled N-layer graphene structures, Physical Review B 87, 085401.

[21] Men, N.V. (2020). Plasmon modes in N-layer gapped graphene, Physica B 578, 411876, Vietnam.

[22] Phuong, D.T.K., Men, N.V. (2019). Plasmon modes in 3-layer graphene structures: Inhomogeneity effects, Physics Letters A 383, 125971, Vietnam.

[23] Men, N.V., Khanh, N.Q., Phuong, D.T.K. (2019). Plasmon modes in N-layer bilayer graphene structures. Solid State Communications 298, 113647, Vietnam.

[24] Wachsmuth, P., Hambach, R., Benner G., Kaiser, U. (2014). Plasmon bands in multilayer graphene, Physical Review B 90, 235434.

[25] Phuong, D.T.K., Men, N.V. (2020). Plasmon modes in N layer graphene structures at zero temperature, Journal of Low Temperature Physics 201: 311–320, Vietnam.

[26] Svintsov, D., Vyurkov, V., Ryzhii, V., Otsuji, T. (2013). Voltage-controlled surface plasmon-polaritons in double graphene layer structures, Journal of Applied Physics 113, 053701.

Published

2021-08-17

How to Cite

Nguyễn Văn, M., Đổng Thị Kim, P., & Ngô Văn , P. . (2021). PLASMON PROPERTIES IN 3 - LAYER GRAPHENE SYSTEMS AT ZERO TEMPERATURE. SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY, 7(21). https://doi.org/10.51453/2354-1431/2021/515

Issue

Section

Natural Science and Technology