BOHL THEOREM FOR VOLTERRA EQUATION ON TIME SCALES

Authors

  • Lê Anh Tuan Đại học Công nghiệp Hà Nội

DOI:

https://doi.org/10.51453/2354-1431/2021/630

Keywords:

Volterra differential equations, Boundedness of solutions, Exponential stability, Bohl-Perron theorem.

Abstract

 This paper is concerned with the Bohl-Perron theorem for Volterra in the form equations

\(x^\Delta (t) = A(t) x(t)+\int_{t_0}^t K(t,s)x(s)\Delta s + f(t). \) 

on time scale T. We will show a relationship between the boundedness of the solution of Volterra equation and the stability of the corresponding homogeneous equation.

Downloads

Download data is not yet available.

References

[1] O. Perron, Die Stabilitatsfrage bei Differentialgleichungen, Math. Z., 32 (1930), pp. 703-728.

[2] E. Akin-Bohner, M. Bohner and F. Akin, Pachpatte inequalities on time scales, J. Inequal. Pure Appl. Math. 6 (2005) no. 1, 23 pp.

[3] M. Bohner and A. Peterson, Dynamic equations on time scales: An Introduction with Applications, Birkh¨auser, Boston, 2001.

[4] Gusein Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl., 285(2003), 107{127.

[5] E. Bravyi, R. Hakl, A. Lomtatidze, On Cauchy problem for first order nonlinear functional differential equations of non-Volterra’s type. (English), Czechoslovak Mathematical Journal, 52(2002), issue 4, pp. 673-690.

[6] E. Braverman, I.M. Karabash, Bohl-Perron type stability theorems for linear difference equations with infinite delay, J. Differ. Equ. Appl., 18(2012), pp. 909-939.

[7] M.R. Crisci, V.B. Kolimanovskll, E. Russo, A. Vecchio, On the exponential stability of discrete volterra systems, Journal of Difference Equations and Applications, 6(2000), pp. 667-480.

[8] N.H. Du, V.H. Linh and N.T.T. Nga, On stability and Bohl exponent of linear singular systems of difference equations with variable coefficients, J. Differ. Equ. Appl., 22 (2016), pp. 1350-1377.

[9] N.H. Du, L.H. Tien, On the exponential stability of dynamic equations on time scales. J. Math. Anal. Appl., 331(2007), pp. 1159-1174.

[10] A. Filatov and L. Sarova, Integral’nye neravenstva i teorija nelineinyh kolebanii. Moskva, 1976. 19(1975), pp. 142-166.

[11] S. Grossman and R.K. Miller, Perturbation Theory for Volterra Integrodiffererential Systems, J. Differential Equations, 8(1970), pp. 457-474.

[12] M. Pituk. A Perron type theorem for functional differential equations, J. Math. Anal. Appl., 316(2006), pp 24-41.

Downloads

Published

2022-04-12

How to Cite

Lê Anh , T. (2022). BOHL THEOREM FOR VOLTERRA EQUATION ON TIME SCALES. SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY, 7(24). https://doi.org/10.51453/2354-1431/2021/630

Issue

Section

Natural Science and Technology