A NOVEL PROJECTION TECHNIQUE FOR SOLVING PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
DOI:
https://doi.org/10.51453/2354-1431/2022/831Keywords:
Pseudomonotone and Lipchitz-type bifunction; equilibrium problem; subgradient extragradient method; inertial algorithm; strong convergence; convergence rate AMS class: 47H09,47J20,47J05,47J25Abstract
In this work, we analyze a new method for solving equilibrium problem involving pseudomonotone and Lipschitz-type bifunction in real Hilbert space. A strong convergence theorem is presented without the prior knowledge of the Lipschitz-type constants of the bifunction. Finally, some numerical examples are given to illustrate the effectiveness of the algorithm.
Downloads
References
[1]. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via
discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3-11 (2001)
[2]. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert spaces. SIAM J. Optim. 9, 773-782 (2004)
[3]. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems.
Math. Program. 63, 123-145 (1994)
[4]. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational
inequalities in Hilbert space. J. Optim. Theory Appl. 148 (2), 318-335 (2011)
[5]. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings:
Marcel Dekker, New York; 1984
[6]. Contreras, J., Klusch, M., Krawczyk, J. B.: Numerical solution to Nash-Cournot equilibria in
coupled constraint electricity markets. EEE Trans. Power Syst. 19, 195-206 (2004)
[7]. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, Th.M.: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70, 687-704 (2018)
[8]. Fan, K.: A minimax Inequality and Applications, Inequalities III, pp. 103–113. Academic Press,
New York (1972)
[9]. Flam, S. D., Antipin, A. S.: Equilibrium programming and proximal-like algorithms. Math.
Program. 78, 29-41 (1997)
[10]. Ha, N.T.T., Thanh, T.T.H., Hai, N.N. et al.: A note on the combination of equilibrium problems. Math. Meth. Oper. Res. 91, 311-323 (2020)
[11]. Hieu, D.V., Strodiot, J. J., Muu, L. D.: Strongly convergent algorithms by using new adaptive
regularization parameter for equilibrium problems. J. Comput. Appl. Math. 376 (2020), 112844.
[12]. Hieu, D.V., Cho, Y.J., Xiao, Y.B.: Modified extragradient algorithms for solving equilibrium
problems. Optimization 67, 2003–2029 (2018)
[13]. Hieu, D.V., Quy, P.K., Van V., L.: Explicit iterative algorithms for solving equilibrium problems. Calcolo 56, 11 (2019). https://doi.org/10.1007/s10092-019-0308-5
[14]. Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of
equilibrium problems. Math. Program., Ser. B, 116, 259-273 (2009)
[15]. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems.
Ekonomikai Matematicheskie Metody 12, 747-756 (1976)
[16]. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin
(2000)
[17]. Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)
[18]. Konnov, I.V.: Equilibrium formulations of relative optimization problems. Math. Meth. Oper.
Res. 90, 137-152 (2019)
[19]. Lyashko, S.I., Semenov, V.V., Voitova, T.A.: Low-cost modification of Korpelevich’s methods
for monotone equilibrium problems. Cybernetics and Systems Analysis. 47, No. 4, 631-640
(2011)
[20]. Lyashko, S.I., Semenov, V.V.: A New Two-Step Proximal Algorithm of Solving the Problem
of Equilibrium Programming. In: Goldengorin, B. (ed.) Optimization and Its Applications in
Control and Data Sciences. Springer Optimization and Its Applications, vol. 115, pp. 315-325.
Springer, Cham (2016)
[21]. Mastroeni, G.: On auxiliary principle for equilibrium problems. Publicatione del Dipartimento
di Mathematica dell, Universita di Pisa, 3, 1244-1258 (2000)
[22]. Mastroeni, G.: Gap function for equilibrium problems. J. Global Optim. 27, 411-426 (2003)
[23]. Moudafi, A.: Proximal point algorithm extended to equilibrum problem. J. Nat. Geometry, 15,
-100 (1999)
[24]. Moudafi, A.: Second-order differential proximal methods for equilibrium problems. J. Inequal.
Pure Appl. Math. 4, Article 18 (2003)
[25]. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constraint
equilibria. Nonlinear Analysis: Theory, Methods and Applications 18, 1159-1166 (1992)
[26]. Muu, L.D., Quy, N. V: On existence and solution methods for strongly pseudomonotone equilibrium problems. Vietnam J. Math. 43, 229–238 (2015)
[27]. Nguyen, T.T.V., Strodiot, J.J., Nguyen, V.H.: Hybrid methods for solving simultaneously an
equilibrium problem and countably many fixed point problems in a Hilbert space. J. Optim.
Theory Appl. 160, 809- 831(2014)
[28]. Peypouquet, J.: Convex Optimization in Normed Spaces: Theory, Methods and Examples.
Springer, Berlin (2015)
[29]. Popov, L. D.: A modification of the Arrow-Hurwicz method for searching for saddle points.
Mat. Zametki 28 (5), 777-784 (1980)
[30]. Quoc, T.D., Muu, L.D., Nguyen, V. H.: Extragradient algorithms extended to equilibrium
problems. Optimization 57, 749-776 (2008)
[31]. Rehman, H.U., Kumam, P., Cho, Y.J., Yordsorn, P.: Weak convergence of explicit extragradient algorithms for solving equilibrium problems. J. Inequal. Appl. 2019:282 (2019)
[32]. Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in
Banach spaces. Nonlinear Anal. 75, 742–750 (2012)
[33]. Shehu, Y., Iyiola, O.S., Thong, D.V., Van N.T.C.: An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems. Math. Meth. Oper. Res. (2020)
https://doi.org/10.1007/s00186-020-00730-w
[34]. Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: Extragradient methods and linesearch algorithms
for solving Ky Fan inequalities and fixed point problems. J. Optim. Theory Appl. 155, 605–627
(2012)
[35]. Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: On extragradient-viscosity methods for solving
equilibrium and fixed point problems in a Hilbert space. Optimization 64, 429-451 (2015)
[36]. Vinh, N.T., Muu, L.D.: Inertial extragradient algorithms for solving equilibrium problems.
Acta Math Vietnam 44, 639-663 (2019)
[37]. Yang, J.: The iterative methods for solving pseudomontone equilibrium problems. J. Sci. Comput. 84, 50 (2020). https://doi.org/10.1007/s10915-020-01298-7
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All articles published in SJTTU are licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) license. This means anyone is free to copy, transform, or redistribute articles for any lawful purpose in any medium, provided they give appropriate attribution to the original author(s) and SJTTU, link to the license, indicate if changes were made, and redistribute any derivative work under the same license.
Copyright on articles is retained by the respective author(s), without restrictions. A non-exclusive license is granted to SJTTU to publish the article and identify itself as its original publisher, along with the commercial right to include the article in a hardcopy issue for sale to libraries and individuals.
Although the conditions of the CC BY-SA license don't apply to authors (as the copyright holder of your article, you have no restrictions on your rights), by submitting to SJTTU, authors recognize the rights of readers, and must grant any third party the right to use their article to the extent provided by the license.