PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR STRONGLY DEGENERATE PARABOLIC EQUATION

Authors

  • Nguyen Xuan Tu Hung Vuong university
  • Ha Thi Huyen Diep Hung Vuong university
  • Khong Chi Nguyen Tan Trao university

DOI:

https://doi.org/10.51453/2354-1431/2022/840

Abstract

In this paper, using the asymptotic a priori estimate method, we prove the existence of pullback attractors for a non-autonomous semilinear strongly degenerate parabolic equation in an arbitrary domain, without restriction on the growth order of the polynomial type non-linearity and with a suitable exponential growth of the external force. The obtained results improve some recent ones for the non-autonomous reaction–diffusion equations.

 

Downloads

Download data is not yet available.

References

[1] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, vol. 183. Springer, New York (2013).

[2] B. Franchi and E. Lanconelli, Une m†trique associ†e une classe d’op†rateurs elliptiques d†g†n†r†s, (French) [A metric associated with a class of degenerate elliptic operators] Conference on linear partial and pseudodifferential operators (Torino, 1982). Rend. Sem. Mat. Univ. Politec. Torino 1983, Special Issue (1984), 105-114.

[3] P.G. Geredeli, On the existence of regular global attractor for p−Laplacian evolution equation, Appl. Math. Optim, 71 (2015), 517- 532.

[4] P.G. Geredeli and A. Khanmamedov, Longtime dynamics of the parabolic p−Laplacian equation, Commun. Pure Appl. Anal, 12 (2013), 735-754.

[5] A.E. Kogoj and E. Lancenolli, On semilinear ∆λ-Laplace equation, Nonlinear Anal. 75 (2012), 4637-4649.

[6] A.E. Kogoj and S. Sonner: Attractors for a class of semi-linear degenerate parabolic equations, J. Evol. Equ. 13 (2013), 675-691.

[7] A.E. Kogoj and S. Sonner, Attractors met Xelliptic operators. J. Math. Anal. Appl. 420 (2014), 407-434.

[8] D. Li and C. Sun, Attractors for a class of semi-linear degenerate parabolic equations with critical exponent. J. Evol. Equ. 16 (2016), 997-1015.

[9] Y. Li and C.K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the onautonomous reactiondiffusion equations, Appl. Math. Comp. 190 (2007), 1020-1029.

[10] Y. Li, S. Wang and H. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in Lp, Appl. Math. Comp. 207 (2009), 373-379.

[11] G. Lukaszewicz, On pullback attractors in H1 0(Ω) for nonautonomous reaction-diffusion equations, Int. J. Bifurcation Chaos Appl. Sci. Eng. 20 (2010), 2637-2644.

[12] G. Lukaszewicz, On pullback attractors in Lp for nonautonomous reaction-diffusion equations, Nonlinear Anal. 73 (2010), 350-357.

[13] D.T. Luyen and N.M. Tri, Existence of solutions to boundary-value problems for semilinear ∆ γdifferential equations, Math. Notes 97 (2015), 73-84.

[14] D.T. Quyet, L.T. Thuy and N.X. Tu, Semilinear strongly degenerate parabolic equations with a new class of onlinearities, Vietnam J. Math. 45 (2017), 507-517.

[15] J.C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.

[16] M.X. Thao, On the global attractor for a semilinear strongly degenerate parabolic equation, Acta Math. Vietnam. 41 (2016), 283-297.

[17] P.T. Thuy and N.M. Tri, Long-time behavior of solutions to semilinear parabolic equations involving strongly degenerate elliptic differential operators. Nonlinear Differential Equations Appl. 20 (2013), 1213-1224.

[18] N. X. Tu (2021), Global attractor for a semilinear strongly degenerate parabolic equation with exponential nonlinearity in unbounded domains, Commun. Korean Math. Soc. 37 (2022), No.2, pp. 423-443.

[19] B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations, Nonlinear Anal. 72 (2010), 3887-3902.

[20] Y. Wang and C.K. Zhong, On the existence of pullback attractors for non-autonomous reaction-diffusion equations, Dyn. Syst. 23 (2008), 1-16.

Downloads

Published

2023-03-13

How to Cite

Xuân Tú, N., Ha Thi Huyen , D., & Khong Chi, N. (2023). PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR STRONGLY DEGENERATE PARABOLIC EQUATION. SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY, 9(1). https://doi.org/10.51453/2354-1431/2022/840

Issue

Section

Natural Science and Technology

Most read articles by the same author(s)