STUDY ON FABRICATION OF NANO ZnO AND CARBON DOPED ZnO MATERIALS (ZnO-C)
DOI:
https://doi.org/10.51453/2354-1431/2021/506Keywords:
C-doped ZnO, sol-gel, nanoparticle...Abstract
ZnO and ZnO dopped C (ZnO-C) polycrystalline nanomaterials are fabricated by the sol-gel method combined with multi-layer spin-coating and annealing. In this study, we have fabricated and tested ZnO samples under conditions 450°C for 5 hours in Ar annealing environment. We examined structural morphology by X-ray diffraction (XRD), Scaning Electron Microscope (SEM) and the content of elements by Energy Dispersion X-ray (EDX). The fabricated material is a monocrystalline wurtzite hexagonal structure, homogeneous with spherical monocrystalline particles of size 80 nm for ZnO and 30 – 120 nm for ZnO-C. The content of C element in ZnO-C is very large (~77%), but there is no singlecrystal phases of C in the sample.
Downloads
References
[1] Gao, D., Zhang, Z., Fu, J., Xu, Y., Qi, J., Xue, D. (2009). ‘‘Room temperature ferromagnetism of pure ZnO nanoparticle’’, J. Appl. Phys. 105, 113928.
[2] Kumar, S., Kim, Y.J., Koo, B.H., Gautam, S., Chae, K.H., Lee, C.G., Kumar, R. (2009). ‘‘Structural and magnetic properties of chemically synthesized Fe doped ZnO’’, Journal of Applied Physics 105, 07C520.
[3] Bhargava, R., Sharma, P.K., Kumar, S., Pandey, A.C., Kumar, N. (2010). ‘‘Effect of Calcination on Properties of Cobalt Doped ZnO Nanoparticles’’, J. Solid State Chem. 183, 1400.
[4] Ashokkumar, M., Muthukumaran, S. (2014). ‘‘Microstructure and band gap tailoring of ZnO96−xCu0.04CoxO (0⩽ x⩽ 0.04) nanoparticles prepared by co-precipitation method’’, J. Alloys Compd. 587, 606.
[5] Thota, S., Dutta, T., Kumar, J. (2006). ‘‘On the Sol-Gel Syn- thesis and Thermal, Structural, and Magnetic Studies of Transition Metal (Ni, Co, Mn) Containing ZnO Powders’’, J. Phys.: Condens. Matter 18, 2473.
[6] Bahsi, Z.B., Yavuz Oral, A. (2007). ‘‘Effects of Mn and Cu doping on the microstructures and optical properties of sol gel derived ZnO thin films’’, Opt. Mater. 29, 672.
[7] Yang, J., Fei, L., Liu, H., Liu, Y., Gao, M., Zhang, Y., Yang, L. (2011). ‘‘A study of structural, optical and magnetic properties of Zn0.97−xCuxCr0.03O diluted magnetic semiconductors’’, J. Alloys Compd. 509, 3672.
[8] Ogi, T., Hidayat, D., Iskandar, F., Purwanto, A., Okuyama, K. (2009). ‘‘Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis’’, Adv. Powder Technol. 20, 203.
[9] Du, S., Tian, Y., Liu, H., Liu, J., Chen, Y. (2006). Processing Routes to Macroporous Ceramics: A Review, J. Am. Ceram. Soc. 89, 2440.
[10] Chen, X., He, Y., Zhang, Q., Li, L., Hu, D., Yin, T. (2010). ‘‘Fabrication of sandwich-structured ZnO/reduced graphite oxide composite and its photocatalytic properties’’, J. Mater. Sci. 45, 953.
[11] Zhang, H., Yang, D., Li, S., Ma, X., Ji, Y., Xu, J., Que, D. (2005). ‘‘Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process’’, Mater. Lett. 59, 1696.
[12] Dodd, A., McKinley, A., Saunders, M., Tsuzuki, T. (2006). ‘‘Mechanochemical synthesis of nanocrystalline SnO2-ZnO photocatalysts’’, Nanotechnology 17, 692.
[13] Zhang, X., Cheng, Y.H., Li, L.Y., Hui, L., Zuo, X., Wen, G.H., Li, L., Zheng, R.K., Ringe, S.P. (2009). ‘‘Evidence for high-Tc ferromagnetism in Znx(ZnO)1−x granular films mediated by native point defects’’, Physical Review B. 80, 174427.
[14] Pan, H., Yi, J.B., Shen, L., Wu, R.Q., Yang, J.H., Lin, J.Y., Feng, Y.P., Ding, J., Van, L.H., Yin, J.H. (2007). ‘‘Room-Temperature Ferromagnetism in Các bon-Doped ZnO’’, Phys. Rev. Lett. 99, 127201.
[15] The, N.D., Cuong, L.T., Cuong, N.H., Son, C.T., Huy, P.T., Dung, N.D. (2017). ‘‘Local Structure and Chemistry of CDoped ZnO@C Core–Shell Nanostructures with Room-Temperature Ferromagnetism’’, Advanced Functional Materials, 1704567: 1-6, Vietnam.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All articles published in SJTTU are licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) license. This means anyone is free to copy, transform, or redistribute articles for any lawful purpose in any medium, provided they give appropriate attribution to the original author(s) and SJTTU, link to the license, indicate if changes were made, and redistribute any derivative work under the same license.
Copyright on articles is retained by the respective author(s), without restrictions. A non-exclusive license is granted to SJTTU to publish the article and identify itself as its original publisher, along with the commercial right to include the article in a hardcopy issue for sale to libraries and individuals.
Although the conditions of the CC BY-SA license don't apply to authors (as the copyright holder of your article, you have no restrictions on your rights), by submitting to SJTTU, authors recognize the rights of readers, and must grant any third party the right to use their article to the extent provided by the license.