A NOVEL NETWORK BASED ON ATTENTION FOR FALLING DETECTION

Authors

  • Phung Thi Thu Trang Thai Nguyen University, Vietnam
  • Ma Thi Hồng Thu Tan Trao University, Viet Nam
  • Dinh Thi Lien Thai Nguyen University, Vietnam

DOI:

https://doi.org/10.51453/2354-1431/2023/960

Keywords:

Falling, Detection, Action, Recognition, Attention.

Abstract

The attention mechanism has been studied extensively in recent years to enhance the model’s learning ability. In this paper, we propose a new attention mechanism including the temporal attention module and spatial attention module. These two modules are combined in the 3D ResNet-18 network to provide "attention" to the critical features of the volume. In particular, the temporal attention module exploits the motion relationship between frames, and the spatial attention module is interested in the spatial relationship between features. The experimental results for the proposed model show that our proposed method achieves competitive performance compared with the recently published modern deep and heavy networks.

Downloads

Download data is not yet available.

References

[1] P. T. T. Trang, M. T. H. Thu, “MỘT MÔ HÌNH HỌC SÂU CHO BÀI TOÁN PHÁT HIỆN NGƯỜI BỊ NGÃ,” TNU Journal of Science and Technology, 225(14), 48-53, 2020.

[2] T. C. Án, L. M. Phúc, Đ. T. Đức, N. B. Hùng, L. Đ. Chiến, P. T. X. Diễm, S. B. Pha, “Phát hiện té ngã cho người cao tuổi bằng gia tốc kế và mô hình học sâu Long Short-Term Memory.” Tạp chí Khoa học Trường Đại học Cần Thơ, (CĐ Công nghệ TT 2017), 65-71, 2017.

[3] S. A. Carneiro, G. P. da Silva, G. V. Leite, R. Moreno, S. J. F. Guimarães, H. Pedrini, “Multi-stream deep convolutional network using high-level features ap¬plied to fall detection in video sequences,” in 2019 International Conference on Systems, Signals and Im¬age Processing (IWSSIP), 293-298, IEEE, 2019.

[4] Y. Chen, X. Kong, L. Meng, H. Tomiyama, “An edge computing based fall detection system for elderly per¬sons,” Procedia Computer Science, 174, 9-14, 2020.

[5] D.-Q. Vu, N. T. Le, J.-C. Wang, “(2+ 1) D Distilled ShuffleNet: A Lightweight Unsupervised Distillation Network for Human Action Recognition,” in 2022 26th International Conference on Pattern Recognition (ICPR), 3197-3203, IEEE, 2022.

[6] J. Gou, B. Yu, S. J. Maybank, D. Tao, “Knowledge distillation: A survey,” International Journal of Com¬puter Vision, 129, 1789-1819, 2021.

[7] D.-Q. Vu, N. Le, J.-C. Wang, “Teaching yourself: A self-knowledge distillation approach to action recog¬nition,” IEEE Access, 9, 105711-105723, 2021.

[8] D.-Q. Vu, J.-C. Wang, et al., “A novel self-knowledge distillation approach with siamese representation learning for action recognition,” in 2021 International Conference on Visual Communications and Image Processing (VCIP), 1-5, IEEE, 2021.

[9] Q. V. Duc, T. Phung, M. Nguyen, B. Y. Nguyen, T. H. Nguyen, “Self-knowledge Distillation: An Efficient Approach for Falling Detection,” in Artificial Intelli¬gence in Data and Big Data Processing: Proceedings of ICABDE 2021, 369-380, Springer, 2022.

[10] B.-H. Wang, J. Yu, K. Wang, X.-Y. Bao, K.-M. Mao, “Fall detection based on dual-channel feature integra¬tion,” IEEE Access, 8, 103443-103453, 2020.

[11] M. M. Hasan, M. S. Islam, S. Abdullah, “Robust pose¬based human fall detection using recurrent neural net¬work,” RAAICON, 48-51, 2019.

[12] Z. Cao, T. Simon, S.-E. Wei, Y. Sheikh, “Realtime multi-person 2d pose estimation using part affinity fields,” CVPR, 7291-7299, 2017.

[13] X. Cai, S. Li, X. Liu, G. Han, “Vision-based fall de¬tection with multi-task hourglass convolutional auto¬encoder,” IEEE Access, 8, 44493-44502, 2020.

[14] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learn¬ing for image recognition,” in CVPR, 770-778, 2016.

[15] K. Hara, H. Kataoka, Y. Satoh, “Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet?” in CVPR, 6546-6555, 2018.

[16] J. Hu, L. Shen, G. Sun, “Squeeze-and-excitation net¬works,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 7132-7141, 2018.

[17] S. Woo, J. Park, J.-Y. Lee, I. S. Kweon, “Cbam: Con¬volutional block attention module,” in Proceedings of the European conference on computer vision (ECCV), 3-19, 2018.

[18] T. Phung, V. T. Nguyen, T. H. T. Ma, Q. V. Duc, “A (2+ 1) D attention convolutional neural network for video prediction,” in Artificial Intelligence in Data and Big Data Processing: Proceedings of ICABDE 2021, 395¬406, Springer, 2022.

[19] B. Kwolek, M. Kepski, “Human fall detection on embedded platform using depth maps and wireless accelerometer,” Computer methods and programs in biomedicine, 117(3), 489-501, 2014.

[20] A. Nunez-Marcos, G. Azkune, I. Arganda-Carreras, “Vision-based fall detection with convolutional neu¬ral networks,” Wireless communications and mobile computing, 2017, 2017.

[21] T. X. Hoa, V. R. M. Madrid, E. A. Albacea, “A Lightweight Model for Falling Detection,” RIVF,

Downloads

Published

2023-06-27

How to Cite

Phùng, T., Ma, T., & Đinh, L. (2023). A NOVEL NETWORK BASED ON ATTENTION FOR FALLING DETECTION. SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY, 9(3). https://doi.org/10.51453/2354-1431/2023/960

Issue

Section

Natural Science and Technology