AN EXTENSION OF PARAMETER CONTINUATION METHOD FOR SOLVING PERTURBED SYSTEMS OF NONLINEAR EQUATIONS

Authors

  • Ngo Thanh Binh Nam Dinh University of Technology Education

DOI:

https://doi.org/10.51453/2354-1431/2022/763

Keywords:

Parameter continuation method, Perturbed systems of nonlinear equations, Approximate solutio

Abstract

In this paper, we propose an extension of parameter continuation method for solving perturbed systems of nonlinear equations. The existence and uniqueness of the solution will be investigated. We also discuss error analysis of the method. The validity and applicability of the method is verified by an example.

Downloads

Download data is not yet available.

References

[1] Aslam Noor, M., Waseem, M. (2009). Some it- erative methods for solving a system of nonlin- ear equations, Comput. Math. Appl. 57: 101 - 106.

[2] Bernstein, S. N. (1906). Sur la généralisation du problème de Dirichlet, Math. Ann. 62: 253 - 271.

[3] Binh, N. T., Ninh, K. V. (2019). Parame- ter continuation method for solving nonlinear Fredholm integral equations of the second kind, Bull. Malays. Math. Sci. Soc. 42(6): 3379 - 3407.

[4] Binh, N. T. (2019). Parameter continuation method for solving systems of nonlinear equa- tions, Hanoi Pedagogical University 2 J. Sci. 63: 3–13.

[5] Binh, N. T. (2021). A new extension of param- eter continuation method for solving operator equations of the second kind, Tan Trao Univer- sity J. Sci. 21: 157 - 165.

[6] Chuong, N. M., Khai, N.V., Ninh, K.V., Tuan, N.V., Tuong, N. (2000). Numerical analysis, VietNam Education Publishing House, Hanoi.

[7] Gaponenko, Y. L. (1986). The parameter - ex- tension method for an equation of the second kind with a Lipschitz - continuous and mono- tonic operator, Comput. Maths. Math. Phys. 26(8): 1123 - 1131.

[8] Ghane-Kanafi, A., Kordrostami, S. (2016). A New Approach for Solving Nonlinear Equa- tions by Using of Integer Nonlinear Program- ming , Appl. Math. 7: 473 - 481.

[9] Leray, J., Schauder, J. (1934). Topologie et équations fonctionnelles, Ann. Ec. Norm. Sup. 51: 45 - 78.

[10] Ninh, K. V. (1999). Approximate solutions of the equation of a second kind with sum of two operators, Proc. Inst. Math. Mech. Azerb. Acad. Sci. V(X): 97 - 101.

[11] Ninh, K. V. (2011). A method of extending by parameter for approximate solutions of operator equations, Acta. Math. Vietnam. 36(1): 119 - 127.

[12] Ninh, K. V., Binh, N. T. (2019). Analytical so- lution of Volterra–Fredholm integral equations using hybrid of the Method of contractive map- ping and Parameter continuation method, Int. J. Appl. Comput. Math. 5(76): 1 - 20.

[13] Ortega, J. M., Rheinboldt, W. C. (1970). Iter- ative solution of nonlinear equations in several variables, Academic Press, New York.

[14] Trenogin, V. A. (1980). Functional Analysis, Nauka, Moscow.

[15] Trenogin, V. A.(1996). Locally invertible op- erator and parameter continuation method. Funktsional, Anal. i Prilozhen. 30(2): 93 - 95.

[16] Trenogin, V. A. (1996). Global invertibility of nonlinear operator and the method of continu- ation with respect to a parameter, Dokl. Akad. Nauk. 350(4): 1 - 3.

[17] Trenogin, V. A. (1998). Invertibility of non- linear operators and parameter continuation method (English summary). Spectral and scat- tering theory, Edited by Alexander G. Ramm, Plenum Press, New York.

[18] Vetekha, V. G.(2000). Parameter continua- tion method for ordinary differential equa- tions, Proceedings of the 2nd ISAAC Congress, Vol.1, Fukuoka, Japan, August 16 - 21.

Downloads

Published

2022-07-12

How to Cite

Ngo Thanh, B. (2022). AN EXTENSION OF PARAMETER CONTINUATION METHOD FOR SOLVING PERTURBED SYSTEMS OF NONLINEAR EQUATIONS. SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY, 8(2). https://doi.org/10.51453/2354-1431/2022/763

Issue

Section

Natural Science and Technology