MODIFIED PROJECTION ALGORITHMS FOR STRONGLY PSEUDOMONOTONE VARIATIONAL INEQUALITIES

Authors

  • Nguyen Thi Dinh Hanoi University of Science and Technology

DOI:

https://doi.org/10.51453/2354-1431/2021/610

Abstract

The variational inequality problem have many important applications in the fields of signal processing, image processing, optimal control and many others. In this paper, we introduce two projection algorithms for solving strongly pseudomonotone variational inequalities. The considered methods
are based on some existing ones. Our algorithms use dynamic
step-sizes, chosen based on information of previous steps and
their strong convergence is proved without the Lipschitz continuity of the underlying mappings. Some numerical experiments are presented to verify the effectiveness of the proposed
algorithms.

Downloads

Download data is not yet available.

References

[1] Anh, P.K., Hai, T.N. (2017). Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems. Numer. Algorithms, 76: 67-91.

[2] Anh, P.N., Hai, T.N, Tuan, P.M. (2016). On ergodic algorithms for equilibrium problems.

J. Global Optim., 64: 179-195.

[3] Anh, P.K., Vinh, N.T.: Self-adaptive gradient projection algorithms for variational inequalities involving non-Lipschitz continuous operators. Numer. Algorithms, DOI

1007/s11075-018-0578-z.

[4] Bao, T.Q., Khanh, P.Q. (2005). A projectiontype algorithm for pseudomonotone nonlipschitzian multi-valued variational inequalities. Nonconvex Optim. Appl., 77: 113-129.

[5] Bauschke, H.H., Combettes, P.L. (2011). Convex Analysis and Monotone Operator Theory

in Hilbert Spaces. Springer, New York.

[6] Bello Cruz, J.Y., Iusem, A.N. (2010). Convergence of direct methods for paramonotone variational inequalities. Comput. Optim. Appl., 46: 247-263.

[7] Bello Cruz, J.Y., Iusem, A.N. (2009): A strongly convergent direct method for monotone variational inequalities in Hilbert spaces. Numer. Funct. Anal. Optim., 30: 23-36.

[8] Bello Cruz, J.Y., Iusem, A.N. (2012). An explicit algorithm for monotone variational inequalities. Optimization, 61: 855-871.

[9] Censor, Y., Gibali, A., and Reich, S. (2011). The subgradient extragradient method for

solving variational inequalities in Hilbert space. J. Optim. Theory and Appl., 148: 318-

[10] Facchinei, F., Pang, J.-S. (2003). Finitedimensional variational inequalities and complementarity problems. Springer, New York.

[11] Hai, T.N. (2020). On gradient projection methods for strongly pseudomonotone variational inequalities without Lipschitz continuity. Optim. Lett. 14:1177–1191.

[12] Hai, T.N. (2021). Linesearch-free algorithms for solving pseudomonotone variational inequalities. Pacific Journal of Optimization, 17(2): 269-288.

[13] Hai, T.N. (2021). A simple fork algorithm for solving pseudomonotone non-Lipschitz variational inequalities. International Journal of Computer Mathematics, 98(9): 1807-1820.

[14] Hai, T.N. (2020). Two modified extragradient algorithms for solving variational inequalities.

Journal of Global Optimization, 78(1): 91-106.

[15] Hai, T.N., Vinh, N.T. (2017). Two new splitting algorithms for equilibrium problems. Rev.

R. Acad. Cienc. Exactas F‰s. Nat. Ser. A Math. RACSAM, 111: 1051-1069.

[16] Iiduka, H. (2010). A new iterative algorithm for the variational inequality problem over the fixed point set of a firmly nonexpansive mapping. Optimization 59: 873-885.

[17] Iiduka, H. (2012). Fixed point optimization algorithm and its application to power control in CDMA data networks. Math. Program., 133: 227-242.

[18] Iiduka, H., Yamada, I. (2009). An ergodic algorithm for the power-control games for CDMA

data networks. J. Math. Model. Algorithms, 8: 1-18. 7N.T. Dinh/No.xx_Mar 2022|p.xxx–xxx

[19] Khanh, P.D., Nhut, M.B. (2018). Error bounds for strongly monotone and Lipschitz continuous variational inequalities. Optim. Lett., 12: 971–984.

[20] Khanh, P.D., Vuong, P.T. (2014). Modified projection method for strongly pseudomonotone variational inequalities. J. Global Optim., 58: 341-350.

[21] Kim, D.S., Vuong, P.T., Khanh, P.D. (2016). Qualitative properties of strongly pseudomonotone variational inequalities. Optim. Lett., 10: 1669-1679.

[22] Kinderlehrer, D., Stampacchia, G. (1980). An Introduction to Variational Inequalities

and Their Applications. Academic Press, New York.

[23] Korpelevich, G.M. (1976). The extragradient method for finding saddle points and other

problems. Ekon. Mat. Metody., 12: 747-756.

[24] Malitsky, Y. (2015). Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim., 25: 502–520.

[25] Santos, P., Scheimberg, S. (2011). An inexact subgradient algorithm for equilibrium problems. Comput. Appl. Math., 30: 91-107.

[26] Solodov, M.V. (2003). Merit functions and error bounds for generalized variational inequalities. J. Math. Anal. Appl., 287: 405-414.

[27] Solodov, M.V., Svaiter, B.F. (1999). A new projection method for monotone variational

inequality problems. SIAM J. Control Optim., 37: 765-776.

[28] Thuy, L.Q., Hai, T.N. (2017). A Projected Subgradient Algorithm for Bilevel Equilibrium

Problems and Applications. J. Optim. Theory Appl., 175: 411-431.

Downloads

Published

2022-04-12

How to Cite

nguyen, dinh. (2022). MODIFIED PROJECTION ALGORITHMS FOR STRONGLY PSEUDOMONOTONE VARIATIONAL INEQUALITIES. SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY, 7(24). https://doi.org/10.51453/2354-1431/2021/610

Issue

Section

Natural Science and Technology