• Hoang Van Thang Faculty of Mathematical Economics,National Economics University, Hanoi City, Vietnam
  • Pham Anh Tuan Faculty of Mathematical Economics,National Economics University, Hanoi City, Vietnam




Pseudomonotone and Lipchitz-type bifunction; equilibrium problem; subgradient extragradient method; inertial algorithm; strong convergence; convergence rate AMS class: 47H09,47J20,47J05,47J25


   In this work, we analyze a new method for solving equilibrium problem involving pseudomonotone and Lipschitz-type bifunction in real Hilbert space. A strong convergence theorem is presented without the prior knowledge of the Lipschitz-type constants of the bifunction. Finally, some numerical examples are given to illustrate the effectiveness of the algorithm.


Download data is not yet available.


[1]. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via

discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3-11 (2001)

[2]. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert spaces. SIAM J. Optim. 9, 773-782 (2004)

[3]. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems.

Math. Program. 63, 123-145 (1994)

[4]. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational

inequalities in Hilbert space. J. Optim. Theory Appl. 148 (2), 318-335 (2011)

[5]. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings:

Marcel Dekker, New York; 1984

[6]. Contreras, J., Klusch, M., Krawczyk, J. B.: Numerical solution to Nash-Cournot equilibria in

coupled constraint electricity markets. EEE Trans. Power Syst. 19, 195-206 (2004)

[7]. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, Th.M.: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70, 687-704 (2018)

[8]. Fan, K.: A minimax Inequality and Applications, Inequalities III, pp. 103–113. Academic Press,

New York (1972)

[9]. Flam, S. D., Antipin, A. S.: Equilibrium programming and proximal-like algorithms. Math.

Program. 78, 29-41 (1997)

[10]. Ha, N.T.T., Thanh, T.T.H., Hai, N.N. et al.: A note on the combination of equilibrium problems. Math. Meth. Oper. Res. 91, 311-323 (2020)

[11]. Hieu, D.V., Strodiot, J. J., Muu, L. D.: Strongly convergent algorithms by using new adaptive

regularization parameter for equilibrium problems. J. Comput. Appl. Math. 376 (2020), 112844.

[12]. Hieu, D.V., Cho, Y.J., Xiao, Y.B.: Modified extragradient algorithms for solving equilibrium

problems. Optimization 67, 2003–2029 (2018)

[13]. Hieu, D.V., Quy, P.K., Van V., L.: Explicit iterative algorithms for solving equilibrium problems. Calcolo 56, 11 (2019). https://doi.org/10.1007/s10092-019-0308-5

[14]. Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of

equilibrium problems. Math. Program., Ser. B, 116, 259-273 (2009)

[15]. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems.

Ekonomikai Matematicheskie Metody 12, 747-756 (1976)

[16]. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin


[17]. Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)

[18]. Konnov, I.V.: Equilibrium formulations of relative optimization problems. Math. Meth. Oper.

Res. 90, 137-152 (2019)

[19]. Lyashko, S.I., Semenov, V.V., Voitova, T.A.: Low-cost modification of Korpelevich’s methods

for monotone equilibrium problems. Cybernetics and Systems Analysis. 47, No. 4, 631-640


[20]. Lyashko, S.I., Semenov, V.V.: A New Two-Step Proximal Algorithm of Solving the Problem

of Equilibrium Programming. In: Goldengorin, B. (ed.) Optimization and Its Applications in

Control and Data Sciences. Springer Optimization and Its Applications, vol. 115, pp. 315-325.

Springer, Cham (2016)

[21]. Mastroeni, G.: On auxiliary principle for equilibrium problems. Publicatione del Dipartimento

di Mathematica dell, Universita di Pisa, 3, 1244-1258 (2000)

[22]. Mastroeni, G.: Gap function for equilibrium problems. J. Global Optim. 27, 411-426 (2003)

[23]. Moudafi, A.: Proximal point algorithm extended to equilibrum problem. J. Nat. Geometry, 15,

-100 (1999)

[24]. Moudafi, A.: Second-order differential proximal methods for equilibrium problems. J. Inequal.

Pure Appl. Math. 4, Article 18 (2003)

[25]. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constraint

equilibria. Nonlinear Analysis: Theory, Methods and Applications 18, 1159-1166 (1992)

[26]. Muu, L.D., Quy, N. V: On existence and solution methods for strongly pseudomonotone equilibrium problems. Vietnam J. Math. 43, 229–238 (2015)

[27]. Nguyen, T.T.V., Strodiot, J.J., Nguyen, V.H.: Hybrid methods for solving simultaneously an

equilibrium problem and countably many fixed point problems in a Hilbert space. J. Optim.

Theory Appl. 160, 809- 831(2014)

[28]. Peypouquet, J.: Convex Optimization in Normed Spaces: Theory, Methods and Examples.

Springer, Berlin (2015)

[29]. Popov, L. D.: A modification of the Arrow-Hurwicz method for searching for saddle points.

Mat. Zametki 28 (5), 777-784 (1980)

[30]. Quoc, T.D., Muu, L.D., Nguyen, V. H.: Extragradient algorithms extended to equilibrium

problems. Optimization 57, 749-776 (2008)

[31]. Rehman, H.U., Kumam, P., Cho, Y.J., Yordsorn, P.: Weak convergence of explicit extragradient algorithms for solving equilibrium problems. J. Inequal. Appl. 2019:282 (2019)

[32]. Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in

Banach spaces. Nonlinear Anal. 75, 742–750 (2012)

[33]. Shehu, Y., Iyiola, O.S., Thong, D.V., Van N.T.C.: An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems. Math. Meth. Oper. Res. (2020)


[34]. Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: Extragradient methods and linesearch algorithms

for solving Ky Fan inequalities and fixed point problems. J. Optim. Theory Appl. 155, 605–627


[35]. Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: On extragradient-viscosity methods for solving

equilibrium and fixed point problems in a Hilbert space. Optimization 64, 429-451 (2015)

[36]. Vinh, N.T., Muu, L.D.: Inertial extragradient algorithms for solving equilibrium problems.

Acta Math Vietnam 44, 639-663 (2019)

[37]. Yang, J.: The iterative methods for solving pseudomontone equilibrium problems. J. Sci. Comput. 84, 50 (2020). https://doi.org/10.1007/s10915-020-01298-7




How to Cite




Natural Science and Technology