Anharmonic Correlated Einstein Model and Some Applications to Studies of Thermodynamic Properties and Structural Determination of substances

Authors

  • Nguyen Van Hung Trường Đại học Khoa học Tự nhiên Hà Nội

DOI:

https://doi.org/10.51453/2354-1431/2018/240

Keywords:

Debye-Waller factor, cumulant expansion, XAFS, thermodynamic properties.

Abstract

This paper presents the anharmonic correlated Einstein model (ACEM) for studying Debye-Waller factors presented in terms of cumulant expansion and some of its applications. The model is derived based on the quantum statistical theory. In addition, the complicated many-particle problem is simplified by the derived anharmonic interatomic effective potential. This includes the many-body effects by the first shell near neighbor contributions to the vibrations between absorber and backscatterer atoms and by projecting these contributions along bond direction to recover the one-dimensional model. Morse potential is assumed to describe the single-pair atomic interaction. Numerical results for several applications are found to be in good agreement with experiment which show the evident temperature dependence of the thermodynamic properties, anharmonic effects and structural parameters of the considered material.

Downloads

Download data is not yet available.

References

1. E. D. Crozier, J. J. Rehr, and R. Ingalls (1988), in X-ray Absorption, edited by D. C. Koningsberger and R. Prins (Wiley, New York). Chap. 9;

2. N. V. Hung, N. B. Duc, and R. R. Frahm (2003), J. Phys. Soc. Jpn. 72, 1254;

3. J. M. Tranquada and R. Ingalls (1983), Phys. Rev. B 28, 3520;

4. A. I. Frenkel and J. J. Rehr (1993), Phys. Rev. B 48, 585;

5. T. Miyanaga and T. Fujikawa (1994), J. Phys. Soc. Jpn. 63, 1036 and 3683;

6. N. V. Hung and J. J. Rehr (1997), Phys. Rev. B 56, 43;

7. R. P. Feynman (1972), Statistical Mechanics, Benjamin Reading;

8. E. A. Stern, P. Livins, and Zhe Zhang (1991), Phys. Rev. B 43, 8850;

9. L. A. Girifalco V. G. Weizer (1959), Phys. Rev. 114, 687;

10. S. a Beccara, G. Dalba, P. Fornasini, R. Grisenti, F. Pederiva, A. Sanson (2003), Phys. Rev. B 68, 140301(R);

11. R. B. Greegor and F. W. Lytle (1979), Phys. Rev. B 20, 4908;

12. T. Yokoyama, T. Susukawa, and T. Ohta (1989), Jpn. J. Appl. Phys. 28, 1905;

13. Y. S. Toukian, R. K. Kirby, R. E. Taylor, and P. D. Desai (1975), Thermophysical Properties of Matter (IFI/Plenum, New York);

14. N. V. Hung, T. S. Tien, N. B. Duc, and D. Q. Vuong (2014), Mod. Phys. Lett. B 28, 1450174;

15. N. V. Hung (2004), Communications in Phys. (CIP) Vol 14, No. 1, 7-14;

16. N. V. Hung, T. S. Tien, L. H. Hung, R. R. Frahm (2008), Int. J. Mod. Phys. B 22, 5155;

17. N. V. Hung, C. S. Thang, N. B. Duc, D. Q. Vuong, T. S. Tien (2017), Phys. B 521, 198-203;

18. J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, R. C. Albers, J. Am. Chem (1991), Soc. 113 5135;

19. W. Klysubun, P. Sombunchoo, W. Deenam, C. Komark (2012), J. Synchrotron Rad. 19, 930;

20. V. Pirog, T. I. Nedoseikina, A. I. Zarubin, A. T. Shuvaev (2002), J. Phys.: Condens. Matter 14, 1825;

21. I. V. Pirog and T. I. Nedoseikina (2003), Physica B 334, 123;

22. M. Daniel, D. M. Pease, N. Van Hung, J. I. Budnick (2004), Phys. Rev. B 69, 134414;

23. P. Fornasini and R. Grisenti (2015), J. Synch. Rad. 22, 1242-1257;

24. S. C. Gairola (2016), Act. Phys. Polonica A 129, 1141-1146.

Published

2021-04-07

How to Cite

Nguyễn Văn , H. (2021). Anharmonic Correlated Einstein Model and Some Applications to Studies of Thermodynamic Properties and Structural Determination of substances . SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY, 4(8), 43–54. https://doi.org/10.51453/2354-1431/2018/240

Issue

Section

Natural Science and Technology